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Abstract
C
r(B,B) is the space of Cr maps of a Banach manifold B to itself, bounded together 

with their derivatives up to the order r. It is chosen a topological subspace KCr(B,B) 
satisfying certain compactness and reversibility conditions, the subspace depend-
ing on the class of problems in view. A large class of maps in KCr(B,B), called 
Morse-Smale maps and the notion of stability relative to the largest invariant set A(f) 
are defined, and it is proved that the Morse-Smale maps are stable relatively to A(f) 
and form an open set in KCr(B,B), r ≥ 1. Examples of KCr(B,B) can be constructed 
with maps arising from flows of retarded functional differential equations, of cer-
tain types of neutral functional differential equations and parabolic PDE and some 
other special PDE. Also, if B is compact, the set of all Cr−diffeomorphisms of B is 
a particular example of KCr(B,B) and the main result yields the proof for the stabil-
ity of Morse–Smale diffeomorphisms of a compact manifold, originally established 
in Palis (Topology 8:385–405, 1969) and Palis and Smale (in: Global analysis proc 
symp pure math, vol 14, AMS, Providence, RI, 1970).
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1  Introduction

We will deal in this paper with smooth maps f ∶ B → E, B being a Banach mani-
fold imbedded in a Banach space E. The maps f belong to Cr(B,E), the Banach 
space of all E−valued Cr−maps defined on B which are bounded together with 
their derivatives up to the order r ≥ 1 . Let Cr(B,B) be the subspace of Cr(B,E) of 
all maps leaving B invariant, that is, f (B) ⊂ B. Denote by A(f) the set

Special subspaces KCr(B,B) of Cr(B,B) will be introduced satisfying the following 
compactness and reversibility properties: "any f ∈ KCr(B,B) is reversible, has A(f) 
compact and given a neighborhood U of A(f) in B,  there exists a neighborhood �(f ) 
of f in KCr(B,B) such that A(g) ⊂ U for all g ∈ �(f ) " (reversibility for a C1 map f 
means f/A(f) and df/A(f) are injective maps). The choice of the classes KCr(B,B) 
depends on the problems in view. In each case we need to assume appropriate 
hypotheses on the data in order to obtain the required compactness and reversibility 
properties for the elected KCr(B,B).

Global unstable manifolds of hyperbolic periodic points of a map 
f ∈ KCr(B,B) are introduced using the reversibility of f. When the nonwander-
ing set Ω(f ) (see sect.  2) is a finite set of hyperbolic periodic points with finite 
dimensional unstable manifolds transversal to the local stable manifolds, the map 
f is called a Morse-Smale map (see Definition 4.2). We denote by MS the set of 
Morse-Smale maps of KCr(B,B).

From the dynamic point of view, a Morse-Smale map f exhibits the simplest 
orbit structure, specially the "gradient like" ones, that is, the f ∈ MS for which 
there exists a continuous Liapunov function V ∶ B → ℝ such that if x ∈ B and 
f (x) ≠ x, then V(f (x)) < V(x). In this case Ω(f ) is equal to Fix(f),   the set of all 
fixed points of f.

In Palis [12], and in Palis-Smale [15] the authors proved very important stabil-
ity theorems for (and existence of) Morse-Smale diffeomorphisms defined on a 
compact manifold M. They showed that any Morse-Smale diffeomorphism f is 
stable. That is, there exists a neighborhood �(f ) of f in Diff r(M), the set of all Cr−

diffeomorphisms of M, r ≥ 1, such that for each g ∈ �(f ) corresponds a homeo-
morphism h = h(g) ∶ M → M and h ⋅ f = g ⋅ h holds on M.

We say that f ∈ KCr(B,B) is stable relatively to A(f) if there exists a neighbor-
hood �(f ) of f in KCr(B,B) such that to each g ∈ �(f ) corresponds a homeomor-
phism h = h(g) ∶ A(f ) → A(g) and h ⋅ f = g ⋅ h holds on A(f).

1.1 � Main result (openess and stability)

"The set MS is open in KCr(B,B) and any f ∈ MS is stable relatively to A(f)."
The main motivation is the study of certain maps arising from flows of some 

infinite dimensional dynamical systems which appear naturally in several physical 

A(f ) = {x ∈ B ∶ there exists a sequence (x = x1, x2,…) ∈ B,

sup
j

||xj|| < ∞ and f (xj) = xj−1, j = 2, 3,…}.
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as well as mathematical contexts. That class includes retarded functional differ-
ential equations (RFDE),certain types of neutral functional differential equations 
(NFDE), parabolic partial differential equations (parabolic PDE) and some other 
special PDE. The basic theory of RFDE and NFDE can be seen in Hale [2] and 
parabolic PDE in Henry [5]. A framework for the dynamics of maps in infinite 
dimensions can also be found in Hale [3].

As a first general example, let E = C0([−1, 0],ℝn) be the Banach space of 
all continuous maps � ∶ [−1, 0] → ℝ

n, the norm in E being the sup norm, and 
�r = Cr(E,ℝn), r ≥ 1, be the Banach space of all Cr−functions defined in E with 
values in ℝn which are bounded together with their derivatives up to the order 
r;�r is endowed with the usual topology. Given F ∈ �r, let us consider the RFDE 
ẋ = F(xt) where, for each fixed t, xt designates the resriction of a function x as 
xt(�) = x(t + �), −1 ≤ � ≤ 0. For any � ∈ E, let xt(�), t ≥ 0, be the solution such 
that x0 = � and denote TF(t)� = xt(�). If this function is defined for t ≥ 0, then 
TF(t) ∶ E → E is a strongly continuous semigroup and for t ≥ 1 TF(t) is a compact 
map (f = TF(1) ∶ B → E, B = E, in notation of the first paragraph). The RFDE 
can also be defined on manifolds (see [2, 11] and Example 2.2).

A general situation for a parabolic PDE can also be described; let us suppose 
u ∈ ℝ

k, x ∈ ℝ
n, Ω be a bounded open set in ℝn with smooth boundary �Ω,Δ be 

the Laplacian operator, D be a k × k positive diagonal matrix, and consider the 
problem

Let W = H1
0
(Ω) ∩ H2(Ω) be the domain of −Δ and E = W� , 0 ≤ � ≤ 1, be the 

domain of the fractional power (−Δ)� of −Δ with the graph norm (see [5] for 
details). Under suitable conditions on F and �, this PDE generates a strongly con-
tinuous semigroup TF(t) on E which is compact for t > 0. Call f = TF(1).

The map f and the set A(f) contain much of the interesting informations about 
the semigroup TF(t) (see [8, 9, 11]). If A(f) is not a compact set, very little is 
known at this time. The compactness of A(f) and the reversibility of f will play a 
fundamental role in the sequel.

More specific examples motivated the author in the present paper:
The Levin-Nohel RFDE on S1

Let G ∶ ℝ → ℝ and a ∶ [0, 1] → ℝ be analytic functions, G being periodic, 
a(1) = 0, a(s) ≥ 0, ȧ(s) ≤ 0, ä(s) > 0. If g(x) = G�(x) is derivative of G, the Levin-
Nohel equation on S1 is given by

The above RFDE admits a Liapunov function

ut − DΔu = F(x, u, grad u) in Ω,

u = 0 on �Ω (or other usual boundary condition).

ẋ = −
∫

0

−1

a(−𝜃)g(x(t + 𝜃))d𝜃.

V(𝜑) = G(𝜑(0)) −
1

2 ∫

0

−1

ȧ(−𝜃)
[
∫

0

𝜃

g(𝜑(s))ds
]2
d𝜃
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whose derivative V̇  along the solution is given by

The case in which g has four simple zeros on S1 was studied by Hale and Ryba-
kowski in [4] and they described the possible topological types of the corresponding 
A(f) ( in the present case the time one map f is reversible and A(f) is compact) for ⋅⋅

generic⋅⋅G . They found five classes for A(f), three of them stable under perturbations 
of G and the remaining two classes having saddle connections. The pictures for A(f) 
are the following:

1.2 � The Chafee‑Infante parabolic PDE

Consider the following scalar parabolic PDE

where � is a real parameter. This equation defines a strongly continuous semi-
group T�(t), t ≥ 0, on H1

0
(0,�) (see Henry [5] for details). The Liapunov function 

V ∶ H1
0
(0,�) → ℝ given by

has the following derivative along the solutions:

Henry (see [5]) described the invariant set A(f ) ∈ H1

0
(0,�) for � in the intervals 

n2 < 𝜆 ≤ (n + 1)2, n = 0, 1, 2 and 3 . The time one map f = f (�) is reversible and 
has (2n + 1) hyerbolic fixed points when � satisfies n2 < 𝜆 < (n + 1)2 and pictures 
for A(f) are the following:

V̇(𝜑) =
1

2
ȧ(1)

[
�

0

−1

g(𝜑(𝜃))d𝜃
]2

−
1

2 �

0

−1

ä(−𝜃)
[
�

0

𝜃

g(𝜑(s))ds
]2
d𝜃 ≤ 0.

ut = uxx + 𝜆(u − u3) 0 < x < 𝜋, t > 0

u = 0 at x = 0,�,

V(�) =
∫

�

0

[1
2
�2
x
− �

(�2

2
−

�4

4

)]
dx

V̇(u(t, ⋅)) = −
�

𝜋

0

u2
t
dx ≤ 0.
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When n2 < 𝜆 ≤ (n + 1)2, A(f ) is a n-dimensional compact set.
The values � = (n + 1)2, n = 0, 1, 2,… correspond to a kind of "bifurcation" of 

A(f); two more fixed points bifurcate from 0 and the dimension of A(f) increases when 
� passes through a bifurcation value. The description of A(f) for n > 3 has been done by 
J. Hale and A. Nascimento (private communication).

1.3 � The elastic beam equation

Ball [1] studied a model for the transverse motion of an elastic beam with ends fixed in 
space. The corresponding non linear equation

has �, k, � and � as positive constants and the boundary conditions are stated for 
hinged or clamped ends. In each case, the equation defines a flow in a suitable 
Banach space, with a Liapunov function (the energy) nonincreasing along solutions.

Taking f as the time-one map (which is reversible in this case), the number of fixed 
points and the dimension of A(f) depend on � (which is proportional to the axial load). 
Some conjectures about pictures for A(f) are made in [1] but to settle them new tech-
niques would seem to be necessary. For the case u = uxx = 0 at x = 0, l (hinged ends) 
A(f) can be defined in some detail.

1.4 � The Navier‑Stokes equation

In [7] Ladyzhenskaia proved that the set A(f) corresponding to the semigroup 
TF(t) generated by the Navier-Stokes equation F in a two dimensional domain is a 
compact set and f = TF(1) is a compact map. The dimension of A(f) may increase 

utt + �uxxxx −
[
� + k

∫

l

0

u2
s
(s, t)ds

]
uxx + �ut = 0
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as the Reynolds number Re increases and it seems that the dynamical system 
F = F(Re) is in fact the object of investigation in turbulence theory dealing with 
flows at large values of Re. How does A(f) change as the viscosity � → 0, i.e. as 
Re → +∞ ?

As applications of the main result we mention: 

1.	 If B is compact, the set of all Cr-diffeomorphisms of B is a particular example of 
KCr(B,B) and the main result yields the proof for the stability of Morse-Smale 
diffeomorphisms of a compact manifold, originally established in [12, 15].

2.	 If S is the set of time one maps of all analytic RFDE defined on a compact mani-
fold, the Morse-Smale maps f of S are stable relatively to A(f) and form an open 
set in S.

Section  2 is presented just to show that there exists a large class of problems 
in which it is possible to find B and to choose subspaces of Cr(B,B) with the 
properties of a KCr(B,B). On the other side, in the definition of MS the unstable 
manifolds are assumed to have finite dimension and we see, in Sect.  3, that in 
many application this is the case since A(f) has finite Hausdorff dimension. The 
remaining sections are concerned with the tools to be used in the proof of the 
main result.

2 � The dynamics of some non linear maps

Let B be a connected Banach manifold embedded in a Banach space E, with norm 
|| ⋅ ||, and U ⊂ B an open set.

We will deal, often, with continuous maps f ∶ U → B which are compact maps, 
that is, which send bounded sets into relatively compact sets.

Given a map f ∶ U → B, one can define

When U = B, f ∶ B → B, then A(f; B) is simply denoted by A(f).

Remark  A(f ;U) ⊂ f (A(f ;U)) ⊂ f 2(A(f ;U)) ⊂ … . A subset M ⊂ U is said to be neg-
atively invariant with respect to f ∶ U → B if any x ∈ M has a negative bounded 
orbit on M, that is, if there exists a sequence (x = x1, x2,…) ∈ M, supj||xj|| < ∞ 
and f (xj) = xj−1, j = 2, 3,… .

It is easy to prove the following:

Proposition 1.1  A(f; U) is negatively invariant; if M ⊂ U is negatively invariant then 
f (M) ⊃ M and A(f ;U) ⊃ M. If M ⊂ U is bounded then M is negatively invariant if 
and only if f (M) ⊃ M.

