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Abstract
We apply the general Ansatz proposed by Lauret (Rend Semin Mat Torino
74:55–93, 2016) for the Laplacian co-flow of invariant G2-structures on a Lie group,
finding an explicit soliton on a particular almost Abelian 7–manifold. Our methods
and the example itself are different from those presented by Bagaglini and Fino (Ann
Mat Pura Appl 197(6):1855–1873, 2018).

1 Introduction

Geometric flows in G2-geometry were first outlined by the seminal works of Bryant
[5] and Hitchin [10], and have since been studied by several authors, e.g. [3,4,9,14,15].
These so-called G2-flows arise as a tool in the search for ultimately torsion-free G2-
structures, by varying a non-degenerate 3-form on an oriented and spin 7–manifold
M towards some ϕ ∈ �3 := �3(M) such that the torsion ∇gϕϕ vanishes, where gϕ

is the natural Riemannian metric defined from ϕ by

6gϕ(X ,Y ) · dVol := (X�ϕ) ∧ (Y�ϕ) ∧ ϕ.

Such pairs (M7, ϕ) solving the nonlinear PDE problem ∇gϕϕ ≡ 0 are called G2-
-manifolds and are very difficult to construct, especially when M is required to be
compact. To this date, all known solutions stem from elaborate constructions in geo-
metric analysis [6,11,12].

Some weaker formulations of that problem can be obtained from the classical fact,
first established byFernández andGray [8], that the torsion-free condition is equivalent
to ϕ being both closed and coclosed, in the sense that dϕ = 0 and d ∗ϕ ϕ = 0,
respectively, and thus one may study each of these conditions separately. For instance,
Grigorian [9] and Karigiannis and Tsui [14] considered the Laplacian co-flow of G2-
structures {ϕt } defined by
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∂ψt

∂t
= −�ψtψt , (1)

where ψt := ∗tϕt is the Hodge dual and �ψtψt := (dd∗t + d∗t d)ψt is the Hodge
Laplacian of the metric gϕt on 4–forms. It is a natural process to consider among
coclosed G2–structures, as it manifestly preserves that property, i.e., it flows ψt in
its de Rham cohomology class. Moreover, it is the gradient flow of Hitchin’s volume
functional [10].

When M7 = G is a Lie group, we propose to study this flow from the perspective
introduced by Lauret [15] in the general context of geometric flows on homogeneous
spaces. As a proof of principle, we apply a natural Ansatz to construct an example
of invariant self-similar solution, or soliton, of the Laplacian co-flow. Solitons are
G2–structures which, under the flow, simply scale monotonically and move by diffeo-
morphisms. In particular, they provide potential models for singularities of the flow,
as well as means for desingularising certain singular G2–structures, both of which are
key aspects of any geometric flow. We follow in spirit the approach of Karigiannis et
al. [14] to obtain solitons to the Laplacian coflow from a general Ansatz for a coclosed
cohomogeneity one G2–structure on manifolds of the form M7 = N 6 × L1, where
L1 = R or S1 and N 6 is compact and either nearly Kähler or a Calabi-Yau 3-fold. In
that case, as in ours, the symmetries of the space are exploited to reduce the soliton
condition to a manageable ODE.

2 Torsion forms of a G2-structure

Let us briefly review some elementary representation theory underlying G2-geometry,
following the setup from [5,13]. The natural action ofG2 ⊂ SO(7) decomposes�·(M)

into G2-invariant irreducible subbundles:

�1 = �1
7, �2 = �2

7 ⊕ �2
14, �3 = �3

1 ⊕ �3
7 ⊕ �3

27,

�6 = �6
7, �5 = �5

7 ⊕ �5
14, �4 = �4

1 ⊕ �4
7 ⊕ �4

27,
(2)

where each �k
l has rank l. Studying the symmetries of torsion one finds that ∇ϕ ∈

�1 ⊗ �3
7, so that tensor lies in a bundle of rank 49 [13, Lemma 2.24]. Notice also that

�3
7

∼= �1, so, contracting the dual 4-form ψ = ∗ϕϕ by a frame of T M , then using the
Riemannian metric, one has

�2 ⊕ S2(T ∗M) = �1 ⊗ �3
7

∼= End(T M) = so(T M) ⊕ sym(T M).

