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Abstract
Lat-Igusa-Todorov algebras are a natural generalization of Igusa-Todorov algebras. 
They are defined using the generalized Igusa-Todorov functions given in Bravo et al. 
(J Algebra, 580:63–83, 2021) and also verify the finitistic dimension conjecture. 
In this article we give new ways to construct examples of Lat-Igusa-Todorov alge-
bras. On the other hand we show an example of a family of algebras that are not 
Lat-Igusa-Todorov.

Keywords  Igusa-Todorov function · Igusa-Todorov algebra · Finitistic dimension 
conjecture
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1  Introduction

In an attempt to prove the finitistic dimension conjecture, Igusa and Todorov defined 
in [9] two functions from the objects of modA (the category of right finitely gener-
ated modules over an Artin algebra A) to the natural numbers, which generalizes the 
notion of projective dimension. Using these functions, they showed that the finitistic 
dimension of Artin algebras with representation dimension at most three is finite. 
Nowadays, these functions are known as the Igusa-Todorov functions, � and �.

Igusa-Todorov algebras were introduced by Wei in [13] based in the work of 
Igusa and Todorov (see [9]), and Xi (see [14] and [15]). In the cited article, Wei 
proved that Igusa-Todorov algebras verify the finitistic dimension conjecture. 
Wei also proved that the class of 2-Igusa-Todorov algebras is closed under taking 
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endomorphism algebras of projective modules. Since every Artin algebra can be 
realized as an endomorphism algebra of a projective module over a quasi-hereditary 
algebra (see [7]), then in case all quasi-hereditary algebra is 2-Igusa-Todorov the 
finitistic dimension conjecture is true.

Later, Conde showed, based in an article of Rouquier, that the exterior algebras 
�(�m) are not Igusa-Todorov algebras for � an uncontable field and m ≥ 3 (see [6] 
and [12]).

In [2] Bravo, Lanzilotta, Mendoza and Vivero define the Generalized Igusa-
Todorov functions and the Lat-Igusa-Todorov algebras, and prove that Lat-Igusa-
Todorov algebras also verify the finitistic dimension conjecture. They also show 
that selfinjective algebras are Lat-Igusa-Todorov algebras, in particular the example 
given by Conde is a Lat-Igusa-Todorov algebra.

This article is organized as follows:
In Sect. 2, we recall the concepts given in [2] of 0-Igusa-Todorov subcategories, 

Lat-Igusa-Todorov algebras and its properties.
In Sects.  3 and  4, we give sufficiency conditions for an algebra being a Lat-

Igusa-Todorov algebra. We prove that if an algebra A verifies that every module in 
�n(modA) is an extension of modules of two D-syzygy finite subcategories, then 
A is n-Lat-Igusa-Todorov (Corollary 2), where D  is a 0-Igusa-Todorov subcategory. 
In particular, Sect. s5 is dedicated to 0-Lat-Igusa-Todorov and 1-Lat-Igusa-Todorov 
algebras.

In Sect. 5, we introduce the algebras with only trivial 0-Igusa-Todorov subcatego-
ries, i.e. every 0-Igusa-Todorov subcategory is a subcategory of the category of pro-
jective modules. Note that: If A has only trivial 0-Igusa-Todorov subcategories, then 
A is an Igusa-Todorov algebra if and only if A is Lat-Igusa-Todorov. We find some 
algebras that have only trivial 0-Igusa-Todorov subcategories and we also give a tool 
to build new family of examples (Theorem 4).

Finally, Sect. 6 is devoted to show that some algebras are not Lat-Igusa-Todorov 
(Example 3). The examples have only trivial 0-Igusa-Todorov subcategories and 
they are built from the exterior algebras of Conde example.

2 � Preliminaries

Throughout this article A is an Artin algebra and modA is the category of finitely 
generated right A-modules, indA is the subcategory of modA formed by all inde-
composable modules, PA ⊂ modA is the class of projective A-modules. S(A) is 
the set of isoclasses of simple A-modules and A0 = ⊕S∈S(A)S . For M ∈ modA we 
denote by Mk = ⊕k

i=1
M , by P(M) its projective cover and by �(M) its syzygy. For a 

subcategory C ⊂ modA , we denote by f indim (C) , gldim (C) its finitistic dimension 
and its global dimension respectively and by addC  the full subcategory of modA 
formed by all the sums of direct summands of every M ∈ C .

Given A and B algebras, if � ∶ A → B is a morphism of algebras, we know that 
there is an additive functor F� ∶ modB → modA such that F� is an embedding of 
modB into modA if � is an epimorphism.
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If Q = (Q0,Q1, s , t ) is a finite connected quiver, �Q denotes its adjacency 
matrix and �Q its associated path algebra. We compose paths in Q from left to right. 
Given � a path in �Q , l (�) , s (�) and t (�) denote the length, start and target of � 
respectively. We say that a quiver Q is strongly connected if for every v1, v2 ∈ Q0 
there is a � ∈ Q1 such that s (�) = v1 and t (�) = v2 . We denote by J the ideal of �Q 
generated by all the arrows.