Let us denote byAn(f ;U) the set

A(f ;U) = {x ∈ U ∶ there exists a sequence (x = x1, x2,…) ∈ U,

supj||xj|| < ∞ and f (xj) = xj−1, j = 2, 3,…}.
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It is clear that An(f ;U) ⊂ A(f ;U).

Denote An(f ;B) = An(f ).

Proposition 1.2  The set An(f ;U) is negatively invariant and if f is compact, An(f ,U) 
is relatively compact.

Proof  It is clear that f [An(f ;U)] ⊃ An(f ;U) then f [An(f ;U)] ⊃ An(f ;U); if f is com-
pact it follows that An(f ;U) is compact.

Proposition 1.3  If f ∶ U → B is compact then An(f ;U) is compact.

Proof: It is sufficient to prove that An(f ;U) is closed. Take 
y = lim x� , x� ∈ An(f ;U). We have the sequences:

such that f (x�
j
) = x�

j−1
, j ≥ 2, � ≥ 1. Since f is compact and sup||x�

j
|| ≤ n, each verti-

cal sequence has a limit point xj defined by a subsequence of x�
j
 (j fixed), that is,

One has the sequence

and by continuity f (xj) = xj−1, j ≥ 2, that is, y ∈ An(f ;U).

Corollary 1.4  If f ∶ U → B is compact, then A(f; U) is a countable union of compact 
sets. When U = B, the same holds for A(f).

Proof  A(f ;U) =
⋃
n≥1

An(f ;U) and A(f ) =
⋃
n≥1

An(f ).

A subset M ⊂ U is said to be positively invariant with respect to f ∶ U → B if 
f (M) ⊂ M (the positive orbit of a point of M remains in M). M is invariant if it is 
negatively and positively invariant. A(f) is the largest invariant set of any f ∶ B → B.

If the positive orbit �+(x) = {f n(x), n ≥ 0} is contained in U one can define w(x),  
the w−limit set of x ∶ y ∈ w(x) if y = limj→∞ f nj (x) for some sequence nj → ∞ as 
j → ∞ . Analogously, one can define �(x), the �−limit set of x, since there is defined 
a negative bounded orbit 𝛾−(x) ⊂ U . We say that z ∈ �(x) if z = limi→∞ xni , ni → ∞ 
as i → ∞, for some subsequence xni of some sequence

An(f ;U) = {x ∈ U| there exists a sequence (x = x1, x2,…) ∈ U,

f (xj) = xj−1, j ≥ 2, and supj||xj|| ≤ n}.

x1 = x1
1
, x1

2
,… , x1

j
,…

x2 = x2
1
, x2

2
,… , x2

j
,…

⋮

x� = x1
1
, x�

2
,… , x�

j
,…

lim
�

x�
j
= xj (using the same indices).

y = x1, x2,…
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In what follows we will consider continuous maps f ∶ B → B. A point z ∈ A(f ) is a 
non wandering point if given a neighborhood � of z in A(f) and n0 ∈ N , there exists 
n > n0 such that fn(�) ∩� ≠ Φ. It is clear that the non wandering set Ω(f ), the set of 
all non wandering points, is closed in A(f).

Proposition 1.5  If B ⊂ E is bounded (and connected) and f ∶ B → B is compact, 
then the largest invariant set A(f) is nonempty, compact (and connected) and 
A(f ) =

⋂
n≥1

f n(B).

Proof  Let us denote by Ai, i ≥ 1, the relatively compact sets Ai = f i(B). One has 
A1 = f (B) ⊃ f (A1) ⊃ f (A1) = A2 since f (A1) ⊂ f (A1) and f (A1) is closed. By induc-
tion Ai−1 ⊃ Ai, i > 1, imply Ai = f (Ai−1) ⊃ f (Ai) ⊃ f (Ai) = Ai+1. We have, then, ⋂
i≥1

Ai ⊃
⋂
i≥1

Ai+1 and 
⋂
i≥1

Ai ⊂
⋂
i≥1

Ai ⊂
⋂
i≥1

Ai+1 ; finally I =
⋂
i≥1

Ai =
⋂
i≥1

Ai+1 =
⋂
i≥1

Ai 

which is connected and compact because is the intersection of the non increasing 
sequence of connected and compact sets A1 ⊃ A2 ⊃ A3 ⊃ … . It is clear that 
A(f ) ⊂ I; but, conversely, let x ∈ f (B) ∩ f 2(B) ∩ … and consider the sequences

In the first vertical sequence (x1
2
, x2

2
, x3

2
,… , xn

2
,…) one observes that xn

2
∈ A1 for 

n ≥ 2; xn
2
∈ A2 for n ≥ 3 , and so on. Since A1 is compact that sequence has a limit 

point x1 ∈ A1 and by the above observations, x1 ∈ Ai, i ≥ 1, then x1 ∈ I. But f is con-
tinuous, then f (x1) = x. Using the same argument, starting from x1 ∈ I we construct 
x2 ∈ I and f (x2) = x1 and so on, we get the sequence

that is, x ∈ A(f ) and A(f ) = I. It is clear that A(f) is the largest invariant set and if 
x ∈ B, the sequence (x, f (x), f 2(x),…) is such that f i(x) ∈ A1 for i ≥ 1 and then there 
exists a limit point x ∈ A1; but since f i(x) ∈ A2 for i ≥ 2 , it follows that x ∈ A2, and 
so on, x ∈ Aj for all j ≥ 1, which shows that x ∈ A(f ) ≠ Φ.

The following result is easy to prove:

Corollary 1.6  If B ⊂ E is bounded and if f ∶ B → B is compact then for any 
x ∈ B,w(x) is non empty, compact and invariant (then w(x) ⊂ A(f )).

Definition 1.7  A continuous map f ∶ B → B is said to be C0−reversible if it is one-
to-one on A(f). If in addition f is C1 and the derivative df ∶ TB → TB is one-to-one 
on A(df ), f  is said to be reversible.

(x = x1, x2,…) ∈ 𝛾−(x), sup
j

||xj|| < ∞, f (xj) = xj−1, j ≥ 2.

x = x1
1
, x1

2

x = x2
1
, x2

2
, x2

3

⋮

x = xn
1
, xn

2
, xn

3
,… in which f (xn

i+1
) = xn

i
.

(x, x1, x2,…), f (x1) = x and f (xi) = f (xi−1), i ≥ 2,
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Proposition 1.8  If f ∶ B → B is C0−reversible and A(f) is compact then Ω(f ) is com-
pact and invariant. Also, if x ∈ A(f ), the w and �−limit sets w(x) and �(x) are non 
empty, compact and invariant sets contained in Ω(f ).

Proof  If y ∈ Ω(f ), it is easy to see that f i(y) ∈ Ω(f ) for all i ≥ 1. Since f is C0−

reversible, A(f) is compact and g = f∕A(f ) is a homeomorphism, then all points of 
the (unique) negative orbit of y, (y, g−1(y), g−2(y),…) belong to Ω(f ) and Ω(f ) is 
invariant. But Ω(f ) is closed, then it is compact.

Given x ∈ A(f ), the homeomorphism g ∶ A(f ) → A(f ) shows, by stand-
ard arguments, that w(x) and �(x) are ≠ Φ , compact and invariant sets. Since 
{gi(x) ∶ −∞ < i < ∞} ⊂ Ω(f ) and Ω(f ) is closed, �(x) and w(x) are in Ω(f ).

The next Lemma 1.9 and Theorem 1.10 were shown to me by D. Henry.
Let (X,  d) be a complete metric space , The Kuratowski measure of noncom-

pactness of a nonempty and bounded subset A or X is the non negative number 
𝛼(A) = inf{d� ∈ ℝ ∶ A has a finite cover of diameter < d�}.

It is known that (see [3]) 

	 (i)	 �(A) = 0 if and only if A is compact
	 (ii)	 �(A1 ∪ A2) = max[�(A1), �(A2)]

A continuous map f ∶ X → X is a set contraction if there exists 0 ≤ 𝜃 < 1 such 
that �(f (A)) ≤ � ⋅ �(A) for all bounded sets A ⊆ X.

If f ∶ X → X is continuous, and M ⊂ X, one says that M is f−invariant (or sim-
ply invariant) if any x ∈ M has one negative bounded orbit contained in M and 
f (M) ⊂ M.

Lemma 1.9  If (X,  d) is a complete metric space, Ak (k ≥ 1) are nonempty closed 
bounded sets with A1 ⊃ A2 ⊃ A3 ⊃ … and �(Ak) → 0 as k → ∞, then A∞ =

⋂
k≥1

Ak is 

a nonempty compact set and for any 𝜖 > 0 there exists n� so A∞ ⊂ An ⊂ 𝜖−neigh-
borhood of A∞ for n ≥ n� . If all the Ak are connected then A∞ is also connected.

Proof  The key result is A∞ ≠ �. Let pk ∈ Ak (k = 1, 2,…) ; we show there is a con-
vergent subsequence pk′ → p in X. Since pk� ∈ Ak� ⊂ An for all k� ≥ n, p ∈ An; this 
holds for each n so p ∈ A∞.

Now let 𝜖n > 𝛼(An), 𝜖n → 0; An may be covered by finitely many sets 
{Sn

i
∶ i = 1, 2,… ,Nn} with diam Sn

i
≤ �n. Since {pk}k≥1 ⊂ A1 there exists 

i1 ∈ {1, 2,… ,N1} so S1
i1
 contains infinitely many of the pk - thus there is a subse-

quence {p1
k
} or {pk} contained in a set of diameter ≤ �1 . Except possibly for the first 

term, all p1
k
∈ A2 so there is a set of diameter ≤ �2 in A2 containing infinitely many 

of the p1
k
 . Thus there is a subsequence {p2

k
} ou {p1

k
}, in a set of diameter ≤ 2.

Continuing, we find subsequences {pn
k
} ⊂ {pn−1

k
} ⊂ ⋯ ⊂ {p1

k
} ⊂ {pk} and 

d(pn
k
, pn

j
) ≤ �n for all j, k. The diagonal sequence [p̃n = nth term of {pn

k
}] is therefore 

a Cauchy sequence. Then A∞ =
⋂
k≥1

Ak is nonempty and closed; since �(A∞) ≤ �(Ak) 
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for all k, �(A∞) = 0 so A∞ is compact. Suppose 𝜖 > 0 and there exist 
k𝜈 → ∞, k𝜈 < k𝜈+1, with Ak𝜈

⊂∕ 𝜖−neighborhood of A∞.

Let A�
�
= Ak�

− (�−neighborhood of A∞) ; A′
�
 is nonempty, closed, 

A�
𝜈+1

⊂ A�
𝜈
, 𝛼(A�

𝜈
) ≤ 𝛼(Ak𝜈

) → 0 so 
⋂
�≥1

A�
�
= A�

∞
 is nonempty. But A�

∞
⊂ A∞ while 

A�
∞
∩ (�−neighborhood of A∞) = Φ, a contradiction.

Finally suppose A1,A2,… are connected but A∞ is not connected. There is a 
continuous � ∶ A∞

onto
���������������→ {0, 1} and there is a continuous Φ ∶ A1 → [0, 1] with 

Φ∕A∞ = �. Then for each k < ∞, A��
k
= Ak ∩ Φ−1(

1

2
) is nonempty and closed and, 

as above, A��
∞
= ∩k≥1A

��
k
 is nonempty. But A��

∞
⊂ A∞ ∩ Φ−1(1∕2), which is empty 

[(1∕2) ∉ Φ(A∞) = {0, 1}].

Theorem 1.10  Let (X, d) be a complete metric space and B a bounded open set in X. 
Suppose f ∶ X → X is continuous and satisfies 

	 (i)	  given x ∈ X, f n(x) ∈ B for all sufficiently large n; 
	 (ii)	  for some integer m ≥ 1, f m(B) ⊂ B and f m∕B is a set contraction (there exists 

𝜃 < 1 so �(f m(S)) ≤ � ⋅ �(S) for S ⊂ B).

Then K(f ;B) =
⋂
i≥0

f m(B) is a nonempty compact f−invariant set, it is connected 

when B is connected, and contains every compact f -invariant set and in fact every 
f -invariant set S such that S − B is precompact. If {xk ∶ k = 0,−1,−2,…} ⊂ B 
with f (xk) = xk+1 for each k < 0, then x0 ∈ K(f ;B) (indeed all 
xk ∈ K(f ;B) = A(f∕B;B)). Given 𝜖 > 0 there exists an integer n(�) so 
K(f ;B) ⊂ f n(B) ⊂ 𝜖−neighborhood of K(f ;B) for n ≥ n(�) [and of course 
K(f ;B) ⊂ f n(B) for every n].