Here S2(T ∗M) denotes the symmetric bilinear forms and sym(T M) the symmetric
endomorphisms of T M . Both of the above splittings are G2-invariant, so, comparing
the G2-irreducible decomposition so(7) = g2 ⊕ [R7] and (2), we get the following
identification between G2-irreducible summands

[R7] ∼= �2
7 and g2 ∼= �2

14. (3)
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For S2(T ∗M) ∼= sym(T M), Bryant defines maps i : S2(T ∗M) → �3 and j : �3 →
S2(T ∗M) by

i(h) = 1

2
hil g

lmϕmjkdx
i jk and j(η)(u, v) = ∗((u�ϕ) ∧ (v�ϕ) ∧ η), (4)

where we adopt the familiar implicit summation convention for repeated indices and
the inverse of the metric. The map i is injective [13, Corollary 2.16] and, by the
G2-decomposition S2(T ∗M) = Rgϕ ⊕ S20(T

∗M), it identifies

Rgϕ
∼= �3

1 and S20(T
∗M) ∼= �3

27.

Accordingly, we have a decomposition for the torsion components dϕ ∈ �4 and
dψ ∈ �5 given by

dϕ = τ0ψ + 3τ1 ∧ ϕ + ∗τ3 and dψ = 4τ1 ∧ ψ + τ2 ∧ ϕ,

where τ0 ∈ �0, τ1 ∈ �1, τ2 ∈ �2
14 and τ3 ∈ �3

27 are called the torsion forms. Indeed,
the torsion is completely encoded in the full torsion tensor T , defined in coordinates
by

∇lϕabc =: Tlmgmnψnabc,

which is expressed in terms of the irreducible G2-decomposition of End(T M) by [13,
Theorem 2.27]

T = τ0

4
gϕ − τ27 − (τ1)

	�ϕ − 1

2
τ2,

where τ3 := i(τ27) and 	 : �1 → X (M) the musical isomorphism induced by the G2-
metric. If moreover the G2-structure is co-closed, the torsion tensor T = τ0

4 gϕ − τ27
is totally symmetric, and the Hodge Laplacian of ψ is given by [2]

�ψψ = dd∗ψ = dτ0 ∧ ϕ + τ 20ψ + τ0 ∗ τ3 + dτ3.

If moreover τ3 vanishes, thenψ is a Laplacian eigenform and the G2-structure is called
nearly parallel.

3 Invariant G2-structures on Lie groups

Let us briefly survey Lauret’s approach to geometric flows on homogeneous spaces
[15]. Consider the action of a Lie group G on a manifold M . A (r , s)-tensor γ on M
is G-invariant if g∗γ = γ , for each g ∈ G, where

g∗γ (X1, . . . , Xr , α1, . . . , αs) := γ (g∗X1, . . . , g∗Xr , (g
−1)∗α1, . . . , (g

−1)∗αs),
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for X1, . . . , Xr ∈ �(T M) and α1, . . . , αs ∈ �(T ∗M). In particular, when M = G/H
is a reductive homogeneous space, i.e.

g = h ⊕ m such that Ad(h)m ⊂ m, ∀h ∈ H ,

any G-invariant tensor γ is completely determined by its value γx0 at the point
x0 = [1G ] ∈ G/H , where γx0 is an Ad(H)-invariant tensor at m ∼= Tx0M ,
i.e. (Ad(h))∗γx0 = γx0 for each h ∈ H . Given x = [gx0] ∈ G/H , clearly
γx = (g−1)∗γx0 . Consider now a geometric flow on M of the general form

∂

∂t
γt = q(γt ). (5)

Then, if M = G/H , requiring G-invariance of γt , for all t , reduces the flow to an
ODE for a one-parameter family γt of Ad(H)-invariant tensors on the vector space
m:

d

dt
γt = q(γt ).

Now, we fix dimG = 7 and H = {1} the trivial subgroup. For any G2-structure
ϕ0 ∈ 3(g)∗ on g = Lie(G), non-degeneracy means that, for each non-zero vector
v ∈ g, the 2-form ι(v)ϕ0 is symplectic on the vector space g/ 〈v〉. We also know that
the Gl(g)-orbit of the dual 4-form ψ0 = ∗0ϕ0 is open in 4(g)∗ under the natural
action

h · ψ0 := (h−1)∗ψ0 = ψ0(h
−1·, h−1·, h−1·, h−1·), h ∈ Gl(g).

