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Abstract
Weconstruct new families ofUq(gln)-modules by continuation fromfinite dimensional
representations. Each such module is associated with a combinatorial object—
admissible set of relations.More precisely,we prove that any admissible set of relations
leads to a family of irreducibleUq(gln)-modules. Finite dimensional and generic mod-
ules are particular cases of this construction.

Keywords Quantum group · Gelfand–Tsetlin module · Gelfand–Tsetlin basis ·
Tableaux realization

Mathematics Subject Classification Primary 17B67

1 Introduction

Gelfand and Graev [13] proposed a method of constructing of gln-modules which
extend finite dimensional modules and admit a basis of tableaux with the standard
action of the generators of the Lie algebra [14]. This construction is based on a choice
of certain relations satisfied by the entries of the Gelfand–Tsetlin tableaux. Lemire
and Patera [21] conjectured sufficient conditions under which the Gelfand–Graev’s
construction defines in fact amodule, proving it forn = 3 andn = 4. In [11] the authors
proved this conjecture and extended the construction for a larger class of irreducible
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gln-modules. The purpose of this letter is to show how to deform this construction
and obtain new large families of irreducible modules for the quantum group Uq(gln).
Infinite dimensional generic and finite dimensional modules are particular cases of this
construction. New irreducible modules are presented explicitly with a basis consisting
of certain tableaux and with explicit action of the generators of Uq(gln) generalizing
the construction of finite dimensional representations [28]. Having such an explicit
construction will be useful for possible applications.

Constructed modules belong to the category of Gelfand–Tsetlin modules with
a diagonalizable action of the Gelfand–Tsetlin subalgebra. For gln the theory of
Gelfand–Tsetlin modules has origin in the classical paper of Gelfand and Tsetlin
[14]. It is related to many concepts arizing in Mathematics and Physics, see for exam-
ple [1,2,4,9,15–17,19,20]. The general theory of Gelfand–Tsetlin modules for gln was
developed in [3,5–7,10,22,23,25,26], and references therein. For Uq(gln) certain fam-
ilies of Gelfand–Tsetlin modules were constructed in [12,24], while the general theory
was developed in [8].

Current letter provides new information about Gelfand–Tsetlin modules for
Uq(gln). The paper is organized as follows. Section 2 contains some preliminary infor-
mation. In Sect. 3 we introduce our main technical tools—admissible sets of relations
and realizable sets of relations. To any realizable set of relations we associate a family
of Uq(gln)-modules. We prove the main result of this letter stating that any admissible
set of relations is a realizable set of relations (Theorem 3.7). A certain effectivemethod
(RR-method) of constructing the admissible relation is described in Theorem 3.11.
Finally, in Sect. 4 we study the action of the generators of the Gelfand–Tsetlin sub-
algebra on modules associated with admissible sets of relations. The Gelfand–Tsetlin
subalgebra �q is diagonalizable on all constructed modules (Theorem 4.1), moreover,
it separates the basis tableaux (Proposition 4.4). Using the action of �q we obtain
a criterion of irreducibility of constructed admissible modules: irreducible modules
correspond to maximal admissible sets of relations (Theorem 4.5).

We now fix some notation and conventions. Throughout the paper we fix an integer
n ≥ 2 and q ∈ C which is not root of unity. The ground field will be C. By Uq we
denote the quantum enveloping algebra of gln . We fix the standard Cartan subalgebra
h, the standard triangular decomposition and the corresponding basis of simple roots
α1, . . . , αn−1. The weights of Uq will be written as n-tuples (λ1, . . . , λn). For a com-
mutative ring R, by Specm R we denote the set of maximal ideals of R. For i > 0 by
Si we denote the i th symmetric group. Let 1(q) be the set of all complex x such that
qx = 1. Finally, for any complex number x , we set

(x)q = qx − 1

q − 1
, [x]q = qx − q−x

q − q−1 .