Assume further that f is uniformly continuous on a �0−neighborhood of B 
for some �0. Given 𝜖 > 0 there exist 𝛿 > 0 and n0 > 0 so any g ∶ X → X with 
d(f (x), g(x)) < 𝛿 on a �0−neighborhood of B , satisfies gn(B) ⊂ 𝜖−neighborhood of 
K(f ;B) for all n ≥ n0. If g also satisfies (i) and (ii) then K(g;B) ⊂ 𝜖−neighborhood 
of K(f ;B).

Proof  First assume m = 1. Let B0 = B, Bn+1 = f (Bk) for k ≥ 0. Since 
f (B) ⊂ B,B1 ⊂ B0 and Bk+1 ⊂ Bk for all k > 0. The Bk are nonempty closed bounded 
sets and �(Bk) ≤ �k�(B) and �(Bk) → 0 as k → ∞ so B∞ =

⋂
k≥0

Bk is a nonempty 

compact set (and connected if B−hence each Bk− is connected). Also 
Bk+1 ⊃ f (Bk) ⊃ f (B∞) for all k so B∞ ⊃ f (B∞); and x ∈ B∞ implies x ∈ Bk for all k 
so f (x) ∈ f (Bk) ⊂ Bk+1 for all k,  then f (x) ∈ B∞. Thus B∞ = f (B∞) is f−invariant. 
Also, given 𝜖 > 0 there exists n(�) so B∞ ⊂ f n(B) ⊂ 𝜖−neighborhood of B∞ for 
n ≥ n(�). Note that there exists 𝜖0 > 0 so dist(x;B∞) < 𝜖0 implies f n(x) ∈ B for all 
n ≥ 0.

Suppose S is an invariant set such that S − B is pre-compact.If x ∈ S − B there 
exists nx so f n(x) ∈ B for n ≥ nx. If n�

x
= nx + n(�0) then f n�x (x) ∈ �0−neighbor-

hood of B∞ so there is a neighborhood Ux of x with f n�x (Ux) ⊂ 𝜖0−neighborhood 
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of B∞, hence f k(Ux) ⊂ B for all k ≥ n′
x
. By compactness of S − B, there is an open 

U ⊃ S − B and an integer n′ such that f k(U) ⊂ B for all k ≥ n′. Since S is invari-
ant, we have in fact S ⊂ B so S ⊂ Bk for all k,   so S ⊂ B∞. Write K(f ;B) or K(f) in 
place of B∞, the largest compact invariant set or the largest invariant subset of B or 
A(f∕B;B).

Now consider the case m > 1. The above argument applies with f m in place of f, 
so the set K(f m) is defined, and it is easy to see we only need to prove 

f (K(f m)) = K(f m) [we know that K(f m) is f m−invariant]. Let K̃(f ) =
m−1⋃
i=0

f i(K(f m)); 

this is a nonempty compact set, f m(K̃(f )) = K̃(f ) so K̃(f ) = K(f m). Also 
f (K̃(f )) =

m⋃
i=1

f i(K(f m)) = K̃(f ) so K(f m) is f−invariant, not only f m−invariant.

For simplicity, suppose again m = 1 . Now suppose f is uniformly con-
tinuous on a �0−neighborhood of B ∶ d(f (x), f (y)) ≤ w(d(x, y)) when 
dist(x,B) < 𝛿0, dist(y,B) < 𝛿0, with w(⋅) a continuous positive increasing func-
tion, w(0) = 0. Then there exist wk (k ≥ 1 ∶ w1 = w) with similar properties and 
d(f k(x), f k(y)) ≤ wk(d(x, y)) for x, y in a �(k)

0
−neighborhood of B [say wk = w◦wk−1 

and wk−1(�
(k)

0
) = �0]. If � is sufficiently small (given n) then d(f (x), g(x)) < 𝛿 on a �0−

neighborhood of B implies gk(B) ⊂ 𝛿
(k)

0
 for k = 1, 2,… , n and d(f k(x), gk(x)) < 𝛿(k) 

for k = 1, 2,… , n, x ∈ B [�(1) = �, �(k) = wk(�
(k−1)) + �]. Indeed this is trivial for 

k = 1, and if true for (k − 1) then

If 𝛿(k) < 𝛿
(k)

0
 then gk(B) ⊂ 𝛿

(k)

0
−neighborhood of B. Choosing � small, 𝛿(K) < 𝛿

(k)

0
 

for k = 1, 2,… , n. Now given 𝜖 > 0 so f k(��−neighborhood of K(f )) ⊂ [𝜖∕2−
neighborhood of K(f)] for all k ≥ 1 (0 < 𝜖� < 𝜖 < (1∕2) dist(K(f ), 𝜕B), without 
loss of generality). Also there exists an integer n′ ≥ 1 so f k(B) ⊂ [(𝜖�∕2)−neigh-
borhood of K(f)] for all k ≥ n′. Choose 𝛿 > 0 so small that d(f k(x), gk(x)) < 𝜖�∕2 
for k = 1, 2,… , n� and x ∈ B. Then gk(B) ⊂ [𝜖-neighborhood of K(f)] for k ≥ n′ . 
Indeed gn� (B) ⊂ [(𝜖�∕2)-neighborhood of f n� (B)] ⊂ [𝜖�-neighborhood of K(f)],  so gn′ 
maps the �′-neighborhood of K(f) to itself, and for 1 ≤ k ≤ n�, gk(��-neighborhood 
of K(f )) ⊂ [(𝜖�∕2)-neighborhood of f k(��-neighborhood of K(f ))] ⊂ [((𝜖 + 𝜖�)∕2)
-neighborhood of K(f)].

As a final remark in this section we see that the Proposition 1.5 and Corollary 1.6 
can be generalized for set contractions instead of compact maps.

Corollary 1.11  If B is bounded (and connected) and f ∶ B → B is a set contraction, 
then the largest invariant set A(f) is nonempty, compact (and connected) and 
A(f ) =

⋂
n≥1

f n(B).

Corollary 1.12  If B is bounded and f ∶ B → B is a set contraction then for any 
x ∈ B, w(x) is nonempty, compact and invariant (then w(x) ⊂ A(f )).

d(f k(x), gk(x)) ≤ d(f (f k−1(x)), f (gk−1(x))) + d(f (gk−1(x)), g(gk−1(x)))

< [w(𝛿(k−1)) + 𝛿] = 𝛿(k) for x ∈ B..
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Example 1.13  Let f ∶ ℝ
k
→ ℝ

k a continuous map such that given x ∈ ℝ
k, f n(x) 

belongs to the unit open ball B for some n = n(x) and f (B) ⊂ B, Then f satisfies the 
hypothesis of Theorem 1.10.

3 � Compact retractions and the dimension of the largest invariant set

Let B ⊂ E be a Banach manifold imbedded in a Banach space E. A retraction 
� ∶ B → B is a continuous map such that �2 = �. It is clear that �(B) is closed in B.

In [11] we find the proof of the following result:

Proposition 2.1  Let � ∶ B → B be a smooth retraction. Then �(B) is an imbedded 
submanifold of B.

Example 2.2  Let M be a compact submanifold of an Euclidean space ℝn and 
B = C0(I,M) be the totality of all continuous paths � ∶ I = [−m, 0] → M, for 
some fixed m > 0. B is a bounded Banach manifold imbedded in the Banach 
space E = C0(I,ℝn) of all continuous maps � ∶ I → ℝ

n, || || being the sup 
norm. A retarded functional differential equation on M (see [2, 11]) is a map 
F ∶ B → TM, F(�) being a tangent vector to the manifold M at the point �(0). 
When F is C1, the flow map f ∶ B → B defined by f (�) = xm(�),� ∈ B, is compact 
and C1 (t → xt(�) is the solution of RFDE F such that x0(�) = �). If F is analytic, f 
is also analytic and reversible.

The map � ∶ B → B defined by

satisfies �2 = � then is a compact C1−retraction and �(B) is diffeomorphic to M. 
Moreover, � is homotopic to the identity map of B,  the homotopy F ∶ [0, 1] × B → B 
being defined by F(�,�) = �(� ⋅ �), 0 ≤ � ≤ 1, � ∈ [−m, 0].

The next arguments and statements appearing in this section follow closely the 
works of Mallet-Paret and Mañ é about the subject (see [8–10]). We recall them here 
for a sake of completeness.

Let us denote by R (B) the set of all compact and C1 retractions, homotopic to 
the identity, defined on a bounded Banach manifold B ⊂ E. If � ∶ B → B belongs 
to R (B), �(B) is an imbedded compact submanifold of B (then a finite dimension 
manifold).

Let 𝛼̂ ∶ B → 𝛼(B) be the map defined by 𝛼̂(x) = 𝛼(x) for all x ∈ B, and 
i ∶ �(B) → B be the inclusion of �(B) into B.

Since �2 = �, the following diagram

�(�) = �̃(0), �̃(0)(�) = �(0) for all � ∈ I,
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 is commutative and induces another commutative diagram 

where Ȟ∗(⋅) denotes Čech cohomology. The equality i∗ ⋅ 𝛼̂∗ = id shows that 𝛼̂∗ is 
injective.

Let f ∶ B → B be any compact map homotopic to � ∈ R (B) (then homotopic to 
the identity of B) and consider the restriction of 𝛼̂ to the compact set A(f):

Let J ∶ A(f ) → B be the inclusion map; the composition 𝛼̂ ⋅ J = [𝛼̂∕A(f )] shows 
that [𝛼̂∕A(f )]∗ = J∗ ⋅ 𝛼̂∗. We will prove that J∗ is injective and since 𝛼̂∗ is also 
injective the same holds for [𝛼̂∕A(f )]∗. In fact, to the sequence of inclusions 
im ∶ Am = f m(B) → B, m ≥ 1, corresponds the sequence of induced maps i∗

m
. By 

the continuity property of Čech cohomology, if the i∗
m
 are injective maps then, 

since A(f ) = ∩m≥1Am, the map J∗ is necessarily injective. To show that the i∗
m
 are 

injective maps one considers the composition B
gm
����������→ Am

im
��������→ B, gm(x) = f m(x), that 

is , (f m)∗ = g∗
m
⋅ i∗

m
, and since by hypothesis f is homotopic to the identity, one has 

f ∗ = id and (f m)∗ = (f ∗)m = id. The relation g∗
m
⋅ i∗

m
= (f m)∗ = id shows finally that 

the i∗
m
 are injective maps and we have the following result:

Proposition 2.3  [𝛼̂∕A(f )]∗ ∶ Ȟ∗(𝛼(B)) → Ȟ∗(A(f )) is an injective map.

Corollary 2.4  The topological dimension of A(f) is greater or equal to dim �(B).

Proof  Since �(B) is a compact manifold, Ȟ dim �(B)(�(B)) is non trivial; using the fact 
that [𝛼̂∕A(f )]∗ is injective we see that Ȟ dim �(B)(A(f )) is also non trivial and as a con-
sequence, the topological dimension of A(f) is greater or equal to dim �(B).

Corollary 2.5  [𝛼̂∕A(f )] ∶ A(f ) → 𝛼(B) is onto.

[𝛼̂∕A(f )] ∶ A(f ) → 𝛼(B).
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Proof  Suppose [𝛼̂∕A(f )] is not surjective; then there exists a point p ∈ �(B) which 
is not in the image of [𝛼̂∕A(f )] , that is, the following composition of maps is well 
defined:

where 𝛽(x) = [𝛼̂∕A(f )](x) for all x ∈ A(f ) . The composition i ⋅ 𝛽 = [𝛼̂∕A(f )] induces 
𝛽∗ ⋅ i∗ = [𝛼̂∕A(f )]∗ . If ∗= n = dim �(B) we obtain, for the cohomology with ℤ2 coef-
ficients, Ȟn(𝛼(B)) = ℤ2 and Ȟn(𝛼(B) − {p}) = 0 which is a contradiction since 
[𝛼̂∕A(f )]∗ is one-to-one.

Corollary 2.6  For any � and � in R(B) , dim �(B) = dim �(B) . Moreover, if

[𝛼̂∕A(𝛾)], d[𝛼̂∕A(𝛾)] are injective then �(B) is diffeomorphic to �(B) . In particular 
the integer n = dim �(B) depends only on B.

Proof  [𝛼̂∕A(𝛾)] ∶ A(𝛾) = 𝛾(B) → 𝛼(B) is onto, then dimA(�) ≥ dim �(B) ; by sym-
metry A(�) and A(�) = �(B) have the same dimension. The map [𝛼̂∕A(𝛾)] is then 
injective and onto hence a homeomorphism; since it is also a local diffeomorphism 
it follows that [𝛼̂∕A(𝛾)] is a diffeomorphism between �(B) and �(B).

Theorem  2.7  (Mallet-Paret, Mañé). Let E be a Banach space, U ⊂ E an open set 
and f ∶ U → E a C1 map. If Λ ⊂ E is a compact set such that f (Λ) ⊃ Λ and df(x) 
is the sum of a contraction and a compact operator for all x ∈ Λ , then Λ has finite 
limit capacity. In particular, Λ has finite Hausdorff dimension.

