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Abstract
We will show how isoparametric submanifolds and polar actions on round spheres 
lead to polar foliations and polar actions on compact symmetric spaces and compact 
Riemannian manifolds with positive curvature. Our emphasis will be on the classifi-
cation of these submanifolds and actions.
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1  Introduction

This paper is dedicated to Carlos Edgard Harle, who passed away in January of 
2020. It precedes an English translation of his paper [19], in which the concept of 
an isoparametric submanifold with arbitrary codimension was first introduced. Our 
aim will be to sketch how this concept has been generalized to polar foliations and to 
review some of the most important results that have been achieved until now.

I first met Harle in the eighties at IMPA in Rio de Janeiro shortly after he had 
written the paper [19] and then again during visits to the University of São Paulo. 
I have very kind memories of my encounters with him and of the conversations we 
had in the cafeteria of the Mathematics Institute (IME-USP).

It was in the late eighties, when I was beginning my work on isoparametric 
submanifolds, that it came to my attention that his paper had been overlooked in 
the literature, maybe because it was written in Portuguese. Still today, it is often 
not referred to where it would be appropriate. Let us hope the English translation 
changes that.

Dedicated to the memory of Carlos Edgard Harle.
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The study of isoparametric hypersurfaces in Euclidean spaces started about a 
hundred years ago with papers dealing with problems in Geometric Optics. In the 
late thirties, Cartan began the study of isoparametric hypersurfaces in spheres, 
which turned out to be much more complex than the problem in Euclidean spaces; 
see [35] for a survey. The final step in the classification of isoparametric hypersur-
faces in spheres has very recently been accomplished by Chi; see [6]. Isoparamet-
ric submanifolds will be the starting point of our discussion, which will then lead 
us to polar foliations in compact symmetric spaces and compact positively curved 
manifolds. We will mostly consider submanifolds with codimension at least two. For 
this reason, we will neither cover the exciting new results on isoparametric hyper-
surfaces in spheres [6] and noncompact symmetric spaces [10] nor those in exotic 
spheres [16] to mention only a few of the topics we have had to leave out.

2 � Harle’s paper

Before stating the definition of isoparametric submanifolds given by Harle in the 
paper [19], I will shortly review the hypersurface case.

A function f on an open set U in a Riemannian manifold M such that both 
‖grad f‖2 and Δf  are constant on the level hypersurfaces of f is said to be isopar-
ametric and a regular level set of f is called an isoparametric hypersurface. An 
isoparametric family is the collection of the regular level sets of an isoparametric 
function.

An equivalent way of requiring the constancy of ‖grad f‖2 and Δf  on the level 
surfaces of f is to ask that there are continuous functions � and � on the image f(U) 
such that

The condition ‖grad f‖2 = �◦f  implies that the regular level sets are equidistant and 
Δf = �◦f  means that they have constant mean curvature.

Now we come to Harle’s definition in [19].

Definition 2.1  An isoparametric submanifold in an open set U of a Riemannian 
manifold Mn+k is the preimage of a regular value of a map

(1)	 such that the functions 

 are constant on the regular preimages of F
(2)	 and such that the distribution spanned by 

‖grad f‖2 = �◦f and Δf = �◦f .

F =
(
Fn+1,… ,Fn+k

)
∶ U → ℝ

k

Pij =
⟨
gradFi, gradFj

⟩
and ΔFi
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 over the regular level sets of F is integrable.

The map F in the definition is called an isoparametric map and an isoparamet-
ric family is the collection of the isoparametric submanifolds.

Condition (1) in the definition above is a straightforward generalization of the 
definition of an isoparametric hypersurface. The spaces spanned by the gradients 
of F1,… ,Fk are the normal spaces of the regular level sets of F. Condition (2) 
is of course trivial when k = 1 . When k ≥ 2 , condition (2) leads to the concept 
of a section of an isoparametric and a polar foliation, which is one of the central 
notions in the theory as we will see.

In [19], Harle calls a map satisfying only condition (1) isoparametric and says 
that it is normal isoparametric if it satisfies both (1) and (2). This terminology is 
not used today.