2 Preliminaries

We define Uq as a unital associative algebra generated by ei , fi (1 ≤ i ≤ n) and
qh(h ∈ h) with the following relations:
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q0 = 1, qhqh′ = qh+h′
(h, h′ ∈ h), (1)

qhei q
−h = q〈h,αi 〉ei , (2)

qh fi q
−h = q−〈h,αi 〉 fi , (3)

ei f j − f j ei = δi j
qαi − q−αi

q − q−1 , (4)

e2i e j − (q + q−1)ei e j ei + e j e
2
i = 0 (|i − j | = 1), (5)

f 2i f j − (q + q−1) fi f j fi + f j f 2i = 0 (|i − j | = 1), (6)

ei e j = e j ei , fi f j = f j fi (|i − j | > 1). (7)

The quantum special linear algebra Uq(sln) is the subalgebra of Uq generated by
ei , fi , q±αi (i = 1, 2, . . . , n − 1).

Consider the following chain

Uq(gl1) ⊂ Uq(gl2) ⊂ · · · ⊂ Uq(gln).

Let Zm denote the center of Uq(glm). The subalgebra of Uq(gln) generated by
{Zm | m = 1, . . . , n} will be called the Gelfand–Tsetlin subalgebra of Uq and will
be denoted by �q .

Definition 2.1 A finitely generated Uq -module M is called a Gelfand–Tsetlin module
(with respect to �q ) if

M =
⊕

m∈Specm�q

M(m), (8)

where M(m) = {v ∈ M |mkv = 0 for some k ≥ 0}.

For a vector L = (li j ) in C
n(n+1)

2 , by T (L) we will denote the following array with
entries {li j : 1 ≤ j ≤ i ≤ n}

ln1 ln2 · · · ln,n−1 lnn

ln−1,1 · · · ln−1,n−1

· · · · · · · · ·
l21 l22

l11

such an arraywill be called aGelfand–Tsetlin tableau of height n. For any 1 ≤ j ≤ i ≤
n − 1, the vector δi j ∈ Z

n(n+1)
2 is defined by (δi j )i j = 1 and all other (δi j )k� are zero.

Finally, a Gelfand–Tsetlin tableau of height n is called standard if lki − lk−1,i ∈ Z≥0
and lk−1,i − lk,i+1 ∈ Z>0 for all 1 ≤ i ≤ k ≤ n.

Recall the quantum version of the classical result of Gelfand and Tsetlin which
provides an explicit basis in the finite dimensional case.

123



86 São Paulo Journal of Mathematical Sciences (2019) 13:83–95

Theorem 2.2 ([28, Theorem 2.11] and [12, Proposition 4.3]) Let L(λ) be the finite
dimensional irreducible module over Uq of highest weight λ = (λ1, . . . , λn), where
λi −λi+1 ∈ Z≥0. Then there exists a basis of L(λ) consisting of all standard tableaux
T (L) with fixed top row lnj = λ j − j . Moreover, the action of the generators of Uq

on L(λ) is given by the Gelfand–Tsetlin formulae:

qεk (T (L)) = qak T (L), ak =
k∑

i=1

lk,i −
k−1∑

i=1

lk−1,i + k, k = 1, . . . , n,

ek(T (L)) = −
k∑

j=1

∏
i [lk+1,i − lk, j ]q∏
i 	= j [lk,i − lk, j ]q

T (L + δk j ),

fk(T (L)) =
k∑

j=1

∏
i [lk−1,i − lk, j ]q∏
i 	= j [lk,i − lk, j ]q

T (L − δk j ).

(9)

Moreover, the generators cmk of �q acts on T (L) as multiplication by

γmk(L) = (k)q−2 !(m − k)q−2 !qk(k+1)− m(m+1)
2

∑

τ

q
∑k

i=1 lmτ (i)−∑m
i=k+1 lmτ (i) (10)

where τ ∈ Sm is such that τ(1) < · · · < τ(k), τ (k + 1) < · · · < τ(m).