2.1 � Truncated path algebras

We say that A is a truncated path algebra if A =
�Q

Jk
 for any k ≥ 2 . For a trun-

cated path algebra A, we denote by Ml
v
(A) the ideal �A , where l(�) = l , t(�) = v and 

Ml(A) = ⊕v∈Q0
Ml

v
(A).

Note that if A =
�Q

Jk
 is a truncated path algebra, then

For a proof of the next theorem see Theorem 5.11 of [1], and for definitions of skel-
eton and �-critical see [8].

Theorem 1  [1] Let A be a truncated path algebra. If M is any nonzero left A-module 
with skeleton � , then

Note that if Q is a strongly connected quiver, then every non projective �Q
Jk

-mod-
ule has infinte projective dimension.

2.2 � Igusa‑Todorov functions and Igusa‑Todorov algebras

We now recall the definition of the generalized Igusa-Todorov � function from [2] 
and some of its basic properties. Let us start by recalling the following version of 
Fitting’s Lemma.

Lemma 1  Let R be a noetherian ring. Consider a left R-module M and 
f ∈ End R(M) . Then, for any finitely generated R-submodule X of M, there is a non-
negative integer

�(Ml
v
(A)) =

�

�∶

⎧⎪⎨⎪⎩

s (�) = v

l (�) = k − l

Mk−l
t (�)

(A),

�2(Ml
v
(A)) =

�

�∶

⎧⎪⎨⎪⎩

s (�) = v

l (�) = k

Ml
t (�)

(A).

�(M) ≅
⨁

� is �-critical

�A.
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Furthermore, for any R-submodule Y of X, we have that �f (Y) ≤ �f (X).

Definition 1  [9] Let K0(A) be the abelian group generated by all symbols [M], with 
M ∈ modA , modulo the relations 

1.	 [M] − [M�] − [M��] if M ≅ M� ⊕M��,
2.	 [P] for each projective module P.

–	 For a subcategory C ⊂ modA , we denote by ⟨C⟩ ⊂ K0(A) the free abelian 
group generated by the classes of direct summands of modules of C .

–	 In particular, for an A-module M, ⟨M⟩ = ⟨ addM⟩.

If D ⊂ modA is a subcategory such that D = add (D) and 𝛺(D) ⊂ D  , then

–	 The quotient group KD(A) =
K0(A)

⟨D⟩  is a free abelian group.
–	 For a subcategory C ⊂ modA , we denote by [C]D the quotient ⟨C⟩+⟨D⟩

⟨D⟩ .
–	 In particular, for an A-module M, ⟨M⟩ = (⟨M⟩ + ⟨D⟩)∕⟨D⟩.

Lemma 2  [2] Let G be a free abelian group, D be a subgroup of G, L ∈ End
ℤ
(G) 

be such that L(D) ⊂ D and let k be a positive integer for which L ∶ Lk(D) → D is a 
monomorphism. Then, for each finitely generated subgroup X ⊂ G , we have that

where L ∶ G∕D → G∕D , g + D → L(g) + D , and X = (X + D)∕D.

We define the Generalized Igusa-Todorov functions as follows

Definition 2  [2] Let A be an Artin algebra and D ⊂ modA be a subcategory such 
that 𝛺(D) ⊂ D and add (D) = D  . Let 𝛺̄D ∶ KD(A) → KD(A) be the group endomor-
phism defined by 𝛺̄D([M] + ⟨D⟩) = [𝛺(M)] + ⟨D⟩ . For any M ∈ mod(A) , we set

where ⟨M⟩ = (⟨M⟩ + ⟨D⟩)∕⟨D⟩.

For D = {0} we denote by 𝛺̄ the group homomorphism 𝛺̄D . We also define the 
subgroup Kn(A) ⊂ K0(A) as Kn(A) = 𝛺̄1(Kn−1(A)) = … = 𝛺̄n(K0(A)).

Remark 1  Note that if D = {0} , then �[D] = � and �[D] = � , the Igusa-Todorov 
functions defined in [9].

�f (X) = min{k a non-negative integer ∶ f |f m(X) ∶ f m(X) → f m+1(X), is injective ∀m ≥ k}.

�L(X) ≤ �
L
(X) + k,

𝜙[D](M) = 𝜂𝛺̄D
(⟨M⟩) and 𝜓[D](M) = 𝜙[D](M) + f indim ( add (𝛺𝜙[D](M)(M)))
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Now we can define the Generalized Igusa-Todorov dimensions.

Definition 3  [2] Let A be an Artin algebra A and D ⊂ modA be a subcategory such 
that 𝛺(D) ⊂ D and add (D) = D  . For a subcategory C ⊂ modA , we define the �[D] 
-dimension and the �[D] -dimension of C  , respectively, as follows:

–	 � dim[D](C) = sup{�[D](M) ∶ M ∈ C},
–	 � dim[D](C) = sup{�[D](M) ∶ M ∈ C}.

We also define the �[D]-dimension and �[D]-dimension of A, respectively, as 
follows:

–	 � dim[D](A) = � dim[D]( modA),
–	 � dim[D](A) = � dim[D]( modA).

The following remark summarize some propierties of the Generalized Igusa-
Todorov functions.

Remark 2  (Propositions 3.9, 3.10, and 3.12 of [2]) Let A be an Artin algebra and 
D ⊂ modA be a subcategory such that 𝛺(D) ⊂ D and add (D) = D  . Then, we have 
the following statements, for X, Y ,M ∈ modA . 