Later, another definition of isoparametric submanifolds in Riemannian mani-
folds was proposed by Heintze, Liu, and Olmos in [20]. As far as I know, there is 
no study of how the two definitions relate.

The following consequence of Definition 2.1 is proved in [19].

Proposition 2.2  Let M be an isoparametric submanifold in a Riemannian manifold. 
Then 

(1)	 the mean curvature vector field along M has constant norm and
(2)	 the normal bundle of M is flat and the leaves of the distribution of normal spaces 

of the isoparametric family are totally geodesic.

From now on, Harle restricts his attention to ambient spaces Mn+k(c) with con-
stant sectional curvature c in [19].

Proposition 2.3  Let Mn be an isoparametric submanifold in Mn+k(c) and let � be a 
parallel normal vector field along Mn . 

(1)	 Let t be a real number. Then the map f� ∶ Mn
→ Mn+k(c) defined by setting 

sends M diffeomorphically into another isoparametric submanifold in the 
isoparametric family.

(2)	 The principal curvatures in direction � (i.e., the eigenvalues of the shape opera-
tor A� in direction � ) are constant along M.

(3)	 A generalization of Cartan’s Fundamental Formula for isoparametric hypersur-
faces holds for isoparametric families in Mn+k(c).

gradFn+1,… , gradFn+k

f�(q) = exp t�(q)
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The conclusion in (2) about the constancy of principal curvatures does not 
hold true in ambient spaces with nonconstant sectional curvatures.

Cartan’s Fundamental Formula will not play a role in this paper so we do not formu-
late it. It is formula (11) in Cartan’s first paper on isoparametric hypersurfaces; see [4].

3 � Terng’s contribution

Carter and West gave a rather abstract definition of an isoparametric map between Rie-
mannian manifolds in [5], which when specialized to a map F ∶ M → ℝ

2 turns out 
to be equivalent to Definition 2.1 in this special case. The meaning of their concept 
of an isoparametric map is not studied in other situations in [5] like replacing ℝ2 by 
ℝ

k and I do not know other papers that do so. They then study families of isopara-
metric submanifolds with codimension two first in general Riemannian manifolds and 
then in ambient spaces with constant sectional curvature. The most remarkable of their 
results is that they associate a Coxeter group (which they call a kaleidoscopic pattern) 
to isoparametric submanifolds with codimension two in space forms. We will explain 
this in connection with Terng’s work below.

In [32], Terng defined isoparametric families with arbitrary codimension in ambient 
spaces with constant sectional curvature. The definition is the same as Definition 2.1 
(except that the ambient space is less general). There is a reference to [5], but neither in 
[5] nor in [32] is there a reference to Harle’s paper [19].

Now let us come to the definition of the Coxeter group in [5, 32]. First one proves that 
an isoparametric submanifold in Sm is isoparametric in ℝm+1 and that a compact isopara-
metric submanifold in ℝm+1 is isoparametric in some round hypersphere in ℝm+1.

Let Mn belong to an isoparametric family F  in Sn+k consisting of compact submani-
folds and let Σ be a k-dimensional great sphere that is tangent to the normal space of 
Mn at one point p. We assume that Mn is full in the sense that it is not contained in a 
great subsphere of Sn+k . It turns out that Σ meets all submanifolds in F  and that all such 
intersections are perpendicular. In fact, Σ is locally a leaf of the distribution of normal 
spaces when it passes through submanifolds in F  . Let F be the set of all focal points of 
M in Sn+k and consider the intersection

Then it turns out that F ∩ Σ is a union over p totally geodesic hyperspheres S1,… , Sp 
in Σ and that the reflections R1,… ,Rp of Σ in these hyperspheres leave F ∩ Σ 
invariant, i.e., they permute the spheres S1,… , Sp . This implies that the reflections 
R1,… ,Rp generate a finite group W of orthogonal maps, which is a Coxeter group 
by the basic theory of reflection groups; see e.g. [18], p. 37. This group is effective 
in the sense that it does not fix any subsphere of Σ since Mn is full in Sn+k.