Denoting by θ : gl(g) → End(4(g)∗) the infinitesimal representation θ(A)ψ0 :=
d
dt (e

t A · ψ0)|t=0, we have
θ(gl(g))ψ0 = 4(g)∗, (6)

and the Lie algebra of the stabilizer

Gψ0 := {h ∈ Gl(g) ; h · ψ0 = ψ0}

is characterised by

gψ0 := Lie(Gψ0) = {A ∈ gl(g) ; θ(A)ψ0 = 0}.

Indeed, the orbit Gl(g) · ψ0 is parametrised by the homogeneous space Gl(g)/Gψ0 .
Using the reductive decomposition gl(g) = gψ0 ⊕ qψ0 from Eq. (6), we have

θ(qψ0)ψ0 = 4(g)∗. (7)

In particular, for the Laplacian �0ψ0, there exists a unique Q0 ∈ qψ0 such that
θ(Q0)ψ0 = �0ψ0. Now, for any other ψ = h · ψ0 ∈ Gl(h) · ψ0,

Gψ = Gh·ψ0 = h−1Gψ0h and gψ = gh·ψ0 = Ad(h−1)gψ0 ,
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where Ad : Gl(g) → Gl(gl(g)). Moreover, we have the following relations.

Lemma 3.1 Letψ = h ·ψ0 for h ∈ Gl(g), denote ∗ theHodge star and� the Laplacian
operator of ψ , then

∗ = (h−1)∗ ∗0 h∗ and h∗ ◦ � = �0 ◦ h∗,

where ∗0 and �0 are the Hodge star and the Laplacian operator of ψ0, respectively.

Proof The inner products on g and g∗ induced by a G2-structure ϕ = h · ϕ0 are
g = (h−1)∗g0 and g = h∗g0, respectively, where g0 is the inner product induced by
ϕ0. So, for α ∈ k(g)∗ we have

α ∧ ∗α = g(α, α) vol

= (h∗g0)(α, α)(h−1)∗ vol0
= (h−1)∗(g0(h∗α, h∗α) vol0)

= α ∧ (h−1)∗ ∗0 h∗α,

which gives the first claimed relation. In particular,

∗ψ = (h−1)∗ ∗0 h∗ψ = (h−1)∗ ∗0 ψ0 = h · ϕ0 = ϕ.

Applying again the first relation to the operator d∗ = (−1)7k ∗ d∗, we have d∗ =
(h−1)∗ ◦ d∗0 ◦ h∗, which yields the claim because d commutes with the pullback h∗.
��

As consequence of the above Lemma, we can relate Qψ ∈ qψ to Q0 ∈ qψ0 :

θ(Qψ)ψ = �ψψ = �ψ((h−1)∗ψ0) = (h−1)∗(�0ψ0)

= (h−1)∗θ(Q0)ψ0 = (h−1)∗θ(Q0)h
∗ψ

= (h−1)∗ d

dt

(
etQ0 · (h−1 · ψ)

)|t=0 = d

dt

(
(hetQ0h−1) · ψ)

)|t=0

= d

dt

(
(et Ad(h)Q0) · ψ)

)|t=0 = θ(Ad(h)Q0)ψ,

since gψ ∩ qψ = 0. Therefore,

Qψ = Ad(h)Q0. (8)

We will address the flow (5) in the particular case (M, γt ) = (G, ψt ) and q =
−�ψt , i.e. under the Laplacian co-flow (1). In particular, a G-invariant solution of the
Laplacian co-flow is given by a 1-parameter family in g solving

d

dt
ψt = −�tψt . (9)
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Writing ψt =: h−1
t · ψ0 for ht ∈ Gl(g), we have

d

dt
ψt = ψ0(h

′
t ·, ht ·, ht ·, ht ·) + ψ0(ht ·, h′

t ·, ht ·, ht ·)
+ ψ0(ht ·, ht ·, h′

t ·, ht ·) + ψ0(ht ·, ht ·, ht ·, h′
t ·)

= ψt (h
−1
t h′

t ·, ·, ·, ·)+ψt (·, h−1
t h′

t ·, ·, ·)+ψt (·, ·, h−1
t h′

t ·, ·)+ψt (·, ·, ·, h−1
t h′

t ·)
= − θ(h−1

t h′
t )ψt ,

thus the evolution of ht under the flow (9) is given by

d

dt
ht = ht Qt . (10)

4 Lie bracket flow

The Lie bracket flow is a dynamical system defined on the variety of Lie algebras,
corresponding to an invariant geometric flow under a natural change of variables. It
is introduced in [15] as a tool for the study of regularity and long-time behaviour of
solutions.