1.	 If M ∈ D ∪P(A) , then �[D](M) = 0 and 𝜙[D](X ⊕M) = 𝜙[D](X).
2.	 𝜙[D](X) ≤ 𝜙[D](X ⊕ Y) and 𝜓[D](X) ≤ 𝜓[D](X ⊕ Y).
3.	 �[D] dim( add (X)) = �[D](X) and �D dim( add (X)) = �[D](X).
4.	 �D(M) ≤ �D(�(M)) + 1 and �D(M) ≤ �D(�(M)) + 1.
5.	 If Z is a direct summand of �n(X) , 0 ≤ t ≤ �[D](X) and pd (Z) < ∞ , then 

pd (Z) + t ≤ �[D](X).
6.	 Suppose that �dim(D) = 0 . 

(a)	 If pd (X) < ∞ , then �[D](X) = �(X) = pd (X).
(b)	 �(X) ≤ �[D](X).
(c)	 If M ∈ D ∪P(A) , then 𝜓[D](X ⊕M) = 𝜓[D](X).
(d)	 �[D] dim(D) = 0.

The following result shows the relation between the �-dimension and the �[D]

-dimension.

Theorem  2  [2] Let A be an Artin algebra and D ⊂ modA such that D = add (D) 
and 𝛺(D) ⊂ D . Then, for every X ∈ modA

�(X) ≤ �[D](X) + �dim(D).
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2.3 � Gorenstein and stable modules

We denote by ⊥A the full subcategory of modA whose objects are those M ∈ modA 
such that Ext i

A
(M,A) = 0 for i ≥ 1.

We denote by ( ⋅ )∗ the functor homA( ⋅ ,A) ∶ modA → modAop.
A finitely generated A-module G is Gorenstein projective if there exists an exact 

sequence of A-modules:

such that G ≅ ker(p0) , Pi is projective for all i ∈ ℤ and the following is an exact 
sequence:

We denote by GP(A) the subcategory of Gorenstein projective modules. The next 
properties are well known (see [16]):

Remark 3  Let A be an Artin algebra. The following statements hold. 

1.	 Every finite direct sum of modules of GP(A) ( ⊥A ) is in GP(A) ( ⊥A)
2.	 Every direct summand of modules of GP(A) ( ⊥A ) is in GP(A) ( ⊥A).
3.	 Every projective module is in GP(A) ( ⊥A).
4.	 Every module in GP(A) ( ⊥A ) is either a projective module or its projective dimen-

sion is infinite.

Let A be an algebra. We say that A is a Gorenstein algebra if id (AA) < ∞ and 
pd (D(AA)) < ∞ . The following results will be usefull.

Proposition 1  Let A be an Artin algebra. 

1.	 If A if a Gorenstein algebra, then there is a non negative integer k such that 
�k(modA) = GP(A).

2.	 If idAA < ∞ , then there is a non negative integer k such that 𝛺k(modA) = ⊥A.

Proposition 2  [10] Let A be an Artin algebra, then

. . . P−2

p−2 P−1

p−1 P0
p0 P1

p1 P2
p2

. . .

. . . P2∗
p1∗ P1∗

p0∗ P0∗
p−1

∗
P−1

∗ p−2
∗

P−2
∗ p−3

∗
. . . .

𝜙dim(GP(A)) = 𝜙dim(⊥A) = 0.
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2.4 � Lat‑Igusa‑Todorov algebras

Lat-Igusa-Todorov algebras were introduced in [2] as a generalization of Igusa-
Todorov algebras (see Definition 2.2 of [13]). They also verify the finitistic dimen-
sion conjecture as can be seen in Theorem 3.

Definition 4  Let A be an Artin algebra. If D ⊂ modA is a subcategory such that 

1.	 D = add (D),
2.	 𝛺(D) ⊂ D  and
3.	 �dim(D) = 0,

we call it a 0-Igusa-Todorov subcategory.
Remark 4  Let A be an Artin algebra. 

1.	 If �dim(A) = 0 , then D = modA is a 0-Igusa-Todorov subcategory.
2.	 If �dim(A) = 1 , then D = �(modA) is a 0-Igusa-Todorov subcategory.
3.	 GP(A) and ⊥A are 0-Igusa-Todorov subcategories.

Definition 5  [2] Let A be an Artin algebra. A subcategory C ⊂ modA is called 
(�,�,D)-Lat-Igusa-Todorov (for short �- ��� ) if the following conditions are 
verified

–	 There is some 0-Igusa-Todorov subcategory D ⊂ modA,
–	 there is some V ∈ modA satisfying that each M ∈ C  admits an exact sequence: 

 such that V0,V1 ∈ add (V) and D0,D1 ∈ D .
We say that V is a (�,�,D)- Lat-Igusa-Todorov module (for short a �-��� mod-
ule) for C .
Definition 6  [2] We say that A is a (�,�,D)-Lat-Igusa-Todorov algebra (for short 
a �-��� algebra) if modA is (n,V ,D)-LIT. We say that A is a LIT algebra if A is n-
LIT for some non-negative integer n.