The above results apply to RFDE on compact manifolds (Example 2.2).

Theorem 2.8  Let F be an RFDE defined on a compact manifold M (see [2] Ch.13, 
[9, 10]) and A(F) be the largest invariant set of the flow map of F. Then the Haus-
dorff dimension of A(F) is finite, is always larger than or equal to that of M and for 
all p ∈ M there exists a global solution x ∶ ℝ → M of F such that x(0) = p . Moreo-
ver, if A(F) is a manifold without boundary then dim A(F) = dim M.

Proof  Consider Example 2.2 and apply Corollaries 2.4, 2.5, 2.6 and Theorem 2.7; to 
complete the proof, we only need to show that in Example 2.2 the map f ∶ B → B 
(defined by f (�) = xr(�) for all � ∈ B ) is homotopic to the compact C1-retraction 
�0 introduced in that example. In fact, one observes that if Φ(�)

t (t ≥ 0) is the semi-
flow on B = C0([−r, 0],M) defined by the RFDE ẋ(t) = 𝜆F(xt) , then Φ(1)

r
= f  and 

Φ(0)
r

= �0.

A(f )
�

⟶ (�(B) − {p})
i

⟶ �(B)
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4 � Hyperbolic periodic points of smooth maps. Fundamental local 
results

Let x = f (x) be a fixed point of a Cr-map f ∶ B → B, r ≥ 1,B ⊂ E being a Banach 
manifold imbedded in the Banach space E. The fixed point is said to be hyper-
bolic if the spectrum �(df (x)) of the derivative df(x) is disjoint from the unit circle 
of the complex plane. Under the above hypothesis one can define local unstable 
and local stable Cr-manifolds denoted by LWu(x) and LWs(x) , respectively (see th. 
5.1, [6 p. 53]).

Proposition 3.1  Let x = f (x) be a hyperbolic fixed point of a reversible Cr map 
f ∶ B → B . The set Wu(x) =

⋃
i≥0 f

i(LWu(x)) is an injectively immersed Cr-submani-
fold of B.

The manifold Wu(x) is the (global) unstable manifold of the hyperbolic fixed point 
x. It is easy to see that Wu(x) is invariant under f so Wu(x) ⊂ A(f ).

For instance, if the given Cr map f ∶ B → B is compact, the derivative df(x) at 
the hyperbolic fixed point x is a linear compact operator and Wu(x) is finite dimen-
sional; LWs(x) is finite codimension and positively invariant. The manifolds LWs(x) 
and LWu(x) are always transversal at the point x.

If g = f n, n ≥ 1, is a power of bounded map f ∶ B → B , it is easy to see that 
A(f ) = A(g). If f/A(f) is injective then g/A(g) is also injective. If f is compact, g is 
compact and if f is reversible, g is reversible.

x ∈ B is a periodic point of f if it is a fixed point of some iterate of f; the small-
est integer m > 0 with f m(x) = x is the period of x. It is clear that the orbit O 
(x) = {x, f (x), f 2(x),… , f m−1(x)} of a periodic point x is a finite set with m points. 
Fix(f) and Per(f) will denote, respectively, the set of all fixed points and of all peri-
odic points of f. We have, obviously, Fix(f ) ⊂ Per(f ) ⊂ Ω(f ).

A periodic point x with period m is said to be a hyperbolic periodic point if O 
(x) is hyperbolic, that is, if all points y ∈ O(x) are hyperbolic fixed points of f m . 
We can talk about LWu(y),LWs(y) for all y ∈ O (x). The unstable manifold of y is 
Wu(y) = ∪i≥0 f

mi(LWu(y)).

Definition 3.2  A hyperbolic periodic point x of f is a source if LWs(x) ∩ A(f ) = {x}; 
is a sink if LWu(x) = {x}; otherwise x is a saddle.

Proposition 3.3  Let f be a smooth C0-reversible map and x be a hyperbolic periodic 
source (sink; saddle). Then y ∈ is O (x) is also a source (sink; saddle).

Proof  By the theory of local invariant manifolds we have always the relations:
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which show that x is a sink if and only if y ∈ O (x) is also a sink. But, since f is one-
to-one on A(f) it follows that x is a source if and only if y ∈ O (x) is a source.

Let x be a hyperbolic fixed point of a smooth map f ∶ B → B and assume 
dimLWu(x) < ∞. If x is not a sink there exists an open disc Bu in LWu(x) such that 
Bu ⊂ LWu(x) and f −1∕Bu is a contraction. It follows that f −l(Bu) ⊂ Bu. As usu-
ally, a fundamental domain for LWu(x) is the compact set Gu(x) = Bu − f −1(Bu). If 
y ∈ LWu(x) − {x}, there exists an integer k such that f k(y) ∈ Gu(x). Any neighbor-
hood Nu(x) of Gu(x) such that Nu(x) ∩ LWs(x) = Φ is called a fundamental neighbor-
hood for LWu(x).

If the hyperbolic fixed point is not a source we will consider a neighborhood 
V = Bs × Bu of x, Bs being an open disc in LWs(x) such that f∕Bs is a contrac-
tion and Bs ⊂ LWs(x). In order to define the concept of fundamental domain for 
LWs(x) − Gs(x), we assume the following hypothesis: "A(f) is compact and f is C0

-reversible."
We then define

and since f/A(f) is a homeomorphism, Gs(x) is compact. It is clear that x ∉ Gs(x) so 
LWu(x) ∩ Gs(x) = Φ and there exists a neighborhood Ns(x) of Gs(x) which does not 
intersect LWu(x); Ns(x) is called a fundamental neighborhood for LWs(x).

Remark 

(1)	 Any point of Ws ∩ A(f ) = [
⋃
i≥0

f −i(LWs(x))] ∩ A(f ) reaches Bs ∩ A(f ) after finitely 

many iterations of f/A(f) or its inverse.
(2)	 Given y ∈ Bs ∩ A(f ) − {x}, there exists an integer k such that f̃ k(y) ∈ Gs(x), f̃  

being the restriction of f to A(f).

In fact, if y ∉ f (Bs ∩ A(f )) there is nothing to prove. If y ∈ f (Bs ∩ A(f )) one 
considers the sequence y = y0, y1, y2,… f (yi) = yi−1 i ≥ 1, and there exists 
a first integer i0 such that yi0 ∉ Bs ∩ A(f ) ( if yi ∈ Bs ∩ A(f ) for all i ≥ 1 then 
y ∈ LWu(x) ∩ Bs = {x}). If yi0 ∈ Bs ∩ A(f ), yi0 ∈ Gs(x); if yi0 ∉ Bs ∩ A(f ) then 
yi0−1 ∈ Bs ∩ A(f ) − f (Bs ∩ A(f )) ⊂ Gs(x).

Given two submanifolds i1 ∶ W1 → B and i2 ∶ W2 → B one says that W1 and W2 
are � − C1 close manifolds if there exists a diffeomorphism � ∶ W1 → W2 such that 
i1 ∶ W1 → B and i2◦� ∶ W1 → B are � − C1 close maps.

The local �-lemma (see [12]) holds, mutatis mutandis, for any smooth map f 
defined in the neighborhood of a hyperbolic fixed point such that LWu(x) has finite 
dimension.

Proposition 3.4  (local �-lemma). Let x be a hyperbolic fixed point of a smooth 
map f ∶ B → B, dimLWu(x) < ∞, and Bu be an imbedded open disc in LWu(x), 

f (LWu(x)) ⊂ LWu(f (x)) and f (LWs(x)) ⊂ LWs(f (x))

Gs(x) = Bs ∩ A(f ) − f (Bs ∩ A(f ))
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containing x. Let q be a point of LWs(x), q ≠ x , and Du be a disc centered at q, 
transversal to LWs(x), such that dimDu = dimLWu(x). Then there is an open set V 
of B containing Bu such that given 𝜖 > 0 there exists n0 ∈ N such that if n > n0 the 
connected component of f n(Du) ∩ V  through f n(q) and the open disc Bu are � − C1 
close manifolds.

Proof  (see [12–14]).
It is interesting to remark that we do not need to assume compactness or revers-

ibility for the smooth map f but the proof uses, strongly, the finite dimensionality of 
LWu(x).

In the same hypothesis of the local �-lemma, let x be a hyperbolic fixed point of a 
smooth map f ∶ B → B and LWu(x) be the local finite dimensional unstable mani-
fold of x. The unstable set is the union Wu(x) =

⋃
n≥0

f n(LWu(x)). The topological 

boundary of the invariant set Wu(x) is the set �Wu(x) of all y ∈ B such that 
y = lim f ni(yi), ni → ∞ as i → ∞, the yi belonging to a fundamental domain Gu(x) 
for LWu(x). Remark that if A(f) is compact �Wu(x) is an invariant set because it is 
obviously positively invariant and given y = limf ni (yi) ∈ �Wu(x), the f ni−1(yi) 
belong to A(f). The compactness of A(f) implies there exists a limit point x1 ∈ A(f ) 
of f ni−1(yi) and f (x1) = y; by induction, one constructs a sequence 
(y = x0, x1, x2,…) ∈ �Wu(x) satisfying f (xi) = xi−1, i ≥ 1, then �Wu(x) is negatively 
invariant and 𝜕Wu(x) ⊂ A(f ).

Remark 3.5  The w-limit sets of points of Gu(x) are contained in �Wu(x) but the con-
verse is not true, in general, as it happens in many situations.

Proposition 3.6  Let x be a hyperbolic fixed point of a smooth map f and assume 
dimLWu(x) < ∞. Then Wu(x) is invariant and Wu(x) = �Wu(x) ∪Wu(x). If in addi-
tion A(f) is compact then �Wu(x) and Wu(x) are invariant sets.

Proof  Let y ∈ Wu(x) be the limit of a sequence x� → y, x� ∈ Wu(x). If y ∈ Wu(x) 
we have the inclusion Wu(x) ⊂ 𝜕Wu(x) ∪Wu(x) and the proof is over; assume that 
y ∉ Wu(x). By the definition of Wu(x), for each x� ∈ Wu(x) corresponds an inte-
ger n� and y� ∈ Gu(x) such that x� = f n� (y�), � ≥ 1. We want to conclude that 
n� → ∞ as � → ∞. If n𝜈 < M for all � ≥ 1 and for some integer M, we construct 
the sets f j(Gu(x)), 0 ≤ j ≤ M, and have two possibilities: either y ∈ f j(Gu(x)) for 
some j, 0 ≤ j ≤ M, then y ∈ Wu(x) which is a contradiction, or y ∉ f j(Gu(x)) for 
all 0 ≤ j ≤ M, then there exists a neighborhood U of y such that U ∩ f j(Gu(x)) = Φ 
for all j = 0, 1, 2,… ,M, and x� = f n� (y�) ∉ U for all � ≥ 1 which is also a con-
tradiction since x� → y. Then n� → ∞ as � → ∞ and y ∈ �Wu(x). It was showed 
that Wu(x) ⊂ 𝜕Wu(x) ∪Wu(x). The prove is complete since the inclusion 
Wu(x) ⊃ 𝜕Wu(x) ∪Wu(x) is trivial.

Let us denote by Cr(B,E) the Banach space of all Cr maps f ∶ B → E such 
that f are bounded with bounded derivatives up to the order r ≥ 1. We give to 
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Cr(B,B) ⊂ Cr(B,E) the induced topology. We say that x = f n(x) is a non degener-
ate n-periodic point if n is the period of x and 1 ∉ spectrum of df n(x).

Proposition 3.7  Let x = x(f ) be a non degenerate n-periodic point of a Cr map 
f ∶ B → B, r ≥ 1. There exist neighborhoods U of x in B and �(f ) of f in Cr(B,B) 
such that any g ∈ �(f ) has in U only one n−-periodic point x(g) and no other m
-periodic point with m ≤ n. Moreover, if x is hyperbolic, the local stable and unsta-
ble manifolds depend continuously on g ∈ �(f ); in particular if LWu(x(f )) is finite 
dimensional, on has dimLWu(x(f )) = dimLWu(x(g)) for all g ∈ �(f ).

Proof  Assume, first of all, x = x(f ) is a fixed point. The map

defined by

is differentiable⋅ and DF(f , x)(h, u) = df (x)u − u + h(x). But F(f , x) = f (x) − x = 0 
and 1 ∉ �(df (x)) then there exist neighborhoods �(f ) of f in Cr(B,B) and U(x) of x in 
B,  and a function y∗ ∶ �(f ) → U(x) such that g(y∗(g)) = y∗(g) for all g ∈ �(f ).

The properties related with the local invariant manifolds follow from the general 
results of the theory of invariant manifolds. Finally, if x = x(f ) is a periodic point, 
we use the continuity of the map f → f n to finish the proof.