For each h ∈ Gl(g), consider the following Lie bracket in g:

μ = [·, ·]h := h · [·, ·] = h[h−1·, h−1·]. (11)

Indeed, (g, [·, ·]) h−→ (g, μ) defines a Lie algebra isomorphism, and consequently an
equivalence between invariant structures

η : (G, ψμ) → (Gμ,ψ),

where Gμ is the 1-connected Lie group with Lie algebra (g, μ), η is an automorphism
such that dη1 = h and ψμ = η∗ψ . In particular, by Lemma 3.1, �μψμ = η∗�ψψ ,
or, equivalently, Qμ = hQψh−1, by Eq. (8).

Lemma 4.1 [15, §4.1] Let {ht } ⊂ Gl(g) be a solution of (10), then the bracket μt :=
[·, ·]ht evolves under the flow

d

dt
μt = −δμt (Qμt ), (12)

in which δμ : End(g) → 2(g)∗ ⊗ g is the infinitesimal representation of the Gl(g)-
action (11), defined by

δμ(A) := −Aμ(·, ·) + μ(A·, ·) + μ(·, A·).
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Proof Setting Qμt := ht Qth
−1
t , we compute:

d

dt
μt = h′

t [h−1
t ·, h−1

t ·] + ht [(h−1
t )′·, h−1

t ·] + ht [h−1
t ·, (h−1

t )′·]
= h′

t h
−1
t μt (·, ·) − μt (h

′
t h

−1
t ·, ·) − μt (·, h′

t h
−1
t ·)

= − δμt (h
′
t h

−1
t ) = −δμt (ht Qth

−1
t ) = −δμt (Qμt ),

since (h−1
t )′ = −h−1

t h′
t h

−1
t . ��

Remark Notice that, if {ht } ⊂ Gl(g) solves

d

dt
ht = Qμt ht ,

then μt solves the bracket flow (12).

5 Self similar solutions

We say that a 4-formψ flows self-similarly along the flow (1) if the solutionψt starting
at ψ has the form ψt = bt f ∗

t ψ , for some one-parameter families { ft } ⊂ Diff(G) and
time-dependent non-vanishing functions {bt }. This is equivalent to the relation

−�ψ = λψ + LXψ,

for some constant λ ∈ R and a complete vector field X . Suppose that the infinitesimal
operator defined by �ψ = θ(Qψ)ψ had the particular form

Qψ = cI + D for c ∈ R and D ∈ Der(g). (13)

Then we have

θ(Qψ)ψ = − 4cψ + θ(D)ψ = −4cψ − d

dt

(
(etD)∗ψ

)
|t=0

= − 4cψ − LXDψ,

where XD is a vector field on g defined by the 1-parameter group of automorphisms
etD ∈ Aut(g).

In that case, (G, ψ) is a soliton for the Laplacian co-flow with

−�ψψ = 4cψ + LXDψ,

where XD also denotes the invariant vector field on G defined by the 1-parameter
subgroup βt in Aut(G) such that d(βt )1 = etD ∈ Aut(g).

A G2-structure whose underlying 4-form ψ satisfies (13) is called an algebraic
soliton, and we say that it is expanding, steady, or shrinking if λ is positive, zero, or
negative, respectively.
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Lemma 5.1 Givenψ2 = cψ1 with c ∈ R
∗, the Laplacian operator satisfies the scaling

property
�2ψ2 = c1/4�1ψ1 (14)

Proof Notice that cψ1 = (c1/4 I )∗ψ1 and apply Lemma 3.1. ��
Lemma 5.2 If ψ is an algebraic soliton with Qψ = cI + D, then ψt = bth∗

t ψ is a
self-similar solution for the Laplacian co-flow (9), with

bt = (3ct + 1)4/3 and ht = est D, for st = − 1

3c
log(3ct + 1). (15)

Moreover,
Qt = b−3/4

t Qψ.

Proof Applying Lemmas 3.1 and 5.1 , we have

�tψt = b1/4t h∗
t �ψ = b1/4t h∗

t θ(Qψ)ψ

= b1/4t h∗
t

(
− 4cψ + θ(D)ψ

)

= −4cb1/4t h∗
t ψ + θ(b1/4t h−1

t Dht )h
∗
t ψ.