Remark 5  [13] If D = {0} in Definition 6, we say that A is a n-Igusa-Todorov 
algebra.

Remark 6  Let A be an algebra and D  a 0-Igusa-Todorov subcategory. If V is a n-LIT 
module, then �(V) is an (n + 1)-LIT module.

Example 1  The following are examples of LIT algebras. 

1.	 If �dim(A) ≤ 1 , then A is a LIT algebra (see Remark 4).
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2.	 If A is a Gorenstein algebra, then A is a LIT algebra where D = GP(A) (see 
Proposition 1).

3.	 If idAA < ∞ , then A is a LIT algebra where D = ⊥A (see Proposition 1).

The following result show that LIT algebras verifies the finitistic dimension con-
jecture. For a proof see [2].

Theorem 3  [2] Let A be a (n,V ,D)-LIT algebra. Then

3 � LIT algebras and D‑syzygy finite subcategories

In this section we show that some algebras are LIT algebras under certain properties.

Remark 7  Let A be an Artin algebra, D  a 0-Igusa-Todorov subcategory and 
C ⊂ modA a subcategory. If [�k(C)]D is finitely generated, then [�k+1(C)]D is 
finitely generated.

Definition 7  Let A an Artin algebra and D  a 0-Igusa-Todorov subcategory. We say 
that a subcategory C ⊂ modA is D  -syzygy finite if [�k(C)]D is finitely generated 
for some non-negative integer k.

The following result generalizes Proposition 2.5 of [13].

Proposition 3  Let A be an Artin algebra and D  be a 0-Igusa-Todorov subcategory. 
If modA is D-syzygy finite, then A is a LIT algebra.

Proof  Suppose that [�n(modA)]D is finitely generated. Then there exist 
{N1,… ,Nl} = N ⊂ indA such that ∀M ∈ �n(modA) , every indecomposable sum-
mand of M belongs to N  or D  . We deduce that N = ⊕l

i=1
Ni is a n-LIT module. 	�  ◻

Proposition 4  Let A be an Artin algebra and D ⊂ modA a 0-Igusa-Todorov subcat-
egory. If C1 , C2 , E  are three subcategories of A-modules such that, for any E ∈ E  , 
there is an exact sequence 0 → C1 → C2 → E → 0 with Ci ∈ Ci for i = 1, 2 , the next 
statements follows. 

1.	 If C1 and C2 are D-syzygy finite, then E  is n-LIT for some non-negative integer n.
2.	 If C1 is D-syzygy finite and gldim (C2) < ∞ , then E  is D-syzygy finite.
3.	 If C1 is n-LIT and gldim (C2) < ∞ , then E  is (n + 1)-LIT.

f indim (A) ≤ 𝜓[D](V) + n + 1 < ∞.
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Proof  For E ∈ E  there is a short exact sequence 0 → C1 → C2 → E → 0 with 
Ci ∈ Ci for i = 1, 2 . Thus, for any n ∈ ℕ we obtain a short exact sequence 
0 → 𝛺n(C1) → 𝛺n(C2)⊕ P → 𝛺n(E) → 0 for some projective P. 

1.	 Since [�n(C1)]D and [�n(C2)]D are finitely generated for n ∈ ℕ , there are modules 
U = ⊕t

i=1
Ui and V = ⊕s

j=i
Vj such that if M1 ∈ �n(C1) and M2 ∈ �n(C2) , then 

M1 = ⊕t
i=1

U
𝛼i
i
⊕ D1 and M2 = ⊕s

j=1
V
𝛽j

j
⊕ D2 , where Di ∈ D  for i = 1, 2 and 

�i, �j ∈ ℕ . Hence for every E ∈ E  there is a short exact sequence 

 with U�
1
∈ add (U) , V �

1
∈ add (V) , Di ∈ D  for i = 1, 2 and P a projective mod-

ule. We conclude that E  is n-LIT with LIT module U ⊕ V ⊕ A.
2.	 Take n ∈ ℕ such that [�n(C1)]D is finitely generated and gldim (C2) ≤ n . Then 

�n(C2) is projective for every C2 ∈ C2 . It follows that 𝛺n(C1) = 𝛺n+1(E)⊕ P for 
some projective P. We deduce that [�n+1(E)]D is finitely generated.

3.	 Take n to be an integer such that C1 is n-LIT and gldim (C2) ≤ n . Similarly to 
the proof of item (2), we obtain that 𝛺n(C1) = 𝛺n+1(E)⊕ P for some projective 
P. Note that there is an exact sequence 0 → V1 ⊕ D1 → V0 ⊕ D0 → 𝛺n(C) → 0 
with Vi ∈ add (V) and Di ∈ D  for i = 0, 1 , where V is a n-LIT mod-
ule. Since P is projective, we can also obtain an exact sequence 
0 → V �

1
⊕ D�

1
→ V �

0
⊕ D�

0
→ 𝛺n+1(E) → 0 with V �

i
∈ add (V) and Di ∈ D  for 

i = 0, 1 . It follows that E  is (n + 1)-LIT with V a (n + 1)-LIT module.

	�  ◻

Remark 8  Note that in part 1 of Proposition 4, 
min{m ∶ [�m(C1)] and [�m(C2)] are finitely generated} is a possible choice of n.