3 Admissible relations

Set V := {(i, j) | 1 ≤ j ≤ i ≤ n}. In this section we will consider certain binary
relations on V. Set

R+ := {((i, j); (i − 1, t)) | 1 ≤ j ≤ i, 2 ≤ i ≤ n, 1 ≤ t ≤ i − 1} (11)

R− := {((i, j); (i + 1, s)) | 1 ≤ j ≤ i ≤ n − 1, 1 ≤ s ≤ i + 1} (12)

R0 := {((n, i); (n, j)) | 1 ≤ i 	= j ≤ n} (13)

and letR :=R− ∪ R0 ∪ R+ ⊂ V × V. From now any C ⊆ R will be called a set of
relations.

Associated with any C ⊆ R we can construct a directed graph G(C) with set of
vertices V and an arrow going from (i, j) to (r , s) if and only if ((i, j); (r , s)) ∈ C.
For convenience we will picture the vertex set as disposed in a triangular arrangement
with n rows and k-th row given by {(k, 1), . . . , (k, k)}.
Definition 3.1 Let C be any set of relations.

(i) We denoteV(C) ⊆ V the set of all vertices in G(C) which are starting or ending
vertices of an arrow.

(ii) C is called indecomposable if G(C) is a connected graph.
(iii) C is called a loop if G(C) is an oriented cycle.
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(iv) Given (i, j), (r , s) ∈ V we will write (i, j) �C (r , s) if there exists a path in
G(C) starting in (i, j) and finishing in (r , s).

Note that any subset ofR is a union of disconnected indecomposable sets and such
decomposition is unique. Any C ⊂ R can be written in the form C = C− ∪ C0 ∪ C+,
where C−:=R− ∩ C, C0:=R0 ∩ C and C+:=R+ ∩ C.

Wewill define now our main concept which is a slight modification of the definition
of an admissible set in [11].

Definition 3.2 Let C be an indecomposable set. We say that C is admissible if it
satisfies the following conditions:

(i) C does not contain loops.
(ii) C is noncritical.
(iii) For any 1 ≤ k ≤ n, (k, i) �C (k, j) if and only if (k, i), (k, j) are in the same

indecomposable subset of C and i < j .
(iv) C is reduced.
(v) There is not cross in C.
(vi) For every adjoining pair (k, i) and (k, j), 1 ≤ k ≤ n − 1, there exist p, q such

that C1 ⊆ C or, there exist s < t such that C2 ⊆ C, where the graphs associated
to C1 and C2 are as follows

(k+1,p)

G(C1)= (k,i) (k, j);

(k−1,q)

(k+1,s) (k+1,t)

G(C2)= (k,i) (k, j)

An arbitrary set C is admissible if every indecomposable subset of C is admissible.

3.1 Tableaux realization of admissible sets of relations

In this section we will describe C-vector spaces associated with sets of relations C
with Gelfand–Tsetlin tableaux as a bases. We will prove that we have a structure
of a Uq -module on such space with the action of the generators of Uq given by the
Gelfand–Tsetlin formulas (9).

Definition 3.3 Let C be any set of relations and T (L) any Gelfand–Tsetlin tableau.

(i) We will say that T (L) satisfies C if:

• li j − lrs ∈ Z≥0 + 1(q)
2 for any ((i, j); (r , s)) ∈ C+ ∪ C0.

• li j − lrs ∈ Z>0 + 1(q)
2 for any ((i, j); (r , s)) ∈ C−.

(ii) We say that T (L) is a C-realization if T (L) satisfies C and for any 1 ≤ k ≤ n−1
we have, lki −lk j ∈ Z+ 1(q)

2 if and only if (k, i) and (k, j) in the same connected
component of G(C).
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(iii) Suppose that T (L) satisfies C. By BC(T (L)) we denote the set of all tableaux

of the form T (L + z), z ∈ Z

n(n+1)
2

0 satisfying C. By VC(T (L)) we denote the
complex vector space spanned by BC(T (L)).

(iv) We call C realizable if for any T (L) satisfying C, the space VC(T (L)) is a
Gelfand–Tsetlin module with the action of the generators of Uq given by the
Gelfand–Tsetlin formulas (9).

Example 3.4 Set S = S+ ∪ S− where

S+ := {(i + 1, j); (i, j)) | 1 ≤ j ≤ i ≤ n − 1}
S− := {((i, j); (i + 1, j + 1)) | 1 ≤ j ≤ i ≤ n − 1}.