On the other hand,

d

dt
ψt = b′

t h
∗
t ψ + bt (h

∗
t ψ)′

= b′
t h

∗
t ψ + btθ(h−1

t h′
t )h

∗
t ψ.

Replacing the above expressions in (9) and comparing terms we obtain the ODE
system

{
b′
t = 4cb1/4t , b(0) = 1

bth′
t = −b1/4t Dht , h(0) = I

,

the solutions of which are as claimed.
Finally, we have

θ(Qt )ψt = �tψt = b1/4t h∗
t �ψ = b1/4t h∗

t θ(Qψ)ψ

= b1/4t θ(h−1
t Qψht )h

∗
t ψ = θ(b−3/4

t h−1
t Qψht )ψt ,

so Qt = b−3/4
t h−1

t Qψht , which yields the second claim, since Qψht = ht Qψ . ��
In terms of the bracket flow,we have Qμt = ht Qth

−1
t = b−3/4

t Qψ . Then, replacing
in (12) the Ansatz

μt =
(

1

c(t)
I

)
· [·, ·] = c(t)[·, ·] for c(t) �= 0 and c(0) = 1, (16)
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we obtain c′
t = cb−3/4

t ct , which has solution ct = ec.st , with st as above.
Indeed, there is an equivalence between the time-dependent Lie bracket given in

(16) and the corresponding soliton given in Lemma 5.2:

Theorem 5.3 [15, Theorem 6] Let (G, ϕ) be a 1-connected Lie groupwith an invariant
G2-structure. The following conditions are equivalent:

(i) The bracket flow solution starting at [·, ·] is given by

μt =
(

1

c(t)
I

)
· [·, ·] for c(t) > 0, c(0) = 1.

(ii) The operator Qt ∈ qψ ⊂ End(g), such that �ψψ = θ(Qψ)ψ , satisfies

Qψ = cI + D, for c ∈ R and D ∈ Der(g).

6 Example of a co-flow soliton

We now apply the previous theoretical framework to construct an explicit co-flow
soliton from a natural Ansatz. Let g = R×ρ R

6 be the Lie algebra defined by ρ(t) =
exp(t A) ∈ Aut(g), with

A =

⎛

⎜⎜⎜
⎜⎜⎜
⎝

1
0

1
1

0
1

⎞

⎟⎟⎟
⎟⎟⎟
⎠

.

The canonical SU(3)-structure onR6 with respect to the orthonormal basis {e1, e6, e2,
e5, e3, e4} is

ω = e16 + e25 + e34, ρ+ = e123 + e145 + e356 − e246

and the standard complex structure of R6 is

J =
(
0 −I3
I3 0

)
.

We also have the natural 3-form

ρ− := J · ρ+ = −e135 + e124 + e236 + e456.

The structure equations of g∗ with respect to the dual basis of {e1, e6, e2, e5, e3, e4, e7}
are

de1 = e67, de6 = e17, de3 = e47, de4 = e37, de j = 0 for j = 2, 5.
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From the above, we have

dω = 0, dρ+ = 2(e1357 + e4567), and dρ− = 2(e2467 + e1237).

There is a natural co-closed G2-structure on g, given by

ϕ := ω ∧ e7 − ρ− = e167 + e257 + e347 + e135 − e124 − e236 − e456, (17)

with dual 4-form

ψ = ∗ϕ = ω2

2
+ρ+∧e7 = e1256+e1346+e2345+e1237+e1457+e3567−e2467. (18)

Clearly τ1 = 0 and τ2 = 0, and

dϕ = −dρ− = −2(e2467 + e1237) = ∗τ3,

since dϕ ∧ ϕ = 0, i.e. τ0 = 0. Therefore, using (4),

τ3 = 2(e135 + e456) or, alternatively, τ27 = (e1)2 + (e3)2 − ((e4)2 + (e6)2).

The Laplacian of ψ is

�ψ = d ∗ d ∗ ψ + ∗d ∗ dψ = d ∗ dϕ

= dτ3 = 4(e1457 + e3567).

Consider the derivation D = diag(a, b, c, c, d, a, 0) ∈ Der(g), and take the vector
field on g

XD(x) = d

dt
(exp(t D)(x)), for x ∈ g.