Corollary 1  Let A be an Artin algebra and D ⊂ modA a 0-Igusa-Todorov subcate-
gory. Consider C  , F  , E  three subcategories of A-modules, such that gldim (F) < ∞ 
and for any E ∈ E  , there is an exact sequence

with C1 ∈ C  and each Fi ∈ F  . If C  is D-syzygy-finite (n-LIT), then E  is D-syzygy 
finite ( (n + k + 1)-LIT).

Proof  Denote E0 = C  , and by induction, 
Ei+1 = {M ∶ ∃ 0 → C → F → M → 0 with C ∈ Ei and F ∈ F} . Then by hypoth-
esis and Proposition 4, inductively we obtain that each Ei is D-syzygy finite ( (n + i)

-LIT). Note that E ⊂ Ek+1 , so E  is also D-syzygy finite ( (n + k + 1)-LIT). 	�  ◻

Proposition 5  Let A an Artin algebra, D ⊂ modA a 0-Igusa-Todorov subcategory, 
and two D-syzygy finite subcategories C1 and C2 . Consider E ⊂ modA a subcate-
gory such that ∀M ∈ E  there exists a short exact sequence 0 → C1 → M → C2 → 0 
with Ci ∈ Ci for i = 1, 2 , then E  is n-LIT for some n ∈ ℤ

+.

0 → U�
1
⊕ D�

1
→ V �

1
⊕ D�

2
⊕ P → 𝛺n(E) → 0

0 → C1 → F0 → … → Fk → E → 0
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Proof  Suppose that for n ∈ ℕ [�n(C1)]D and [�n(C2)]D are finitely generated. For 
any M ∈ C  there are Ci ∈ Ci such that 0 → C1 → M → C2 → 0 is a short exact 
sequence. Consider the following pullback diagram obtained from that short exact 
sequence.

It is easy to check that �n(E) is n-LIT, just apply part 1 of Proposition 4 to the mid-
dle column in the above diagram. 	�  ◻

The following result follows directly from the previous proposition.

Corollary 2  Let A an Artin algebra, D  a 0-Igusa-Todorov subcategory for modA . 
If there are two D-syzygy finite subcategories C1 and C2 such that for every 
M ∈ modA there is a short exact sequence

with Ci ∈ Ci , then A is a n-LIT algebra.

4 � Small LIT algebras

Throughout this section, we identify 0-LIT and 1-LIT algebras under conditions in 
the category of modules, in quotients, and its categories of modules.

The first result is a generalization of Proposition 3.2 from [13]. This result allows 
us to identify 0-LIT algebras.

Proposition 6  Let A be an Artin algebra and D ⊂ modA a 0-Igusa-Todorov subcat-
egory. Consider two ideals I, J with JI = 0 . Then A is a 0-LIT algebra provided that 
the following two statements are valid. 

1.	 ind
A

I
⧵D ⊂ modA and ind A

J
⧵D ⊂ modA are finite sets.

0 → C1 → �n(M) → C2 → 0
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2.	 ind
A

I
⧵D ⊂ modA is finite, A

J
 is projective in modA and [�(mod

A

J
)]
D

 is finitely 
generated.

Proof  For any N ∈ modA , we have a short exact sequence 0 → NJ → N →
N

NJ
→ 0 . 

Note that (NJ)I = 0 and ( N

NJ
)J = 0 , so NJ is also in mod

A

I
 and N

NJ
 is also in mod

A

J
.

Consider the following pullback diagram obtained from the above short exact 
sequence.

Both items follow by Remark 8 applied to the middle row in the diagram. 	�  ◻

The following two results are generalizations of Theorem 3.4 and Corollary 3.5 
of [13] respectively.

Proposition 7  Let A be an Artin algebra, D ⊂ modA a 0-Igusa-Todorov subcate-
gory and I an ideal with rad (A)I = 0 . If mod

A

I
⊂ modA is 0-LIT, then A is a 1-LIT 

algebra.

Proof  By hypothesis, for any M ∈ modA , we have that 𝛺(M)I ⊂ rad (P(M))I = 0 . 
Then �(M) is also an A

I
-module. Since mod

A

I
⊂ modA is 0-LIT with 

a LIT-module V, then we obtain an exact sequence of A-modules 
0 → V1 ⊕ D1 → V0 ⊕ D0 → 𝛺(M) → 0 with V0,V1 ∈ add (V) and D0,D1 ∈ D  . 
Hence, we conclude that A is a 1-LIT algebra with a LIT module V. 	�  ◻

Corollary 3  Let A be an Artin algebra and D ⊂ modA a 0-Igusa-Todorov subcate-
gory. If rad 2n+1(A) = 0 and ind A

rad n(A)
⧵D ⊂ modA is finite, then A is 1-LIT.

Proof  We have the following embeddings of module categories

mod
A

rad n(A)
⊂ mod

A

rad 2n(A)
⊂ modA
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Consider I = J =
rad n

A

rad 2n(A)
 ideal of A

rad 2n(A)
 . Observe that IJ = 0 . If M ∈ mod

A

rad 2n(A)
 , 

then JM ∈ mod
A

rad n(A)
 and M

JM
∈ mod

A

rad n(A)
 and by Proposition 6 we conclude that 

the subcategory mod
A

rad 2n(A)
⊂ modA is 0-LIT. Finally, by Proposition 7 A is 

1-LIT. 	�  ◻

5 � Algebras with only trivial 0‑Igusa‑Todorov subcategories

In this section we build algebras with only trivial 0-Igusa-Todorov subcategories. 
We will use these results in Sect. 6 to construct examples of non LIT algebras.