A connected component of the complements of the mirrors S1,… , Sp

F ∩ Σ.

Σ −

p⋃

i=1

Si
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is the interior of a spherical k-simplex, called a chamber, if W is effective, i.e., if Mn 
is full in Sn+k . It turns out that

where W(p) is the orbit of p in Σ under the Coxeter group W. Since W acts simply 
transitively on the set of chambers in Σ , it turns out that Mn meets Σ precisely once 
in each chamber and that M meets Σ perpendicularly in all points in W(p).

Now let q be a boundary point of the chamber containing p and let �p be the 
smallest tangent vector in TpΣ such that expp �p = q . Extend �p to a parallel normal 
field over M that we denote by � . This is possible since the normal bundle is flat, see 
Proposition 2.2, and the fact that the normal bundle has trivial holonomy, which had 
already been proved in [32]. Now consider the map

defined as in Proposition 2.3. It turns out that the image f�(Mn) , which we will 
denote by N, is a smooth embedded manifold whose dimension is strictly smaller 
than the one of Mn . Furthermore, N consists of focal points of Mn and we have that

We will call N a focal manifold. If we add all focal manifolds corresponding to 
points in the boundary of a fixed chamber in Σ to the isoparametric submanifolds 
passing through its interior, we get a decomposition of Sn+k into submanifolds. We 
will refer to this decomposition as an isoparametric foliation. One of the important 
consequences of what we have been discussing is that one isoparametric submani-
fold determines the whole isoparametric foliation it belongs to. Another one is that 
the set of focal points is the same for all isoparametric submanifold in the foliation.

An isoparametric submanifold Mn in Sn+k ⊂ ℝ
n+k+1 is said to be irreducible if it 

cannot be written as a an extrinsic product of lower dimensional isoparametric sub-
manifolds M1 in Sm1 and M2 in Sm2 , i.e.,

An important application of the Coxeter group is that an isoparametric submanifold 
Mn in Sn+k is irreducible if and only if W is irreducible. From the theory of Cox-
eter groups, we know that W is irreducible if and only if the corresponding Coxeter-
Dynkin diagram is connected.

Münzner’s famous result that the number of principal curvatures of an isopara-
metric hypersurface in a sphere must be one of the numbers 1, 2, 3, 4, or 6, see 
[28], can now be formulated by saying that the Coxeter group of an isoparametric 
hypersurface in a sphere is crystallographic. A finite Coxeter group acting on ℝk+1 
by reflections is said to be crystallographic if it leaves a lattice in ℝk+1 invariant. In 
[21], an inductive method was introduced to prove that the Coxeter groups of isopar-
ametric submanifolds of spheres with arbitrary codimension are crystallographic. 
This excludes e.g. the symmetry group of the icosahedron as a Coxeter group of an 
isoparametric submanifold.

Mn ∩ Σ = W(p),

f� ∶ Mn
→ Sn+k

N ∩ Σ = W(q).

Mn = M1 ×M2 ⊂ Sm1 × Sm2 ⊂ ℝ
m1+1 ×ℝ

m2+1 = ℝ
n+k+1.
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Terng came up with new examples based on symmetric spaces in [32].

Example 3.1  Let V = G∕K be a Riemannian symmetric space and consider the isot-
ropy representation of K on TpV  where p = (K) . Then the regular orbits of K are 
isoparametric submanifolds in TpV  and also in the round spheres centered around 
the origin containing them. The singular orbits are their focal manifolds in the 
isoparametric foliation.

There are inhomogeneous isoparametric hypersurfaces in spheres. The first exam-
ples are due to Ozeki and Takeuchi. They were later generalized and presented more 
systematically by Ferus, Karcher, and Münzner in [15].

There was of course the question whether there are irreducible inhomogeneous 
isoparametric submanifolds in spheres with codimension two or higher. The follow-
ing theorem proved in [34], see also [29], answers this question in the negative. Its 
proofs rely strongly on Terng’s structure theory for isoparametric submanifolds. The 
proof in [34] uses also the theory of Tits buildings and the one in [29] relies on the 
theory of homogeneous structures.