It follows from the definition that∅ andS are admissible and realizable sets of relations.
Moreover, the set of all tableaux satisfying S coincides with the set of all standard
tableaux and the set of all tableaux satisfying ∅ coincide with the set of all generic
tableaux.

Our goal is to show that any admissible set of relations C is realizable and leads to a
family of Uq -modules. In fact, for any T (L) satisfying C we will prove that VC(T (L))

is a Gelfand–Tsetlin module with the action of the generators of Uq given by the
Gelfand–Tsetlin formulas (9). For this we will need some technical lemmas.

Set

eki (w) =
⎧
⎨

⎩

0, if T (w) /∈ BC(T (L))

−
∏k+1

j=1[wki −wk+1, j ]q
∏k

j 	=i [wki −wk j ]q , if T (w) ∈ BC(T (L))
(14)

fki (w) =
⎧
⎨

⎩

0, if T (w) /∈ BC(T (L))∏k−1
j=1[wki −wk−1, j ]q

∏k
j 	=i [wki −wk j ]q , if T (w) ∈ BC(T (L))

(15)

hk(w) =
{

0, if T (w) /∈ BC(T (L))

q2
∑k

i=1 wki −∑k−1
i=1 wk−1,i −∑k+1

i=1 wk+1,i −1, if T (w) ∈ BC(T (L))

(16)


(L, z1, . . . , zm) =
{
1, if T (L + z1 + · · · + zt ) ∈ BC(T (L)) for any 1 ≤ t ≤ m
0, otherwise.

(17)

We will denote by T (v) the tableau with variable entries vi j .

Lemma 3.5 Let C be admissible, T (L) any tableau satisfying C.

(i) If T (L + δk j ) /∈ BC(T (L)) and lk,i − lk j /∈ 1 + 1(q)
2 for any i , then

lim
v→l

ek j (v) fk j (v + δk j ) = 0.
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(ii) If T (L − δk j ) /∈ BC(T (L)) and lk, j − lk,i /∈ 1 + 1(q)
2 for any i, then

lim
v→l

fk j (v)ek j (v − δk j ) = 0.

(iii) If lk,i − lk, j /∈ 1 + 1(q)
2 , then T (L + δk, j ), T (L − δk,i ) /∈ BC(T (L)), and

lim
v→l

ek j (v) fk j (v + δk, j ) − fki (v)eki (v − δk,i ) = 0.

Proof Since T (L + δk j ) /∈ BC(T (L)), we have {((k + 1, s); (k, j))} ⊆ C or {((k −
1, t); (k, j))} ⊆ C. Suppose {((k + 1, s); (k, j))} ⊆ C and T (L + δk j ) /∈ BC(T (L)).
Then lk+1,s−lk, j /∈ 1(q)

2 and bydirect computation one has lim
v→l

ek j (v) fk j (v+δk j ) = 0.

Suppose T (L + δk j ) does not satisfies the relation lk−1,t − lk, j ∈ Z>0 + 1(q)
2 . Then

we have lk−1,t − lk, j ∈ 1 + 1(q)
2 and

lim
v→l

ek j (v) fk j (v + δk j ) = 0.

The proof of (ii) is similar to (i).
It is clear that T (L −δk, j ), T (L +δk, j+1) /∈ BC(T (L)) if lk, j − lk, j+1 ∈ 1+ 1(q)

2 . It is
easy to see that #{i ′ | rk+1,i ′ = rk j }+#{ j ′ | rk−1, j ′ = rki } ≥ 2. By direct computation
one has

lim
v→l

ek j (v) fk j (v + δk, j+1) − fk j (v)ek j (v − δk, j ) = 0.

��

Lemma 3.6 [11, Lemma 4.32] Let C be admissible, T (L) any C-realization and

z(1), z(2) ∈ Z
n(n−1)

2 . Denote I1 = {(i, j) | z(1)
i j 	= 0}, I2 = {(i, j) | z(2)

i j 	= 0}. If
I1 ∩ I2 = ∅ and for any (i1, j1) ∈ I1, (i2, j2) ∈ I2 there is no relation between (i1, j1)
and (i2, j2), then T (R+z(1)+z(2)) ∈ BC(T (L)) if and only if T (R+z(1)) ∈ BC(T (L))

and T (R + z(2)) ∈ BC(T (L)).