Definition 8  Let A be an Artin algebra. We say that A has only trivial 0-Igusa-
Todorov subcategories if for all 0-Igusa-Todorov subcategory D  , D ⊂ PA.

Definition 9  Let A be an Artin algebra. For M ∈ modA we define

Proposition 8  Let A be an Artin algebra. The following statements are equivalent 

1.	 A has only trivial 0-Igusa-Todorov subcategories.
2.	 min{�(M): such thatM ∈ modA ⧵PA} ≥ 1.
3.	 min{�(M): such thatM ∈ indA ⧵PA} ≥ 1.

Proof  We prove the equivalences.
(1 ⇒ 2) Consider M ∈ modA ⧵PA . It is clear that the following class

verifies the first two axioms for a 0-Igusa-Todorov subcategory. Since A has only 
trivial 0-Igusa-Todorov subcategories, �dim(CM) = �(M) ≥ 1.

(2 ⇒ 3) It is a particular case.
(3 ⇒ 1) Let D  be a non trivial subgategory such that is closed by syzygies and 

direct summands. Then there is a non projective indecomposable module M ∈ D  . 
By hypothesis �(M) ≥ 1 so there is N ∈ D  such that �(N) ≥ 1 . We deduce that D  is 
not a 0-Igusa-Todorov subcategory. 	� ◻

Proposition 9  The following algebras have only trivial 0-Igusa-Todorov 
subcategories 

�(M) = �dim( add {N: N is a direct summand of �n(M) for some non-negative integer n}).

CM = {N: N|�n(M) for some non-nogative integer n}
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1.	 If A =
�Q

J2
 is a non selfinjective radical square zero algebra such that Q is strongly 

connected and the adjacence matrix �Q of Q is not invertible.
2.	 If A =

�Q

Jk
 is a truncated path algebra such that Q is strongly connected algebra 

with at least one loop and the adjacence matrix �Q of Q is not invertible.

Proof 

1.	 By Proposition 4.14 and Theorem 4.32 of [11], �(A0) ≥ 1 . If M ∈ indA ⧵PA , 
then 𝛺(M) ⊂ add (A0) . Since Q is strongly connected quiver, A0 has no pro-
jective summands. On the other hand, since Q is strongly connected, then 
A0 ∈ add (⊕n

k=1
𝛺k(M)) , and it follows the thesis.

2.	 By Remark 11 of [4], 𝜙(Ml(A)⊕Mk−l(A)) ≥ 1 for every 1 ≤ l ≤ k − 2 . If M 
is not a projective module, then 𝛺(M) = Ml

v
(A)⊕ N  for some 1 ≤ l ≤ k − 2 , 

v ∈ Q0 . On the other hand, since Q is strongly connected and has a loop, then 
Ml(A)⊕Mk−l(A) ∈ add (⊕n

k=1
𝛺k(M)) , and it follows the thesis.

	�  ◻

The following example shows that it is necessary to have at least one loop in the 
case of truncated path algebras of the above proposition.

Example 2  Consider the algebra A =
�Q

J8
 , with Q the following quiver

Let M be the A-module given by the representation below

then 𝛺(M) = M ⊕M , and �(M) = �(M) = 0 . We conclude that A does not have 
only trivial 0-Igusa-Todorov subcategories.

Definition 10  Let A =
�Q

I
 a finite dimensional algebra. If Q̄ is a full subquiver of Q 

and B =
�Q̄

I∩�Q
 , then we denote by �B ∶ modA → modB the restriction functor.

1

2 3 4.

5

k
1k

k

0

k
0

k,

1k

k

1k

1k
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Theorem 4  Let A =
�Q

I
 a finite dimensional algebra such that there are two disjoint 

full subquivers �  and 𝛤  of Q which verifies:

–	 𝛤  has no sinks.
–	 Q0 = 𝛤0 ∪ 𝛤0.
–	 For all v ∈ �0 there is an arrow �v ∈ Q1 such that s (�v) = v and t (𝛼v) = w ∈ 𝛤0.
–	 There are no arrows � ∈ Q1 with s (𝛼) ∈ 𝛤0 and t (�) ∈ �0.
–	 For all � ∈ Q1 such that s (�) ∈ �0 and t (𝛼) ∈ 𝛤0 then �� = 0 = �� for all 

�, � ∈ Q1.

If C =
�𝛤

I∩�𝛤
 has only trivial 0-Igusa-Todorov subcategories, then A has only trivial 

0-Igusa-Todorov subcategories.
Proof  Let B and C be the algebras C =

�𝛤

I∩�𝛤
 and B =

��

I∩�
 respectively. It is easy to 

see that 𝛺(modA) ⊂ modB⊕ modC⊕ {⊕Pv ∶ v ∈ 𝛤0} . Notice that modC has 
no simple projective modules. Consider D  a 0-Igusa-Todorov subcategory for A.