Proposition 3.8  Let P be a hyperbolic periodic point of a smooth map 
f , dimLWu(P) < ∞, and Nu(P) a fundamental neighborhood for LWu(P). Then, 
there exists a neighborhood W of P such that

Proof  Let p be the period of P and h = f p. If the proposition is not true, there exists 
a sequence x� → P as � → ∞ such that x� ∉ LWS(P) and x� ∉

⋃
n≥0 f

−n(Nu(P)). Let 
V = Bs × Bu be a neighborhood of P considered in the construction of Nu(P). Let k� 
be the first integer such that zk� = hk� (x�) ∉ V; such a first integer does exist, other-
wise x� ∈ LWs(P) . The sequence k� → ∞ as � → ∞ ; in fact, if k� ≤ M for all � ≥ 1, 
since hk� (P) = p and hk� is continuous there exists a neighborhood Ṽ  of P, Ṽ ⊂ V  
such that hk𝜈 (Ṽ) ⊂ V  for all k� ≤ M which is an absurd because the x𝜈 ∈ Ṽ  for all 
� ≥ �0 imply hk� (x�) ∈ V  giving a contradiction.

We may assume the neighborhood V is chosen such that 
h(xs, xu) = (Lsxs + Φs(xs, xu), Luxu + Φu(xs, xu)) verifies 
||Ls||, ||L−1u || < a < 1, ‖‖

𝜕Φi

𝜕xj

‖‖ ≤ k, a + k < 1, i, j = u, s. Since x� → P, there exists 
�1 such that for all � ≥ �1 one has ||x�|| ≤

1

�
 and if h(xs, xu) = (xs, xu), xs = Bs, xu ∈ Bu, 

one obtains, also, ||xs|| = ||Lsxs + Φs(xs, xu)|| ≤ a(
1

𝜈
) = k(

1

𝜈
) < 1

𝜈
.

The canonical projections of hk�−1(x�) on Bu and Bs are �u(hk�−1(x�)) and 
�s(h

k�−1(x�)), respectively; since Bu is compact, there is a limit point Z for 

F ∶ Cr(B,E) × B → E

F(g, y) = g(y) − y

⋃

n≥0

f −n(Nu(P)) ∪ LWs(P) ⊃ W.
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�u(h
k�−1(x�)) , that is, at least for a subsequence one has lim�→∞ �u(h

k�−1(x�)) = Z and 
||𝜋s(hk𝜈−1(x𝜈))|| <

1

𝜈
 for all � ≥ �1. The above argument shows us that there exists a 

subsequence of hk�−1(x�) which has z ∈ Bu as limit and hk� (x�) = h(hk�−1(x�)) → h(Z). 
That limit point Z is not P because h(Z) ∉ V , then Z reaches Nu(P) after a finite 
number of iterations of h and, by continuity, each hk�−1(x�), for large � , reaches 
Nu(P) after a finite number of iterations of h that is x� ∈ ∪n≥0 f

−n(Nu(P)) which is a 
contraction. The proof is then complete.

Proposition 3.9  Let P be a hyperbolic p-periodic point of a 
map f ∈ Cr(B,B), r ≥ 1, dimLWu(P) < ∞, and Nu(P) a fundamental neighborhood 
for LWu(P). Then, there exist neighborhoods U of P in B and �(f ) of f in Cr(B,B) 
such that Nu(P) is a fundamental neighborhood for LWu(P∗),P∗ = P∗(g) being the 
unique hyperbolic p-periodic point in U corresponding to g ∈ �(f ). Moreover, there 
exists a neighborhood W0 of P such that for all g in �(f ) one has

Proof  The first statement is a consequence of Proposition 3.7. Assume that the 
remaining statement is not true; then there exist sequences x� → P and g� → f  such 
that

and

As before, let k� be the first integer such that gpk�� (x�) ∉ V = Bs × Bu; such a first 
integer does exist because x� ∉ LWs(P∗(g�)). Call h = f p and h� = g

p
� ; if k� ≤ M for 

� ≥ 1, hk� (P) = P implies the existence of Ṽ , neighborhood of P,   such that 
hk𝜈 (Ṽ) ⊂ V; then f pk� (x�) ∈ V  for large � and g� → f  implies gpk�� (x�) ∈ V  which 
contradicts the definition of k� . We know that g

pk�
� (x�) = h

k�
� (x�) ∉ V  but 

g
p(k�−1)
� (x�) = h

k�−1
� (x�) ∈ V  for all � ≥ 1 . The convergence h� → h is in the C1-norm 

then we can choose V such that 
h𝜈(xs, xu) = (L𝜈

s
xs + Φ𝜈

s
(xs, xu), L

𝜈
u
xs + Φ𝜈

u
(xs, xu)), ||Ls|| < a < 1, ||

𝜕Φs

𝜕xj

|| ≤ k, 0 < a + k < 1 
and given 𝜖 > 0, ∃ 𝜈0 such that 𝜈 > 𝜈0 implies ||Ls − L𝜈

s
|| < 𝜖 and 

|||
𝜕Φ𝜈

s

𝜕xj
−

𝜕Φs

𝜕xj

||| < 𝜖, j = u, s. It follows that for a suitable 𝜖 > 0, ||L𝜈
s
|| ≤ a +

𝜖

2
< 1 and 

|||
𝜕Φ𝜈

s

𝜕xj

||| < k +
𝜖

2
, (a +

𝜖

2
) + (k +

𝜖

2
) = (a + k + 𝜖) < 1. The same argument used in the 

last Proposition 3.8 shows that h
k�−1
� (x�) → Z. If 

Z = P, h(Z) = h(P) = P = h(hk�−1(x�)) and since 
h𝜈 → h, |h𝜈(h

k𝜈−1
𝜈 (x𝜈)) − h(h

k𝜈−1
𝜈 (x𝜈))| < 𝜖 that is |hk𝜈𝜈 (x𝜈) − P| < 𝜖 which is an 

absurd since hk�� (x�) ∉ V . Since Z ≠ P and Z ∈ LWu(P), with a finite number of iter-
ations of Z by h∕LWu(P) or its inverse one reaches Nu(P) and with the same number, 

⋃

n≥0

g−n(Nu(P)) ∪ LWs(P∗(g)) ⊃ W0.

x� ∉ LWs(P∗(g�))

x� ∉
⋃

n≥0

g−n
�
(Nu(P)).
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for large �, x� reaches Nu(P) by using h� and x� ∈ ∪n≥0 g
−n
�
(Nu(P)) which is a contra-

diction. The proof is complete.
To state dual results corresponding to Propositions 3.8 and 3.9 we need to 

assume reversibility for f and some compactness hypothesis in the set of maps to be 
considered.

Proposition 3.10  Let P be a hyperbolic periodic point of a C0-reversible and 
smooth map f such that A(f) is compact; let Ns(P) be a fundamental neighborhood 
forLWs(P). Then there exists a neighborhood W of P such that

Proof  Let p be the period of P(f p(P) = P) and V the neighborhood used in the 
construction of Ns(P). If Proposition 3.10 is not true, there exists a sequence 
x� → P, x� ∈ A(f ), x� ∉ LWu(P) and x𝜈 ∉ ∪n>0 f

n(Ns(P)). Each x� defines a unique 
sequence (x� = x0

�
, x1

�
, x2

�
,…) ∈ A(f ), f p(xi

�
) = xi−1

�
, i ≥ 1.

Let k� be the first integer such that xk�� ∉ V  (if xi
�
∈ V  for all i, x� ∈ LWu(P)). See 

that k� → ∞ as � → ∞; if k� ≤ M let f̃ = f∕A(f ) be the homeomorphism obtained 
restricting f to A(f ), f̃ −pk𝜈 (P) = P, and given V ∩ A(f ), there exists Ṽ = Ṽ(P) 
such that f̃ −pk𝜈 (Ṽ ∩ A(f )) = V ∩ A(f ) and for large 𝜈 ≥ 𝜈0, x𝜈 ∈ Ṽ ∩ A(f ) then 
f̃ −pk𝜈 (x𝜈) ∈ V ∩ A(f ) which is a contradiction.

We have limit points xk𝜈−1𝜈 → x, x
k𝜈
𝜈 → y, f̃ p(y) = x and x ≠ P (if x = P ⇒ y = P

(contradiction since y ∉ V)). It is easy to see that x ∈ A(f ) ∩ LWs(P) since there 
exists a sequence x, f p(x), f 2p(x),… , constructed using xk�−1� , x

k�−2
� , and so on.

With finite number of iterations by f̃ p, x reaches Ns(P). Since xk�−1� → x the same 
happens with xk�−1�  and x� ∈ ∪n≥0 f

n(Ns(P)) and obtain a contradiction. The proof is 
complete.

Consider now a (not unique) topological subspace KCr(B,B) of Cr(B,B) satisfy-
ing the following compactness and reversibility properties: "Any f ∈ KCr(B,B) is 
reversible, has A(f) compact and given a neighborhood U of A(f) in B, there exists a 
neighborhood �(f ) of f in KCr(B,B) such that A(g) ⊂ U for all g ∈ �(f )."

Proposition 3.11  Let P be a hyperbolic p-periodic point of a map 
f ∈ KCr(B,B), r ≥ 1, and Ns(P) a fundamental neighborhood for LWs(P). Then, 
there exist neighborhoods U of P in B and �(f ) of f in KCr(B,B) such that Ns(P) is a 
fundamental neighborhood for LWs(P∗), P∗ = P∗(g) being the unique hyperbolic p
-periodic point in U corresponding to g ∈ �(f ). Moreover, there exists a neighbor-
hood W0 of P such that for all g ∈ �(f ) one has

Proof  The first statement follows from Proposition 3.7. If the second statement is 
not true there exist sequences x� → P and g� → f  such that x� ∈ A(g�),

⋃

n≥0

f n(Ns(P)) ∪ LWu(P) ⊃ W ∩ A(f ).

⋃

n≥0

gn(Ns(P)) ∪ LWu(P∗(g)) ⊃ W0 ∩ A(g).
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Following the same arguments as in the proof of proposition 3.10, each x� defines a 
unique sequence

Let k� be the first integer such that xk�� ∉ V , V  being a neighborhood of P used in 
the construction of Ns(P) (if xi

�
∈ V  for all i ≥ 0, x� ∈ LWu(P∗(g�))). The sequence 

g� may be chosen in order to obtain A(g�) in a (1∕�)-neighborhood of A(f), then xk��  
approaches A(f) as � → ∞. Since A(f) is compact there exists a sequence y� ∈ A(f ) , 
each y� giving the minimum for the distances between the xk��  and A(f). The sequence 
y� has a limit point y ∈ A(f ) and it is clear that xk�� → y as � → ∞, then y ∉ V . See 
that k� → ∞ as � → ∞ (if 1 ≤ k� ≤ M and since xk�−1� → f p(y), x

k�−2
� → f 2p(y), etc, 

one obtains f Mp(y) = P which implies y = P ∈ V-contradiction) then P ∈ w(y) with 
respect to f p and y ∈ A(f ) ∩ LWs(p), y ≠ P. With a finite number of iterations of 
y by f p∕A(f ) one reaches Ns(P) and with the same number, for large �, xk��  reaches 
Ns(P) using gp� , then x� ∈ ∪n≥0 g

n
�
(Ns(P)), which is a contradiction. The proof is 

complete.

Proposition 3.12  Assume it is given a topological subspace S of Cr(B,B) such that 
any f ∈ S is reversible, has A(f) compact and admits a neighborhood �(f ) in S such 
that ∪g∈�(f ) A(g) is relatively compact. Then S has the properties of a KCr(B,B).

Proof  If the proposition were not true, there would exist a neighborhood U0 of A(f),  
a sequence f� → f , f� ∈ S and points x� ∈ A(f�) such that x� ∉ U0. But the elements 
of the sequence (x�) eventually belong to ∪g∈�(f ) A(g) for a suitable neighborhood 
�(f ) of f in S; so (x�) has a limit point x0. Since x� ∈ A(f�) there exists a sequence

such that f�(xi�) = xi−1
�

 for i ≥ 1. Choosing an appropriate subsequence of the (x0
�
), 

hence the (xi
�
) for each i, one obtains a sequence of limit points

But ||f (x1) − x0|| ≤ ||f (x1) − f (x1
�
)|| + ||f (x1

�
) − f�(x

1
�
)|| + ||x0

�
− x0||, that is, 

f (x1) = x0; analogously f (xi) = xi−1, i ≥ 2, and x0 ∈ A(f ) − U0 = Φ which is a 
contradiction.

Remark 3.13  Recall the Example 2.2 in which B = C0(I,M). Let S ⊂ Cr(B,B) be the 
set of all analytic flow maps fF of analytic (RFDE) F ∈ �r (see [2] p. 330) defined 
on an analytic compact manifold M. Then S is a particular KCr(B,B), r ≥ 1 . The 
reversibility of fF follows from the analiticity of F,   and each fF being compact 
implies A(fF) is a compact set. The "continuity" of A(fF) with respect to fF follows 
from Proposition 3.12.

x� ∉ LWu(P∗(g�)) and x� ∉
⋃

n≥0

gn
�
(Ns(P)).