3.2 Uq-modules defined by admissible relations

Theorem 3.7 If C is a admissible set of relations and T (L) is tableau satisfying C,
then C is realizable, i.e. the vector space VC(T (L)) has a structure of a Uq-module,
endowed with the action of Uq given by the Gelfand–Tsetlin formulas (9).

Proof It is sufficient to consider the case when C is a union of two disconnected
indecomposable admissible sets. Suppose C = C1 ∪ C2.

Let T (L) be any C-realization. In order to prove that VC(T (L)) is aUq -module one
needs to verify all the defining relations (2–7) for any T (R) ∈ BC(T (L)).
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First we show that (e2i e j − (q + q−1)ei e j ei + e j e2i )T (R) = 0 (|i − j | = 1).

(e2i e j − (q + q−1)ei e j ei + e j e
2
i )T (R)

=
∑

r ,s,t


(R, δ jr , δis)e jr (R)eis(R + δ jr )eit (R + δ jr + δis)T (R + δ jr + δis + δi t )

+
∑

r ,s,t


(R, δis , δi t )eis(R)eit (R + δis)e jr (R + δis + δi t )T (R + δ jr + δis + δi t )

− [q]2
∑

r ,s,t


(R, δis , δ jr )eis(R)e jr (R + δis)eit (R + δis + δ jr )T (R + δ jr + δis + δi t ).

(18)
Now we consider the coefficients by nonzero tableau T (R + δ jr + δis + δi t ).

(i) Let s = t .

(a) Suppose there is no relation between (i, s) and ( j, r). Then
(R, δ jr , δis) =

(R, δis, δis) = 
(R, δis, δ jr ) = 1 by Lemma 3.6. Then the coefficient
of T (R + δ jr + 2δis) is the limit of the coefficient of T (v + δ jr + 2δis)

when v → R (here T (v) again is a tableau with variable entries). Thus the
coefficient of T (R + δ jr + 2δis) is zero.

(b) Suppose there exists a relation between (i, s) and ( j, r). Without loss of
generality we assume that this relation is C′ = {((i, s); ( j, r))}, Let T (v′)
be the tableau with v′

s′t ′ = ls′t ′ if (s′, t ′) = (i, s) or ( j, r), and variable
entries otherwise. Then T (v′) is a C′-realization and VC′(T (v′)) is a module
for arbitrary generic values of free variables in v′. Let z(1), z(2) ∈ {δ jr , δis}.
Then 
(R, z(1), z(2)) = 
(v, z(1), z(2)) where z(1) = z(2) only if z(1) =
z(2) = δis . Therefore the coefficient of T (R + δ jr + 2δis) is the limit of the
coefficient of T (v + δ jr + 2δis) when v → R, hence, it is zero.

(ii) Suppose s 	= t . Then there is no relation between (i, s) and (i, t).

(a) Suppose there is no relation between ( j, r) and (i, s) or between ( j, r) and
(i, t). Then the value of the function 
 that appears along with T (R + δ jr +
δis + δi t ) is 1 by Lemma 3.6. Thus the coefficient of T (R + δ jr + δis + δi t )

is zero similarly to (a) in (i).
(b) Suppose there is a relation between ( j, r) and one of {(i, s), (i, t)}. Similarly

to (b) in (i), one has that the coefficient of T (R + δ jr + δis + δi t ) is zero.
(c) Suppose there exist relations between ( j, r) and both {(i, s), (i, t)}. In this

case ( j, r), (i, s), (i, t) are in the same indecomposable set. If ris − rit =
1 then r jr = rit and there exists r ′ such that {((i, s); (i − 1, r ′)), ((i −
1, r ′); (i, t)))} ⊆ C and ri−1,r ′ = ris . It contradictswith T (R+δ jr +δis +δi t )

nonzero. Therefore ris − rit ∈ 1(q)
2 + Z>0. Then ris − r jr ∈ 1(q)