Claim: D ∩ modC is a 0-Igusa-Todorov subcategory for C.
Since PC ⊂ PA , then �C(M) = �A(M) for all M ∈ modC . Hence 

�C(M) ∈ D ∩ modC and �C(M) = �A(M) = 0 for all M ∈ D ∩ modC . On the 
other hand consider M ∈ modC , if N is a direct summand of M in modA , it is clear 
that N ∈ modC.

As a consequence of the claim, it is clear that for M ∈ D ⧵PA , if N ∈ modC is 
a direct summand of �(M) , then N ∈ PC.

Suppose M ∈ D ⧵PA , then �(M) is not projective. Hence �(M) has a non pro-
jective direct summand in modB . Since there is a simple C-module S such that S 
is a direct summand of �2(M) , then �2(M) has a non projective direct summand 
in modC . Finally if we apply the claim to �(M) is a projective module, and this is 
absurd. 	�  ◻

Remark 9  The algebras from Theorem 4 are a particular case of the algebras from 
Theorem 5.2 of [3].

6 � Examples of non LIT algebras

In this section, we give an example of a family of finite dimensional algebras that 
are not LIT.

Example 3  Let B =
�Q

IB
 be a finite dimensional �-algebra and C =

�Q�

J2
 , where Q′ is the 

following quiver
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Consider A =
��

IA
 , with

–	 �0 = Q0 ∪ Q�
0
,

–	 �1 = Q1 ∪ Q�
1
∪ {�i ∶ i → 1 ∀i ∈ Q0} and

–	 IA = ⟨IB, J2C, {��i, �i� ∀� such that l (�) ≥ 1}⟩.

Note that

–	 If M ∈ modA , then pdM =

{
0, or

∞.

–	 K1(A) ⊂ ⟨[M] ∶ M ∈ modB ⊂ modA⟩ × ⟨[S1]⟩ × ⟨[S2]⟩.
–	 If M ∈ modB , then 𝛺A(M) = 𝛺B(M)⊕ S

dim
�
( Top (M))

1
.

–	 If M ∈ modA and pd (M) = ∞ , then S1 and S2 are direct summands of �3
A
(M) . 

As a consequence A is a LIT algebra if and only if A is an Igusa-Todorov algebra 
(Use Theorem 4 and Proposition 9).

Remark 10  Let A be an algebra as in Example 3 where B is a selfinjective alge-
bra. If 0 → VB ⊕ S → P → WB ⊕ S̄ → 0 is a short exact sequence in modA with 
VB,WB ∈ modB ⧵PB , P ∈ PA and S, S̄ ∈ add (S1 ⊕ S2) , then there is a short exact 
sequence 0 → VB → P̄ → WB → 0 in modA with P̄ ∈ PB.

Remark 11  Let A be an algebra as in Example 3 where B is a selfinjective algebra. If 
A is an 1-Igusa-Todorov algebra, then B is also an 1-Igusa-Todorov algebra.

Lemma 3  Let A be an algebra as in Example 3 where B is a selfinjective algebra, 
then

Proof  It easy to see that S1, S2 ∈ K1(A) , and If P ∈ PB then P ∉ K1(A) . On the other 
hand consider VB ∈ modB ⧵PB . Since B is a selfinjective algebra, there is a short 
exact sequence in modB as follows

where P ∈ PB . From the previous short exact sequence, we can construct the fol-
lowing short exact sequence in modA.

where P̄ ∈ PA . We deduce that VB ∈ K1(A) . 	�  ◻

As a consequence of the proof of Lemma 3 we have the next result.

K1(A) = ⟨[M] ∶ M ∈ modB ⧵PB ⊂ modA⟩ × ⟨[S1]⟩ × ⟨[S2]⟩.

0 → VB → P → WB → 0,

0 → VB ⊕ S
dim

�
( Top (WB))

1
→ P̄ → WB → 0,
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Corollary 4  Let A be an algebra as in Example 3 where B is a selfinjective algebra. 
Then the next statements follows 

1.	 If V ∈ �A(modA) , there is a semisimple S ∈ modA and a short exact sequence 
0 → V ⊕ S → P → W → 0 , with P ∈ PA and W ∈ �A(modA).

2.	 𝛺̄�⟨[M]∶M∈modB⧵PB⟩ is injective.

Proof 

1.	 The A-module V can be decomposed into V = VB ⊕ S
m1

1
⊕ S

m2

2
 with VB ∈ modB

.
	   Let WB be a preimage of VB , and W̄B a preimage of WB as in Lemma 3. It is easy 

to see that 𝛺(S1) = 𝛺(S2) = S1 ⊕ S2 , then 

2.	 Is a direct consequence of Lemma 3

	�  ◻

Proposition 10  Let A as in Example 3 where B is a selfinjective algebra. If A is 
m-Igusa-Todorov, then A is 1-Igusa-Todorov.