(x� = x0
�
, x1

�
, x2

�
,…) ∈ A(g�), g

p
�
(xi

�
) = xi−1

�
, i ≥ 1.

(x� = x0
�
, x1

�
, x2

�
,… , xi

�
,…) ∈ A(f�)

(x0, x1, x2,…), xi
�
→ xi, i ≥ 0.
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In fact, the map f ∶ F ∈ �r
→ fF ∈ Cr(B,B) is well defined,continuous and 

injective. Moreover, �r is homeomorphic to f (�r) with the relative topology since 
fF�

→ fF (in the topology of Cr(B,B)) implies F� → F in �r. By Arzela’s theorem 
and the above homeomorphism we see that the topological subspaces S̃ = f (�r) and 
S satisfy the hypothesis of Proposition 3.12.

5 � Morse‑Smale maps. Openess and Ä‑stability

In this section we will state and prove some fundamental results related with the 
local and global behavior of the invariant manifold of hyperbolic (fixed and peri-
odic) points of some special smooth maps. Let Cr(B,E) be the Banach space of all 
Cr-maps f ∶ B → E, bounded with bounded derivatives up to the order r ≥ 1. As 
above considered, we will deal with special spaces KCr(B,B) which are topological 
subspaces of Cr(B,E).

To obtain global unstable manifolds we saw that it was sufficient to assume 
reversibility; when the non wandering set Ω(f ) of a map f belonging to one space 
KCr(B,B), r ≥ 1, is a finite set of (hyperbolic periodic) points with finite dimension 
unstable manifolds satisfying a transversality condition (see Definition 4.2) we say 
that f is a Morse-Smale map. The purpose of this section is to study some properties 
of the Morse-Smale maps.

The choice of the class KCr(B,B) depends on the case we are studying; for 
instance, maps arising from retarded functional differential equations, neutral func-
tional differential equations, semi-linear parabolic equations, hyperbolic equations, 
can be considered. In each case we need to assume the appropriate hypothesis on the 
equations in order to obtain the compactness properties of KCr(B,B).

Proposition 4.1  Let P,Q ∈ Per(f ) be distinct hyperbolic periodic points of a 
reversible map f such that dimLWu(P), dimLWu(Q) < ∞. If A(f) is compact and 
Wu(Q) ∩Wu(P) ≠ Φ, then there exists x ∈ Wu(Q) ∩ LWs(P) such that x ∈ O(P).

Proof  From the hypothesis it follows that P ∈ Wu(Q) so there exists a sequence 
zi = f ni (yi) → P with ni → ∞ as i → ∞, yi ∈ Gu(Q). The points P and Q are 
fixed points of the power g = f [p,q], p and q being the periods of P and Q 
and [p,  q] its least common multiple. Since Q is a limit point of a sequence 
(Zi = Z0

i
, Z1

i
, Z2

i
,…) ∈ Wu(Q), g(Z�

i
) = Z�−1

i
, � ≥ 1, there exists a first integer ki 

such that Zki
i
∉ U0, U0 being a suitable bounded and closed neighborhood of P, 

chosen together with closed neighborhood Un of f n(p), 1 ≤ n ≤ p − 1, satisfying the 
condition g(Ui) ∩ Uj = Φ, 0 ≤ i ≠ j ≤ p − 1.

Since Zki
i
∈ Wu(Q) ⊂ A(f ) then the sequence Zki

i
 has a limit point x;   but 

Z
ki
i
∉ int U0, that is, Zki

i
∈ A(f ) − int U0 which is closed, then x ∈ A(f ) − int U0 

and x ≠ P.

We remark now that ki → ∞ as i → ∞ because if ki ≤ M for all i ≥ 1, there 
exists a neighborhood Ṽ  of P such that gki (Ṽ) ⊂ U0 for all ki ≤ M, but Zi → P 
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implies Zi ∈ Ṽ  for large i and since gki(Zki
i
) = Zi one obtains Zki

i
∈ U0 which is a 

contradiction.
Given l ≥ 1, gl(x) ∈ U0; in fact, for large i, ki > l and 

gl(x) = gl( lim Z
ki
i
) = lim gl(Z

ki
i
) = lim (Z

ki−l

i
) ∈ U0, then x ∈ Wu(Q) ∩ LWs(P). 

Finally, since g(x) ∈ U0, x ∉ O(P) − {P}; otherwise x ∈ Uj for some 0 < j ≤ p − 1 
which implies g(x) = x ∈ Uj ∩ U0 ≠ Φ.

Definition 4.2  Let f be an element of the topological space KCr(B,B), r ≥ 1. We say 
that f is a Morse-Smale map (f ∈ MS) if: 

(1)	 Ω(f )  is finite ( then Ω(f ) = Per(f )).

(2)	 If P ∈ Per(f ), P is hyperbolic and dimWu(P) < ∞.

(3)	 If P and Q belong to Per(f) then Wu(Q) ⋔ LWs(P) ( ⋔ means transversal).

Remark  It is clear that if f is C0-reversible one has Ω(f ) finite implies Ω(f ) = Per(f ). 
In fact , Ω(f ) is invariant, then the negative orbit of x0 ∈ Ω(f ) − Per(f ) has a infinite 
number of points otherwise x0 ∈ Per(f ). This is a contradiction. But, even without 
assuming C0-reversibility one has: Ω(f ) finite implies Ω(f ) = Per(f ). For otherwise 
there exists x0 ∈ Ω(f ) − Per(f ) and xi = f i(x0) (i ≥ 0) are in Ω(f ) (f (Ω(f )) ⊂ Ω(f ), 
always, by continuity of f). Since Ω(f ) is finite, the xi (0 ≤ i < m) are distinct but 
xm ∈ {x0, x1,… , xm−1}. Since x0 ∉ Per(f ), xm ≠ x0 and xm = xm−p for some 
p ∈ {1,… ,m − 1} and then {f i(x0) ∶ i ≥ m − p} = {xm−p,… , xm−1} is bounded 
away from x0 and x0 ∉ Ω(f ) which is a contradiction.

As a corollary of the of the local �-lemma (see Proposition 3.4) one can easily 
prove the following:

Proposition 4.3  (global �-lemma—see [12]). Let f ∶ B → B be a smooth reversible 
map and assume A(f) is compact. Let Wu(P) be the global unstable manifold of a 
hyperbolic fixed point P, dimWu(P) = r, and N ⊂ A(f ) be an injectively immersed 
invariant submanifold of B with a point q of transversal intersection with LWs(P). 
Then, for any given cell neighborhood Br imbedded in Wu(P), centered in P, and any 
𝜖 > 0, there exists one r-cell in N, � − C1 close to Br.

Proof  The reversibility of f able us to define the global unstable manifold 
Wu(P) ⊂ A(f ) and f/A(f) is a homeomorphism. The proof follows from the local �
-lemma.

Remark  We don’t need N imbedded if N = ∪k≥0Nk, N0 ⊂ N1 ⊂ … , with each Nk 
imbedded.

Corollary 4.4  Let Pi ∈ Per(f ), i = 1, 2, 3, be hyperbolic points. If Wu(P1) and 
LWs(P2),W

u(P2) and LWs(P3) have Q1,Q2 ∉ Per(f ) of transversal intersections 
then Wu(P1) and LWs(P3) also have a point Q3 ∉ Per(f ) of transversal intersection.
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Corollary 4.5  Let P ∈ Per(f ) be hyperbolic. If Wu(P) meets LWs(P) in a point 
Q ∉ O(P) of transversal intersection, then Ω(f ) is not finite.

Proofs  (Easy)
Let us introduce now the set MR of all elements of the topological space 

KCr(B,B), r ≥ 1, such that 

1.	 Ω(f ) is finite ( then Ω(f ) = Per(f )).

2.	 P ∈ Per(f ) ⇒ P is hyperbolic and dimWu(P) < ∞.

3.	 If P,Q ∈ Per(f ) and Wu(P) ∩ LWs(Q) ≠ Φ then there exists a point of transversal 
intersection.

It is clear that MS ⊂ MR and if f ∈ MR, A(f ) is the union of all unstable mani-
folds of P ∈ Per(f ).

Proposition 4.6  If f ∈ MR, there exist in Per(f ) at least one sink and at least one 
source. Moreover, A(f ) = ∪P∈Per(f ) W

u(P).

Note. It is possible the source and the sink are identical, case in which A(f) is a 
single point.

Proof  If there are no sources in Per(f ) = Ω(f ) then there exists a cycle with transver-
sal intersections and unstable manifolds with the same dimension. Using the global 
�-lemma and their corollaries one concludes that Ω(f ) is not finite. The same argu-
ment shows the existence of a sink.

Proposition 4.7  Let f ∈ MR and P,Q ∈ Per(f ) such that 
P ≠ Q and Wu(Q) ∩Wu(P) ≠ Φ. then there exists a sequence 
P1,P2,… ,Pn ∈ Per(f ), P1 = P, Pn = Q, such that

Proof  We start with some remarks: 

(a)	 If x ∈ Wu(Q) ∩Wu(P), x is assumed to be in LWu(P).

(b)	 Wu(Q) ∩Wu(P) ≠ Φ if and only if �Wu(Q) ∩Wu(P) ≠ Φ.

(c)	 P cannot be a source (LWs(P) ∩ A(f ) = {P}). In fact, the Proposition 4.3 implies 
that Wu(Q) ∩Wu(P) ≠ Φ ⇒ LWs(P) ∩ A(f ) ≠ {P}.

(d)	 If P is a sink (LWu(x) = {x}) it is enough to define P = P1 and Q = P2.

Finally, P is a saddle, then by Proposition 4.3 there exists x ∈ Wu(Q) ∩ LWs(P) 
and x ∉ O(P); we may assume

otherwise we are done. But 𝜕Wu(Q) ⊂ A(f ) then x ∈ A(f ), that is, x ∈ Wu(P2) for 
some P2 ∈ Per(f ) which implies

Wu(Pi+1) ∩ LWs(Pi) ≠ Φ, 1 ≤ i ≤ n − 1.

x ∈ �Wu(Q) ∩ LWs(P)
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If P2 = Q the proposition is proved. If P2 ≠ Q we repeat the argument and get 
the sequence (P1 = P,P2,P3,…). Remark that in this sequence Pi ≠ Pj otherwise 
Φ = Wu(Pi) ∩ LWs(Pi) ≠ O(Pi) and Ω(f ) is not finite by Corollary 4.5. Since Ω(f ) is 
finite we reach the given point Q.

Proposition 4.8  Let f ∈ MR. Then for each P ∈ Per(f ), Wu(P) is imbedded in B. In 
particular, f as a map from Wu(P) into itself is differentiable.

Proof  If Wu(P) is not imbedded we have �Wu(P) ∩Wu(P) ≠ Φ and then there exists 
x ∈ Wu(P) ∩ LWs(P), x ∉ O(P), with transversality (f ∈ MR) , then Ω(f ) is not finite.

As in the case of diffeomorphisms [12] we introduce in the set of orbits of 
periodic points a partial order using the following definition:

Definition 4.9  Let f ∈ MR and P,Q ∈ Per(f ). Then O (P) ≤ O (Q) if 
Wu(Q) ∩Wu(P) ≠ Φ.

The above definition does not depend on the choice of the particu-
lar representatives of O (P) and O (Q). If P1 ∈ O (P) and Q1 ∈ O (Q) we see 
that Wu(Q) ∩Wu(P) ≠ Φ if and only if Wu(Q) ∩ LWs(P) ≠ Φ, if and only 
if Wu(Q1) ∩ LWs(P1) ≠ Φ. The relation O (P) ≤ O (Q) is obviously reflex-
ive and transitive by using the global �-lemma and their corollaries. Finally if 
Wu(Q) ∩ LWs(P) ≠ Φ and Wu(P) ∩ LWs(Q) ≠ Φ for Q ∉ O (P) we obtain a kind of 
cycle and the global �-lemma shows that Ω(f ) is infinite which is a contradiction. 
Then, O (P) = O(Q) and ≤ is a partial order.

The set of orbits of all periodic points of a map f ∈ MR toghether with the 
above define partial order is called the phase diagram D(f) of f. For P,Q ∈ Per(f ), 
a chain connecting Q to P in the phase diagram of f is a sequence P0,… ,Pn with 
Pi ∈ Per(f ), Pi ∉ O (Pi+1), P1 = P and Pn = Q, such that Wu(Pi+1) ∩ LWs(Pi) ≠ Φ. 
The integer n is the length of the chain.

Q is said to have k-behavior relative to P (write beh(Q|P) = k) if the maximum 
length of chains connecting Q to P is k ∈ N; complete the definition by setting 
beh(Q|P) = 0 iff Wu(Q) ∩ LWs(P) = Φ. If Q ∈ O (P) then beh(Q|P) = 0 but not con-
versely because if P, Q are fixed points and sinks we have beh(Q|P) = 0 and Q ∉ O 
(P). It is also clear that for distinct orbits O (P) ≤ O (Q) implies beh(Q|P) > 0.