Then we have

LXDψ = d

dt
(exp(−t D)∗ψ)|t=0 = −θ(D)ψ

= (2a + b + d)e1256+(2a + 2c)e1346+(b + 2c + d)e2345+(a+b+c)e1237

+ (a + c + d)e1457 + (a + c + d)e3567 − (a + b + c)e2467.

From the soliton equation−�ψ = LXDψ+λψ , we obtain a systemof linear equations

⎧
⎪⎪⎨

⎪⎪⎩

2a + b + d + λ = 0
2a + 2c + λ = 0

a + b + c + λ = 0
a + c + d + λ = −4

,
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which has solution D = diag(2, 4, 2, 2, 0, 2, 0) and λ = −8. In particular, for the
matrix Qψ = D + λ

4 I7, we have �ψ = θ(Qψ)ψ . By Lemma 5.2, the functions

c(t) = (1 − 6t)4/3 and s(t) = 1

6
log(1 − 6t) for

1

6
> t,

yield the family of 4-forms {ψt = c(t)( f (t)−1)∗ψ}, where

f (t)−1 = exp(−s(t)D)

= diag((1−6t)−1/3, (1−6t)−2/3, (1−6t)−1/3, (1−6t)−1/3, 1, (1−6t)−1/3, 1).

Hence,

ψt = e1256 + e1346 + e2345 + e1237 + (1 − 6t)2/3(e1457 + e3567) − e2467 (19)

defines a soliton of the Laplacian co-flow:

dψt

dt
= −4(1 − 6t)−1/3(e1457 + e3567) = −c(t)1/4( f (t)−1)∗�ψ = −�tψt .

Corollary 6.1 The relevant geometric structures associated to the 4-form given in (19)
are:

(i) the G2-structure

ϕt = c(t)1/4(e167 + e257 + e347 + e135 − e456) − c(t)−1/4(e124 + e236);

(ii) the G2-metric

gt = (e1)2 + (e3)2 + (e4)2 + (e6)2 + c(t)−1/2(e2)2 + c(t)1/2((e5)2 + (e7)2);

(iii) the volume form

volt = c(t)1/4 volψ ;

(iv) the torsion form and the full torsion tensor

τ3(t) = 2(e135 + e456) and T (t) = c(t)−1/4
(

− (e1)2 − (e3)2 + (e4)2 + (e6)2
)
;

(v) the Ricci tensor and the scalar curvature

Ric(gt ) = −4c(t)−1/2(e7)2 and Rt = −1

2
|τ3(t)|2 = −4c(t)−1/2;

(vi) the bracket flow solution

μt = c(t)−1/4[·, ·].
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Remark 6.2

(1) From Corollary 6.1 (iv) and (v), if t → −∞ then Ric(gt ) → 0, T (t) → 0 and
μt → 0. SinceGμt is solvable for each t [15, Proposition 6], (Gμt , ψ) smoothly
converges to the flat G2-structure (R7, ϕ0).

(2) Since Ric(gψ) = diag(0, 0, 0, 0, 0, 0,−4) + 4I7 ∈ Der(g), the metric gψ is a
shrinking Ricci soliton (cf. [1]).

7 Afterword

We would like to conclude with two questions for future work.

(1) If the cover Lie group G admits a co-compact discrete subgroup �, it would be
interesting to determine whether the corresponding co-closed G2-structure on
the compact quotient G/� is also a Laplacian co-flow soliton.

(2) When the full torsion tensor T = −τ27 is traceless symmetric, the scalar cur-
vature of the corresponding G2-metric is nonpositive, and it vanishes if, and
only if, the structure is torsion-free (c.f. [5, (4.28)] or [13, (4.21)]). This fact
was first pointed out by Bryant for a closed G2-structure, in order to explain the
absence of closed Einstein G2-structures (other than Ricci-flat ones) on compact
7-manifolds, giving rise to the concept of extremally Ricci-pinched closed G2-
structure [5, Remark 13]. Later on, Fernández et al. showed that a 7-dimensional
(non-flat) Einstein solvmanifold (S, g) cannot admit any left-invariant co-closed
G2-structure ϕ such that gϕ = g [7].

In that context, it would be interesting to study pinching phenomena for the
Ricci curvature of solvmanifolds with a co-closed (non-flat) left-invariant G2-
structure and traceless torsion. In our present construction, for instance, we can
see from Corollary 6.1 that

F(t) = R2
t

|Ric(gt )|2 = 1.
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