Proof  If A is a m-Igusa-Todorov algebra with m > 1 , we can assume, by Remark 6, 
that there exist an Igusa-Todorov module V such that V ⊂ 𝛺A(modA) . Assume that 
A0 is a direct summand of V. Given the short exact sequences

we can construct the following commutative diagram with exact columns and rows

𝛺(WB ⊕ S
Top (W̄B)+m1+m2

1
) = VB ⊕ S1

Top (WB)+Top (W̄B)+m1+m2 ⊕ S2
Top (W̄B)+m1+m2

0 → V1

um
−−→V0

vm
−−→�m(M) → 0, and 0 → �m(M)

im−1
−−−→Pm−1

pm−1
−−−→�m−1(M) → 0,
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where the maps �m−1 and �m−1 are the canonical inclusion and projection respec-

tively, and �m−1 =

(
�m−1
im−1vm

)
 . Consider S ∈ modA a semisimple module and 

�m−1 ∶ S → Qm−1 such that 𝛿m−1 ∶ V0 ⊕ S → Qm−1 ⊕ Pm−1 , given by (
�m−1 �m−1
im−1vm 0

)
 , is a monomorphism and (Soc(Qm−1), 0) ⊂ Im (𝛿m−1)|Soc(V0)⊕S . 

Consider 𝜖m−1 ∶ V1 ⊕ S → Qm−1 given by �m−1 = (�m−1um, �m−1).
Claim: The map �m−1 is a monomorphism.
Suppose there exist v ∈ V1 and s ∈ S such that 

�m−1(v, s) = �m−1um(v) + �m−1(s) = 0 . Since um(v) ∈ V0 and s ∈ S , then

Since �m−1 and um are monomorphisms, then v = 0 and s = 0.
From the above diagram and the maps �m−1 , �m−1 and v̄m = (vm, 0) , by Lemma 

3 × 3 , we obtain the following diagram.

We denote by W̄0 = ((W0)
i, T𝛼) , Qm−1 = ((Qm−1)

i, T̄𝛼) and Pm−1 = ((Pm−1)
i, T̃𝛼) as 

representations.
Claim: [W̄0] ∈ K1(A).
Let w ∈ W̄0 such that w ≠ 0 and e1w = w (the case e2w = w is easier and left to 

the reader). We want to prove that w ∉ Im
∑

�∶j→1 T� and T𝛽1(w) = T𝛽1(w) = 0.
Suppose there exists w� ∈ W0 such that 

∑
�∶j→1 T�(w

�) = w , then 
�m−1(w) = 0 . Since qm−1 is an epimorphism, there exist x, x� ∈ Qm−1 ⊕ Pm−1 
where qm−1(x) = w , qm−1(x�) = w� and 

∑
𝛼∶j→1 T̄𝛼 + T̃𝛼(x

�) = x . We deduce that 
x ∈ S1 ⊂ Soc (Qm−1 ⊕ Pm−1).

Now consider y, y� ∈ Pm−1 such that �m−1(x) = y and �m−1(x
�) = y� , since 

(Soc(Qm−1), 0) ⊂ Im (𝛿m−1)|Soc(V0)⊕S it is clear that y ≠ 0 . By the previous diagram 
there is an element z ∈ S1 ⊂ Soc (𝛺m(M)) such that im−1(z) = y.

Since v̄m is an epimorphism there is an element v ∈ S1 ⊂ Soc (V0) such 
that v̄m(v) = z . Again, by the previous diagram �m−1(x − �m−1(v)) = 0 , 
then x − �m−1(v) ∈ Qm−1 . Since x, 𝛿m−1(v) ∈ Soc (Qm−1 ⊕ Pm−1) , it 

�m−1(um(v), s) =

(
�m−1 �m−1
im−1vm 0

)(
um(v)

s

)
= (�m−1um(v) + �m−1(s), im−1vmum(v)) = (0, 0)
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is clear that x − �m−1(v) ∈ ( Soc (Qm−1), 0) . Therefore there exists 
v� ∈ Soc (V0 ⊕ S) such that �m−1(v

�) = x − �m−1(v) . It is an absurd since 
0 = qm−1�m−1(v

�) = qm−1(x − �m−1(v)) = qm−1(x) = w ≠ 0.
Now, if we suppose that T�1(w) ≠ 0 ( T�2(w) ≠ 0 ). Consider x = T�2(w) 

( x = T�1(w) ) and the proof follows as above.
Finally, by Remark 4, there is a semisimple module S̄ such that 

W̄0 ⊕ S̄ ∈ 𝛺A(modA).
From the below short exact sequence of the previous commutative diagram we 

build the following short exact sequence

Since �m−1(M) and W̄0 ⊕ S̄ belong to �A(modA) , then W̄1 ⊕ S̄ ∈ 𝛺A(modA) . By 
Remark 10, there exist W ∈ �A(modA) such that W̄1 , W̄1 belong to add (W) for all 
M ∈ modA and the thesis follows. 	�  ◻

We finally give an example of an Artin algebra that is not Lat-Igusa-Todorov.

Example 4  Let A as in Example 3 where B is a selfinjective algebra. If B is not 
an Igusa-Todorov algebra, for instance B = �(�n) for n ≥ 3 (see 4.2.10 of [6] and 
Corollary 4.4 of [12]), then A is not a LIT algebra. However, by Theorem 5.2 of 
[3] �dim(A) ≤ 3 (in fact �dim(A) = 2 ), and A verifies the finitistic dimension 
conjecture.
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