Theorem  3.2  Let Mn be a compact irreducible isoparametric submanifold in Sn+k 
with codimension at least two. Then there is a symmetric space G/K such that the set 
of orbits of the isotropy representation of K in the unit sphere in T(K)G∕K coincides 
with the isoparametric foliation of Mn in Sn+k up to an isometry between T(K)G∕K 
and ℝn+k+1.

As we have pointed out, isoparametric hypersurfaces in spheres have been classi-
fied; see [6]. That fact together with Theorem 3.2 shows that isoparametric submani-
folds have now been classified without restrictions on their codimension.

4 � Polar actions and foliations

An isometric action of a Lie group G on a Riemannian manifold M is said to be 
polar if there is a complete isometrically immersed submanifold Σ , called a section, 
that meets all orbits of G in such a way that all intersections between orbits and Σ are 
perpendicular.

The generalized Weyl group W of a polar action G on M is by definition

where NG(Σ) is the normalizer and ZG(Σ) is the centralizer of Σ under the action of 
G.

The codimension of a principal orbit of an action (polar or not) is called its coho-
mogeneity. All cohomogenity-one actions are polar.

Polar actions were introduced by Szenthe in [31] using a different terminology. 
He proved among other things that a section of a polar action is totally geodesic. His 
work was a continuation of that of Conlon on what we now call polar actions with 

W = NG(Σ)∕ZG(Σ),
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flat sections, see [8]. The concept of a generalized Weyl group was introduced by 
Conlon in [8] and Szenthe in [31]. The following result of Dadok in [9] is basic for 
the theory of polar actions.

Theorem 4.1  Let � ∶ G → O(n) be an orthogonal representation of a compact Lie 
group that gives rise to a polar action on ℝn.Then there is a symmetric space V 
whose isotropy representation has the same orbits as G, where we have identified ℝn 
with the tangent space of the symmetric space.

The generalized Weyl group of the representation in Theorem 4.1 coincides with 
the Weyl group of the symmetric space V. We have seen in Example 3.1 that the 
symmetric space V gives rise to an isoparametric foliation. Its Coxeter group coin-
cides with the Weyl group of V and hence with the generalized Weyl group of � ; see 
[32].

Let M be a smooth manifold and let F  denote a decomposition of M into smooth 
submanifolds, called leaves, which do not need to have the same dimension. We say 
that F  is a singular foliation if

for every leaf L in F  and every p in L.
Now assume M is a Riemannian manifold and F  a singular foliation in M. Then 

we say that F  is a singular Riemannian foliation if the leaves of F  are locally 
equidistant.

Isoparametric foliations as defined in Sect. 3 are singular Riemannian foliations. 
The set of orbits of an isometric action on a Riemannian manifold is also an exam-
ple of a singular Riemannian foliation, which we will refer to as an orbit foliation. 
The codimension of a singular foliation is the codimension of a leaf with maximal 
dimension.

Boualem defined polar foliations in his work [3], which was later continued by 
Alexandrino in [1]. A singular Riemannian foliation F  in M is said to be polar if 
there is for every point p in M a complete isometrically immersed submanifold Σ 
passing through p, called a section, that meets all leaves of F  in such a way that all 
intersections between leaves and Σ are perpendicular.

A singular Riemannian foliation with codimension one is always polar. As in the 
case of actions, a section of a polar foliation is totally geodesic.

It follows from Terng’s work that an isoparametric foliation is polar. Conversely, 
Alexandrino proved in [1] that a polar foliation in ℝn and Sn is isoparametric.

Theorem 4.2  A singular Riemannian foliation F  in ℝn or Sn is polar if and only if it 
is isoparametric.

The above result of Alexandrino is a special case of a more general result in [1] 
where he proves that a regular leaf of a polar foliation has parallel focal structure 
which in Euclidean spaces and spheres is equivalent to being isoparametric. Fur-
thermore he proves that a polar foliation restricted to a neighborhood of a point in 

TpL = {Xp |X is a vector field tangent to the leaves of F}
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a singular leaf is diffeomorphic to a piece of an isoparametric foliation. Conversely, 
Töben proved in [36] that a closed submanifold with a parallel focal structure in a 
complete Riemannian manifold defines a family of parallel and focal submanifolds 
that forms a polar foliation.