Using some ideas appearing in [12] we will show that given f ∈ MR, there is a 
neighborhood �(f ) of f in KCr(B,B) such that g ∈ �(f ) implies g ∈ MR and there is 
an isomorphism between phase diagrams, that is, a bijection �(g) ∶ D(f ) → D(g) 
between the phase diagrams of f and g which is ordering and indices preserv-
ing, that means: P,Q ∈ Per(f ), O (P) ≤ O(Q), implies O (�(g)P) ≤ O (�(g)Q) and 
dimWu(P) = dimWu(�(g)P).

Since f ∈ MR, by Proposition 3.7 each g ∈ �1(f ) defines a map

Wu(P2) ∩ LWs(P) ≠ Φ and Wu(P2) ∩ �Wu(Q) ≠ Φ.
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We will construct neighborhoods V of A(f) and �(f ) of f such that

for all g ∈ �(f ). We will proceed by induction on the phase diagram of f.
For each sink Si of f, choose a neighborhood V0(Si) ⊂ LWs(Si) and 𝜖0(Si) > 0 

such that if ||g − f ||r < 𝜖0(Si) then V0(Si) ⊂ LWs(S∗
i
), where S∗

i
= �(g)Si. Let 

V0 = ∪V0(Si) and �0 = min {�0(Si)|Si is a sink of f } . In V0 we trivially have 
Ω(g) ∩ V0 = �(g)[Per(f ) ∩ V0] for all |g − f |r < 𝜖0. If, now, S is a saddle near sinks 
( beh(S|Si) ≤ 1 for all sinks Si), by the compactness of the fundamental domain 
Gu(S), there exist n0 and a fundamental neighborhood Nu(S) such that given 
x ∈ Nu(S), f n(x) ∈ V0 for some n ≤ n0. The same happens with g near f; by Propo-
sition 3.9, ∪n≥0g

−n(Nu(S)) ∪ LWs(S∗) contains a neighborhood U1(S) of S in 
B,   for all g belonging to a suitable �1(S)-neighborhood of f in KCr(B,B). Consider 
V1(S) = V0 ∪ [∪

n0
n=1

f −n(V0)] ∪ U1(S) and �1(S) for each saddle S near sinks and finally 
V1 = ∪V1(S) and �1 = min{�1(S)} for all saddles near sinks. In V1 we have

By induction, assume now that we have constructed Vk, �k corresponding to 
the points in Per(f) whose behavior with respect to sinks of f is ≤ k, so that 
Ω(g) ∩ Vk = �(g)[Per(f ) ∩ Vk] for |g − f |r < 𝜖k. Let Pk+1 a point next to these in 
the phase-diagram of f. Again, by the compacity of Gu(Pk+1) there exists n1(Pk+1) 
such that f n(x) ∈ Vk for all x ∈ Gu(Pk+1) and some 1 ≤ n ≤ n1(Pk+1). Using inverse 
images of Vk by f one define Nu(Pk+1) and �k+1(Pk+1); for |g − f |r < 𝜖k+1(Pk+1) the 
same happens with g. Use again Proposition 3.9 to obtain Uk+1(Pk+1) = neighbor-
hood of Pk+1 ⊂ LWs(P∗

k+1
) ∪ ∪n≥0 g

−n(Nu(Pk+1)).

Define Uk+1 = ∪Uk+1(Pk+1) and �k+1 = min{�k+1(Pk+1)}, n1 = max{n1(Pk+1)}; 
finally

and in Vk+1 we have

for all |g − f |r < 𝜖k+1. The induction is complete. Remark that in Vk+1 there are no 
other non-wandering points besides Pi ∈ Per(f ) and the corresponding P∗

i
 of g. The 

procedure reaches the sources and we define the above mentioned neighborhoods V 
of A(f) and �(f ) of f such that

for all g ∈ �(f ). But f ∈ KCr(B,B) and we reduce �(f ), if necessary, and obtain 
A(g) ⊂ V  for all g ∈ �(f ). Then, since Ω(g) ⊂ A(g) ⊂ V , it follows that Ω(g) = Per(g) 
for all g ∈ �(f ) and we have finished the proof of the following:

𝜌(g) ∶ Per(f ) → Per(g) ⊂ Ω(g)

P → P∗ = 𝜌(g)P.

Ω(g) ∩ V = �(g)[ Per(f ) ∩ V]

Ω(g) ∩ V1 = �(g) [Per(f ) ∩ V1].

Vk+1 = Vk ∪ [∪
n1
n=1

f −n(Vk)] ∪ Uk+1

Ω(g) ∩ Vk+1 = �(g) [Per(f ) ∩ Vk+1]

Ω(g) ∩ V = �(g)[Per(f ) ∩ V]
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Theorem  4.10  The set MR is open in KCr(B,B), r ≥ 1. Moreover, if f ∈ MR 
there is a neighborhood �(f ) of f in KCr(B,B) such that for each g ∈ �(f ) the map 
�(g) ∶ Per(f ) → Per(g) above considered is a diagram isomorphism. In particular, 
f is Ω-stable.

Consider again a smooth map f ∈ MR . If Pk,Pk+1 ∈ Per(f ) satisfy 
beh(Pk|Pk+1) = 1 and of Gs(Pk+1) is a fundamental domain (then compact) 
for LWs(Pk+1) we have that Wu(Pk) ∩ Gs(Pk+1) is also compact. In fact, if 
x� → x, x� ∈ Wu(Pk) ∩ Gs(Pk+1), it is clear that x ∈ Gs(Pk+1) and if x ∉ Wu(Pk) 
(then x ∈ �Wu(Pk)), there exists P̃ ∈ Per(f ) such that x ∈ Wu(P̃), P̃ ≠ Pk+1 and 
P̃ ≠ Pk; but by Proposition 4.1 Wu(Pk) ∩Wu(P̃) ≠ Φ implies Wu(Pk) ∩ LWs(P̃) ≠ Φ, 
then beh(Pk|Pk+1) > 1 giving us a contradiction, that is, x ∈ Wu(Pk).

The Proposition 3.11 combined with Theorem 4.10, Proposition 3.4 and the argu-
ments used in Lemma 1.11 of [12] prove the following:

Proposition 4.11  Let f ∈ MS, P ∈ Per(f ) and dimWu(P) = m. Fix a cell neighbor-
hood Bm of P in LWu(P). Given 𝜖 > 0, there exist neighborhoods V of P, and �(f ) 
of f in KCr(B,B), r ≥ 1, such that if for some Q ∈ Per(f ), Wu(Q∗(g)) ∩ V ≠ Φ then 
Wu(Q∗(g)) ∩ V  is fibered by m-cells � − C1 close to Bm, g ∈ �(f ) and Q∗(g) = �(g)Q.

From Theorem  4.10 and Proposition 4.11 we obtain the main result of this 
section:

Theorem 4.12  The set MS of all r-differentiable Morse-Smale maps is open in MR 
(then in KCr(B,B)), r ≥ 1. Moreover, if f ∈ MS, then its phase-diagram is stable 
(up to a diagram isomorphism) under small Cr perturbations of f in KCr(B,B).

Remark  In the language used by Palis and Takens in [16], it follows, improving 
Proposition 4.11, that we really have an Unstable Foliation of U = V ∩ A(f ) for 
f ∈ MS at P ∈ Per(f ), that is, a continuous foliation Fu

(P) ∶ x ∈ U → Fu

x
(P) such 

that: 

(a)	 the leaves are C1 discs, varying continuously in the C1 topology and 
F

u

P
(P) = Wu(P) ∩ U,

(b)	 each leaf Fu

x
(P) containing x ∈ U, is contained in U, 

(c)	 F
u
(P) in f -invariant; that is, f (Fu

x
(P)) ⊃ F

u

f (x)
(P), x and f(x) in U.

Moreover, using the reversibility property of the MS maps, this unstable foliation 
can be easily globalized through saturation by f. The same happens for g in a suit-
able neighborhood �(f ) of f in MS (then in KCr(B,B)).

By induction on the phase diagram of f ∈ MS and using the global �-lemma 
we easily obtain (see Proposition 3.l of [16]) a so called compatible system of 
global unstable foliations Fu

(P1), F
u
(P2),… ,Fu

(Pn), for any maximal chain 
(P1,P2,… ,Pn) ∈ Per(f ), O (Pi) ≤ O (Pi+1), i = 1, 2,… , n − 1, P1 being a source and 
Pn being a sink. The compatibility means that "if a leaf F of Fu

(Pk) intersects a leaf 
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F̃ of Fu
(Pl), k < l ≤ n, then F ⊃ F̃; moreover, the restriction of Fu

(Pl) to a leaf of 
F

u
(Pk) is a C1 foliation."

6 � Stability

In this section we will prove a stability theorem for Morse-Smale maps. Palis [12] 
and Palis and Smale [15] proved stability theorems for Morse-Smale diffeomor-
phisms defined on a compact manifold. It is possible to adapt some of the J. Palis 
techniques of [12] to prove that MS maps defined on a Banach manifold B are stable 
relatively to the largest invariant set. We start with the following definition:

Definition 5.1  A map f in KCr(B,B) is stable relatively to A(f) if there exists a neigh-
borhood �(f ) of f in KCr(B,B) such that to each g ∈ �(f ) one can find a homeo-
morphism h = h(g) ∶ A(f ) → A(g) satisfying the conjugacy condition h ⋅ f = g ⋅ h on 
A(f).

The properties of f ∈ MS, specially the reversibility of f and the compactness 
of A(f),  the finite dimensionality of the unstable manifolds Wu(P), P ∈ Per(f ), the 
existence of compatible systems of global unstable foliations and the parametrized 
version of the Isotopy Extension Theorem are the main tools to be used in the proof 
of the next Theorem 5.3.

In order to recall the Isotopy Extension Theorem (IET) one needs some more 
notation (see [16]).

Let N be a Cr compact manifold r ≥ 1, and A an open set of Rs. Let M be a C∞ man-
ifold with dimM > dimN. We indicate by Ck

A
(N × A,M × A) the set of Ck mappings 

f ∶ N × A → M × A such that � = ��
⋅ f , endowed with the Ck topology, 1 ≤ k ≤ r. 

Here, � and �′ denote the natural projections � ∶ N × A → A, �� ∶ M × A → A. 
Let Diff k

A
(M × A) be the set of Ck diffeomorphisms � of M × A such that � = ��

⋅ �, 
again with the Ck topology.

Lemma 5.2  (Isotopy Extension Theorem). Let i ∈ Ck
A
(N × A,M × A) be an imbed-

ding and A′ a compact subset of A. Given neighborhoods U of i(N × A) in M × A 
and V of the identity in Diff k

A
(M × A), there exists a neighborhood W of i in 

Ck
A
(N × A,M × A) such that for each j ∈ W there exists � ∈ V  satisfying � ⋅ i = j 

restricted to N × A� and �(x) = x for all x ∉ U.

Theorem 5.3  Any Morse-Smale map f in KCr(B,B) is stable relatively to A(f).

Proof  By Theorem  4.12 (openess) there exists a neighborhood of f in KCr(B,B) 
containing only Morse-Smale maps. We saw, also, that if Pk,Pk+1 ∈ Per(f ) sat-
isfy beh(Pk,Pk+1) = 1 then Wu(Pk) ∩ Gs(Pk+1) is compact. If P1 is a source and 
beh(P1,Pk+1) = k, there exists a maximal chain (P1,P2,… ,Pk+1) such that 
beh(Pi,Pi+1) = 1, i = 1, 2,… , k. Recall that Gs(Pk+1) = Bs ∩ A(f ) − f (Bs ∩ A(f )). 
Since the compact set A(f) is equal to the union of all global unstable manifolds 
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of periodic points of f (Prop. 4.6) and Ω(f ) = Per(f ) is finite, we may assume 
that Bs = Bs(Pk+1) have been chosen in a such way that A(f) is transversal to �Bs 
(besides being transversal to Bs ) which means that all global unstable mani-
folds are transversal to �Bs and Bs. From the transversality condition it follows 
that Wu(P) ∩ Bs is a manifold with boundary, the interior being Wu(P) ∩ Bs and 
the boundary being Wu(P) ∩ �Bs, P ∈ Per(f ). Call SE = SE(P) = �Bs ∩ Gs(P); 
we have also SE = �Bs ∩ A(f ). In fact, SE ⊂ 𝜕Bs ∩ Bs ∩ A(f ) ⊂ 𝜕Bs ∩ A(f ) 
trivially. For the reverse inclusion, let x ∈ �Bs ∩ A(f ); since f (Bs) ⊂ Bs and 
x ∉ Bs, x ∉ f (Bs ∩ A(f )) while x ∈ Bs ∩ A(f ), so we only need to prove 
x ∈ Bs ∩ A(f ). For some Q, x ∈ Wu(Q) ∩ �Bs, and these meet transversally so 
there exist x� ∈ Wu(Q) ∩ Bs arbitrarily close to x, i.e. x ∈ Wu(Q) ∩ Bs ⊂ A(f ) ∩ Bs. 
We have incidentally proved A(f ) ∩ Bs = A(f ) ∩ Bs, which will be needed later. 
Remark finally that, using the relative topology of A(f ) ∩ LWs(P), we have 
�Gs(P) = SE ∪ SI , SI = SI(P) = f (SE), " � " relative to A(f ) ∩ LWs(P). In fact, 
G

s(P) = (Bs ∪ �Bs) ∩ A(f ) − f (Bs ∩ A(f )) = [Bs ∩ A(f ) − f (Bs ∩ A(f ))] ∪ S
E
=

[(Int Gs(P)) ∪ f (S
E
)] ∪ S

E
= Int G

s(P) ∪ (S
E
∪ S

I
).