5 � Polar actions and foliations on higher‑rank spaces

In [33], equifocal submanifolds in compact symmetric spaces were defined. In the 
terminology we have been using, they can be considered to be principal leaves of 
polar foliations with a flat section. There is an affine Coxeter group associated to 
such a foliation in [33]. A polar foliation with a flat section is said to be irreduc-
ible if this affine Coxeter group is irreducible.

Christ [7] showed in the following theorem that such foliations are frequently 
homogeneous.

Theorem 5.1  An irreducible polar foliation with a flat section and codimension at 
least two in a compact symmetric space V is the orbit foliation of a polar action.

It is necessary to assume that the polar foliation in Theorem 5.1 is irreducible 
as the example of a direct product of two inhomogeneous isoparametric hypersur-
faces in spheres shows. There is a decomposition theorem for polar foliations on 
simply connected compact symmetric spaces in [26].

The symmetric space V in Theorem  5.1 must of course have rank at least 
two. Kollross had already classified the polar actions with a flat section on com-
pact irreducible symmetric spaces in his thesis which was published in [22]. In 
particular he classified all cohomogeneity-one actions on irreducible compact 
symmetric spaces. Later he showed in [23] that one can remove the condition 
of irreducibility of the symmetric space if the cohomogeneity of the action is at 
least two. A classification of cohomogeneity-one actions on reducible symmetric 
spaces is still unknown.

We need two definitions before we can formulate the result in [23]. We say that 
an isometric action of a Lie group H on a Riemannian manifold M is decompos-
able if there exist Riemannian manifolds M1 and M2 such that M = M1 ×M2 as a 
Riemannian product and Lie groups H1 acting on M1 and H2 on M2 such that the 
action of H1 × H2 on M = M1 ×M2 has the same orbits as H. Otherwise, we say 
the action is indecomposable.

Let G be a compact Lie group and H and K two subgroups such that (G, H) 
and (G, K) are symmetric pairs. Then the action of H on the compact symmetric 
space G/K is called a Hermann action. Hermann introduced these actions to give 
examples of variationally complete actions. They were later found out to be polar 
with a flat section.

We can now formulate the result of Kollross in [23].
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Theorem 5.2  Let H be an indecomposable polar action with cohomogeneity at least 
two on a compact symmetric space V. Then H has the same orbits as a Hermann 
action on V.

There were no examples of polar actions and foliations on irreducible compact 
symmetric spaces of rank at least two whose sections are not flat, so the question 
of their existence became a folklore problem.

Lytchak proved in [26] with help of Tits buildings that such polar foliations do 
not exist if the codimension of F  is at least three.

Theorem  5.3  Let M be a simply connected irreducible compact symmetric space 
with rank at least two, and let F  be a polar foliation on M with codimension at least 
three. Then F  has flat sections.

The question is still not solved if the codimension of the polar foliation F  is equal 
to two. Lytchak and Kollross [24] solved the problem for polar actions with coho-
mogeneity two, hence proving the following theorem.

Theorem 5.4  A polar action on an irreducible compact symmetric space of rank at 
least two has a flat section.

There is a decomposition theorem for polar actions on symmetric spaces of com-
pact type in [25].

Many special cases of Theorem  5.4 had been proved previously, most notably 
under the assumption that the symmetric space is Hermitian in [2].

We have already pointed out that cohomogeneity-one actions on irreducible com-
pact symmetric spaces where classified by Kollross in [22], but such actions on 
reducible spaces are still unknown. Singular Riemannian foliations with codimen-
sion one have not been investigated in compact symmetric spaces with rank at least 
two.

6 � Polar actions and foliations on rank‑one spaces

Polar actions on rank-one symmetric spaces. Such actions were classified in [30]. 
Previously, those with cohomogeneity one had be classified; see [22] and the refer-
ences therein.

There are four simply connected compact rank-one symmetric spaces: the sphere 
Sn and the projective spaces Pn(ℂ) , Pn(ℍ) , and P2(�).