The stable set Ws(P) is the set of all points x ∈ B such that w(x) = {P}. Any point 
z ∈ Ws(P) ∩ A(f ) reaches Gs(P) − SI(P) after a finite number of iterations of f  or 
(f )−1, f = f∕A(f ).

Given any bounded imbedded disc D ⊂ Wu(P) = Wu(P;f ), for g C1-close to f there 
is a disc D∗ ⊂ Wu(P∗(g)) = Wu(P∗;g) C1-close to D,P∗ ∈ D∗, where P∗ = �(g)P; we 
say Wu(P∗;g) is C1-close to Wu(P;f ) "on compact sets."

Let P2 be a periodic point of f with behavior ≤ 1 with respect to sources and con-
sider a pair (P1,P2) such that P1 is a source and beh(P1∕P2) = 1. The manifolds 
Wu(P1;f ) and Wu(P∗

1
;g) are C1-close on compact sets and let h′

1
 be the correspond-

ing diffeomorphism; also LWs(P2;f ) and LWs(P∗
2
;g) are C1-close for g in a suitable 

neighborhood of f , P∗
2
= �(g)P∗

1
. By the implicity function theorem and the trans-

versality conditions Wu(P1;f ) ⋔ LWs(P2;f ), W
u(P∗

1
;g) ⋔ LWs(P∗

2
;g), there is a well 

defined diffeomorphism h2 from Gs(P2;f ) ∩Wu(P1;f ) into LWs(P∗
2
;g) ∩Wu(P∗

1
;g). 

Define a differentiable map h2 from Gs(P2;f ) ∩Wu(P1;f ) into Wu(P∗
1
;g) equal to h2 on 

Wu(P1;f ) ∩ SE(P2) and equal to h̃2 = g ⋅ h2 ⋅ f
−1 on Wu(P1;f ) ∩ SI(P2). To construct 

h2 we use IET (Lemma 5.2) just observing that (h�
1
)−1 ⋅ h2 maps Wu(P1;f ) ∩ SE(P2) 

into Wu(P1;f ) and (h�
1
)−1 ⋅ h̃2 = (h�

1
)−1 ⋅ (g ⋅ h2 ⋅ f

−1) maps Wu(P1;f ) ∩ SI(P2) into 
Wu(P1;f ), both are near the corresponding inclusion maps and so can be extended 
to an imbedding of Gs(P2;f ) ∩Wu(P1;f ) into Wu(P1;f ). The property we obtain for 
h2 is that h2f (x) = gh2(x) for all x ∈ Wu(P1;f ) ∩ SE(P2); in fact, gh2(x) = gh2(x) and 
h2f (x) = h2(f (x)) = h̃2(f (x)) = gh2f

−1(f (x)) = gh2(x). This map h2 can be extended 
to z ∈ Ws(P2;f ) ∩Wu(P1;f ) since there exists a unique n ∈ ℤ such that

define h2(z) = g−n(h2(f
n(z))) and h2(P2) = P∗

2
.

We do the same with all sources Fi ∈ Per(f ) such that beh(Fi|P2) = 1 and h2 
is defined on Ws(P2;f ) ∩ A(f ). For the remaining points P̃2 ∈ Per(f ) with behav-
ior ≤ 1 with respect to sources proceed analogously and obtain h2 defined on 
Ws(P̃2;f ) ∩ A(f ) satisfying h2f = gh2 and h2(P̃2) = P̃∗

2
.

(f )n(z) ∈ (Gs(P2;f ) − SI(P2)) ∩Wu(P1;f );
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The next step is the consideration of P3 ∈ Per(f ) with behavior ≤ 2 with respect 
to sources and we will construct a homeomorphism h3 on Ws(P3;f ) ∩ A(f ) starting 
with Gs(P3) − SI(P3). For the sources with behavior 1 relative to P3 the procedure is 
equal to that above. Let now P1 be a source in Per(f) such that beh(P1|P3) = 2. We 
have at least one sequence (P1P2P3) such that beh(P1|P2) = beh(P2|P3) = 1. Since 
beh(P2|P3) = 1 we define a diffeomorphism ̄̄h3 on Gs(P3;f ) ∩Wu(P2;f ) exactly as we 
did above with h2. But Wu(P1;f ) approaches Wu(P2;f ) and it is well defined a folia-
tion on Wu(P1;f ) induced by Wu(P2;f ); the same happens with Wu(P∗

1
;g) relatively to 

Wu(P∗
2
;g) for g near f in MS. The existence of a compatible system of global unstable 

foliations guarantees that Wu(P1;f ) intersects LWs(P3;f ) with its leaves accumulating 
in the (compact) set Wu(P2;f ) ∩ Gs(P3;f ). To each leaf Fx of Wu(P1;f ) ∩ Gs(P3;f ) 
near Wu(P2;f ) ∩ Gs(P3;f ) corresponds a unique point x ∈ LWs(P2;f ) ∩Wu(P1;f ) 
near P2 . Using h2 (defined in the P2 level), to Fx corresponds a unique leaf F ∗

h2(x)
 of 

Wu(P∗
1
;g) ∩ Gs(P∗

3
;g). Consider the map ̄̄h3 defined on Gs(P3;f ) ∩Wu(P2;f ) and use 

the C1-closeness on compact sets of Wu(P2;f ) with the leaves of Wu(P1;f ) [respec-
tively of Wu(P∗

2
;g) with the leaves Wu(P∗

1
;g)] to obtain a diffeomorphism 

iX ∶ Fx → Wu(P2;f ) ∩ Gs(P3;f ) [respectively i∗
X
∶ F

∗

h2(x)
→ Wu(P∗

2
;g) ∩ Gs(P∗

3
;g)] 

and construct h̄3 = (i∗
x
)−1 ⋅ ̄̄h3 ⋅ ix which is an extension of ̄̄h3 to the leaf Fx . As 

before, one considers h̄3 locally defined on Wu(P1;f ) ∩ Gs(P3;f ) ∩ SE(P3) and defines 
h̃3 = g ⋅ h̄3 ⋅ f

−1 (locally) on Wu(P1;f ) ∩ Gs(P3;f ) ∩ SI(P3). Using again the IET to 
the local foliation x → FX , x in a neighborhood of P2 in LWs(P2;f ) ∩Wu(P1;f ), one 
obtains a continuous (local) extension h3 of ̄̄h3 coinciding with h̄3 on 
Wu(P1;f ) ∩ Gs(P3;f ) ∩ SE(P3) and with h̃3 on Wu(P1;f ) ∩ Gs(P3;f ) ∩ SI(P3). Notice 
that Wu(P1;f ) ∩ LWs(P3;f ) and Wu(P∗

1
;g) ∩ LWs(P∗

3
;g) are C1-close on compact sets. 

In order to extend h3 (defined on the leaves of Wu(P1;f ) ∩ Gs(P3;f ) near 
Wu(P2;f ) ∩ G3(P3;f )) to Wu(P1;f ) ∩ Gs(P3). we extract a small tubular neighborhood 
of Wu(P2;f ) ∩ Gs(P3;f ) in Wu(P1;f ) ∩ LWs(P3;f ) and apply againthe IET for diffeo-
morphisms near the identity. In this way we can continuously extend h3 to a full 
neighborhood of Wu(P2;f ) ∩ Gs(P3;f ) so that it satisfies the conjugacy equation 
h3f = gh3 for points of Wu(P1;f ) ∩ Gs(P3;f ) ∩ SE(P3).

We proceed, in an analogous way, with all possible sequences 
(P1,P

�
2
,P3) ∈ Per(f ) such that beh(P1|P�

2
) = beh(P�

2
|P3) = 1. Consider, finally, the 

remaining sources P�
1
∈ Per(f ) in the same conditions as P1 and obtain a continu-

ous h3 defined on Gs(P3) with the equality h3f = gh3 holding on SE(P3) and then, a 
continuous h3 defined on A(f ) ∩Ws(P3), h3(P3) = P∗

3
, with the desired conjugacy 

property h3f = gh3.

The last step showed us, clearly, the full induction procedure. Assume we have 
constructed all maps hk , satisfying hk(Pk) = P∗

k
 and hkf = ghk on A(f ) ∩Ws(Pk) 

for all Pk ∈ Per(f ) such that beh(Fi|Pk) ≤ k − 1, k ≥ 3, where the Fi are all 
sources of Per(f);   let Pk+1 ∈ Per(f ) be such that beh(Fi|Pk+1) ≤ k for all sources 
Fi ∈ Per(f ). Let (F1,P2,… ,Pk,Pk+1) be a sequence such that F1 is a source and 
beh(F1|P2) = beh(P2|P3) = ⋯ = beh(Pk,Pk+1) = 1. We start the construction of hk+1 
on Wu(Pk;f ) ∩ Gs(Pk+1), extend locally hk+1 to Wu(Pk−1) ∩ Gs(Pk+1) and by a second 
induction procedure extend hk+1 to Wu(Pk−2) ∩ Gs(Pk+1),… ,Wu(F1) ∩ Gs(Pk+1), 
as we did in the case k = 2. Do the same with all maximal sequences 
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(F1,P
�
2
,P�

3
,… ,Pk+1) with F1 and Pk+1 fixed and, finally, with the remaining sources 

Fi to obtain hk+1 defined on Gs(Pk+1) verifying the equality hk+1f = ghk+1 on 
SE(Pk+1). By forcing the conjugacy hk+1f = ghk+1 extend hk+1 to A(f ) ∩Ws(Pk+1). 
The induction is complete and we reach the sinks. Since the disjoint union

is equal to A(f) the map H = h2 ∪ h3 ∪… is well defined on A(f ), H(P) = P∗, and 
Hf (x) = gH(x) for all x ∈ A(f ).

The final step is to check the continuity of H ∶ A(f ) → A(g). Remark, first of all, 
that if H is continuous in f(x) then H is continuous in x ∈ A(f ); in fact let 
zi → x, zi ∈ A(f ); since f is continuous, f (zi) → f (x) and the fact that H is continu-
ous at f(x) implies Hf (zi) → Hf (x) that is gH(zi) → gH(x). But 
H(zi) ∈ A(g), H(x) ∈ A(g) and g is reversible, then, H(zi) → H(x). Given, now, 
x ∈ A(f ), it is clear that x ∈ A(f ) ∩Ws(Pk) for some Pk ∈ Per(f ); it is sufficient to 
verify the continuity of H at the points x of a neighborhood of Pk in A(f ) ∩Ws(P). If 
Pk is a source or a sink the continuity is trivial. Assume Pk is a saddle and let 
xn → x, xn ∈ F

u

xn
(Pk) and x ∈ F

u

x
(Pk), F

u
(Pk) being the global unstable foliation 

at Pk above considered. But, by the definition of H = h2 ∪ h3 ∪… and by the con-
structions of the maps hk, we see that the set of accumulation points of {H(xn)} is 
contained in LWs(P∗

k
;g) and H(xn) ∈ F

u∗

hk(xn)
(P∗

k
), F u∗

(P∗
k
) being the global unstable 

foliation at P∗
k
 . Then H(xn) → F

u∗

hk(xn)
(P∗

k
) ∩ LWs(P∗

k
;g) = hk(x) = H(x) proving the 

continuity of H. Similarly, H−1 is also continuous and the proof is complete.

Corollary 5.4  ([12, 15]). Let B be a compact manifold and Diff r(B) the set of all Cr

-diffeormorphisms of B, r ≥ 1. Then the Morse-Smale diffeomorphisms of Diff r(B) 
are stable and form an open set.

Proof  Rermark that Diff r(B) satisfies the conditions to be a KCr(B,B) ⊂ Cr(B,B). In 
fact A(f ) = B for all f ∈ Diff r(B) and the reversibility is trivial. The result follows 
from Theorem 5.3.

Theorem  5.5  Let KCr(B,B) be the subspace S, set of flow maps of all analytic 
RFDE F ∈ �r, r ≥ 1, defined on an analytic compact manifold M. The Morse-
Smale maps f of S are stable relatively to A(f) and form an open set in S.

Proof  Follows from Remark 3.13, Theorems 4.12 and  5.3.
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