It turns out that the sections in the projective spaces Pn(ℂ) , Pn(ℍ) , and P2(�) are 
totally geodesic real projective spaces Pk(ℝ).
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6.1 � Spheres

The polar actions on Sn are the restrictions of polar representations. These were clas-
sified by Dadok in [9]; see Theorem 4.1.

6.1.1 � Complex projective spaces

The isotropy representation of an Hermitian symmetric space G/K restricted to the 
unit sphere S2n+1 in T(K)G∕K descends to a polar action on Pn(ℂ) and up to orbit 
structure all polar actions on Pn(ℂ) are of this type.

6.1.2 � Quaternionic projective spaces

Assume G/K is the product of k quaternionic Kähler symmetric spaces of which 
at least k − 1 have rank one. Then the action of K on the unit sphere S4n+3 in 
T(K)G∕K descends to a polar action on Pn(ℍ) and up to orbit structure all polar 
actions on Pn(ℍ) are of this type.

6.1.3 � Octonionic projective planes

There is no Hopf fibration associated to P2(�) . A polar action on P2(�) has coho-
mogeneity one or two, since these are the dimensions of the possible sections, 
which are totally geodesic real projective spaces. There are four examples of 
polar actions with cohomogeneity one and five with cohomogeneity two (one of 
which was overlooked in [30] and later found by Gorodski and Kollross in [17]).

6.2 � Polar foliations on rank‑one symmetric spaces

6.2.1 � Spheres

The polar foliations in spheres coincide with the isoparametric foliations, which 
are classified.

6.2.2 � Complex projective spaces

Domínguez-Vázquez determined the polar foliations in complex projective spaces 
with one exception in [11] as we will now explain.

A complex structure J on ℝ2n+2 is an orthogonal, skew symmetric transforma-
tion. Let

be the corresponding Hopf map. Then a singular Riemannian foliation F  is polar in 
Pn(ℂ) if and only if �−1

J
F  is polar in S2n+1.

�J ∶ S2n+1 → Pn(ℂ)
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Let F1 and F2 be polar foliations in Pn(ℂ) which are not congruent. Then it is 
possible that there are complex structures J1 and J2 on ℝ2n+2 such that �−1

J1
F1 and 

�−1
J2
F2 are congruent. An example of this was found by Xiao in [37].

Domínguez-Vázquez considered the following problem in [11]. Let F  be an 
irreducible polar foliation in S2n+1 . Find a maximal set of complex structures 
J1,… , Jk on ℝ2n+2 such that �J1

(F),… ,�Jk
(F) are pairwise noncongruent polar 

foliations in Pn(ℂ) with the same codimension as F  in S2n+1.
He was able to determine such a maximal set of complex structures on ℝ2n+2 

for all n except when n = 15 and F  has codimension one. Notice that the last 
solved case in the classification of isoparametric hypersurfaces in spheres in [6] 
was in S31 . Still the exception in the result of Domínguez-Vázquez remains since 
the unsolved problem in [11] is not directly related to the one solved in [6].

One of the consequences of this classification is that every irreducible polar folia-
tion in Pn(ℂ) is homogeneous if and only if n + 1 is prime. Furthermore, a polar foli-
ation F  in S2n+1 gives rise to one homogeneous polar foliation in Pn(ℂ) if and only 
if F  is the orbit foliation of the isotropy representation of an Hermitian symmetric 
space. Otherwise all of the polar foliations in Pn(ℂ) are inhomogeneous.

6.2.3 � Quaternionic projective spaces

The polar foliations in the quaternionic projective spaces Pn(ℍ) were classified with 
one exception by Domínguez-Vázquez and Gorodski in [12].

We will be dealing with quaternionic structures � on ℝ4n+4 . Each such structure � 
gives rise to a Hopf map �

�
∶ S4n+3 → Pn(ℍ) . A singular Riemannian foliation F  in 

Pn(ℍ) is polar if and only if �−1
�
(F) is polar in S4n+3.

The classification of polar foliations in Pn(ℍ) therefore leads us to the follow-
ing question: Let F  be an irreducible polar foliation in S4n+3 . Find a maximal set of 
quaternionic structures �1,… , �k on ℝ4n+4 such that �

�1
(F),… ,�

�k
(F) are pairwise 

noncongruent polar foliations in Pn(ℍ) with the same codimension as F  in S4n+3.
Domíngez-Vázquez and Gorodski solved this problem on quaternionic structures 

on ℝ4n+4 in [12] for all n except n = 7 . As in the complex case, this corresponds to 
the last case in the classification of isoparametric hypersurfaces in spheres. Again 
the problem solved in [6] is not directly related to the one in [12] so that the unre-
solved case remains.

A consequences of the result in [12] is that an irreducible polar foliation with 
codimension at least two in Pn(ℍ) is homogeneous if and only if n + 1 is prime. A 
polar foliation with codimension one in Pn(ℍ) is homogeneous if and only if n is 
even or if n = 1 . There are many inhomogeneous polar foliations with higher codi-
mension in quaternionic projective spaces.

6.2.4 � Octonionic projective spaces

There is little known about polar foliations in the octonionic plane P2(�) except that 
Lytchak proved in [26] that their codimension is either one or two.
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7 � Polar actions and foliations on positively curved manifolds

7.1 � Polar actions on positively curved manifolds

The following theorem was proved in [14].

Theorem 6.1  A polar action of a compact Lie group G on a simply connected, com-
pact, positively curved manifold M of cohomogeneity at least two is equivariantly 
diffeomorphic to a polar action on a compact rank-one symmetric space.

The first step in the proof is to study the possible sections of the polar action and 
their generalized Weyl groups; see Sect. 4. It turns out that a k-dimensional section 
Σ is either diffeomorphic to the sphere Sk or to the real projective space Pk(ℝ).

Theorem  6.2  The generalized Weyl group of a polar action of G on a simply con-
nected, positively curved manifold M of cohomogeneity at least two is a Coxeter group 
or a ℤ2-quotient of such a group. Moreover, the section with this action is equivari-
antly diffeomorphic to a sphere or a real projective space with a linear action.

In the case when the section is equivariantly diffeomorphic to a sphere with a 
Coxeter group action and when this Coxeter group is irreducible, we can construct a 
Tits building and prove that M is equivariantly diffeomorphic to a polar action on a 
round sphere.

If the section is equivariantly diffeomorphic to a real projective space we have to 
use more complicated methods of Tits in a proof that has many similarities with the 
arguments of Lytchak in [26], when proving Theorem 5.3. As there, these arguments 
do not work when the Coxeter group has rank three, i.e., if the cohomogeneity is 
equal to two. This rank-three exceptional case was dealt with in [13].

It turns out that M is diffeomorphic to a rank-one symmetric space, which is not a 
sphere, if the section is a real projective space.

7.2 � Polar foliations on positively curved manifolds

A preliminary study was done by Meyer in [27]. but there is still much left to be 
done.

8 � Summary

We started with the definition of an isoparametric submanifold and explained some 
of the basic results with emphasis on spheres as ambient spaces. We then moved on 
to polar actions and foliations in compact symmetric spaces and explained the main 
results, which turned out to be rather complete. The last topic was polar actions and 
foliations on positively curved manifolds.
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We end with a list of the cases, which have not yet been solved. 

(1)	 Cohomogeneity-one actions on irreducible compact symmetric spaces were clas-
sified by Kollross in [22]. Such a classification in the case of reducible compact 
symmetric spaces is still open.

(2)	 It was shown by Lytchak in [26] that polar foliations with codimension at least 
three on compact symmetric spaces of rank at least two have flat sections. The 
codimension two case is unknown except for orbit foliations. Codimension-one 
foliations on such spaces have not been studied.

(3)	 Domínguez-Vázquez and Gorodski classified polar foliations in projective spaces 
in [11, 12] with the exceptions of P15(ℂ) , P7(ℍ) and P2(�) where a classification 
is still unknown.

(4)	 Much work is still to be done on polar foliations in positively curved manifolds.
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