2 + Z>0 or

r jr − rit ∈ 1(q)
2 +Z>0. Without loss of generality we assume that r jr − rit ∈

1(q)
2 + Z>0. Let C′ = {(i, s) ≥ ( j, r)} and T (v′) the tableau with v′

s′t ′ = ls′t ′
if (s′, t ′) = (i, s) or ( j, r) and variable entries otherwise. Then T (v′) is a
C′-realization and VC′(T (v′)) is a module. Let z(1), z(2) ∈ {δ jr , δis, δi t }. One
has that 
(R, z(1), z(2)) = 
(v, z(1), z(2)) whenever z(1) 	= z(2). Therefore
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the coefficient of T (R + δ jr + 2δis) is the limit of the coefficient of T (v +
δ jr + 2δis) when v → R, which is zero.

In the following we show that (ei f j − f j ei )T (R) = δi j
qαi −q−αi

q−q−1 T (R). We have

(ei f j − f j ei )T (R) =
j∑

r=1

i∑

s=1


(R,−δ jr ) f jr (R)eis(R + δ jr )T (R − δ jr + δis)

−
j∑

r=1

i∑

s=1


(R, δis)eis(R) f jr (R + δis)T (R − δ jr + δis).

(19)
Now we consider the coefficients of nonzero tableaux T (L − δ jr + δis). If (i, r) 	=

( j, s) then the coefficient of T (L − δ jr + δis) is zero similarly to the above case and,
hence, [ei , f j ]T (R) = 0 if i 	= j .

Suppose i = j = k. The coefficient of T (R − δir + δis) is zero if r 	= s.
By Corollary 3.5, the coefficient of T (R) is

lim
v→l

(
k∑

r=1

k∑

s=1

fkr (v)eks(v + δkt ) −
k∑

r=1

k∑

s=1

eks(v) fkr (v + δks)

)

= lim
v→R

hk(v) = hk(R).

Hence (ei f j − f j ei )T (R) = δi j
qαi −q−αi

q−q−1 T (R).
All other relations can be verified similarly. Thus VC(T (L)) is a Uq -module. ��

Remark 3.8 The realizable sets of relations for gln were all obtained in [11] (Theorem
4.33). Here we only deform the definition of a tableau satisfying a set of relations,
i.e. replace Z by Z + 1(q)

2 . As in the non quantum case, if we only consider irre-
ducible modules, all realizable sets of relations are admissible. Thus the converse of
Theorem 3.7 holds.

An effective method of constructing of realizable sets of relations was introduced
in [11], called relations removal method (RR-method for short). We will show that the
same method can be applied to construct admissible sets of relations in the quantum
case.

Definition 3.9 Let C be any set of relations. We call (k, i) ∈ V(C) maximal if there
exist no (s, t) ∈ V(C) such that (s, t) �C (k, i). The minimal pair can be defined
similarly.

Definition 3.10 (RR-method) Let (i, j) ∈ V(C) be a maximal or a minimal pair.
Denote by Ci j the set of relations obtained from C by removing all relations that involve
(i, j). We say that C̃ � C is obtained from C by the RR-method if it is obtained by a
sequence removing of relations of the form C′ → C′

i j for different indexes.
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Theorem 3.11 Let C1 be any realizable subset of R. If C2 is obtained from C1 by the
RR-method then C2 is realizable.

Proof Analogous to the proof of Theorem 4.9 in [11]. ��
We immediately obtain the following statement for generic modules which was

shown in [12, Theorem 5.2] (cf. [29, Theorem 2]).

Corollary 3.12 Let T (L) be a generic Gelfand–Tsetlin tableau of height n. Then
V∅(T (L)) has a structure of a Uq-module with the action of the generators of Uq

given by the Gelfand–Tsetlin formulas (9).

Proof By Theorem 2.2 the set S is realizable and applying the RR-method to S,
after finitely many steps we can remove all the relations in S, then ∅ is realizable by
Theorem 3.11. ��

We call VC(T (L)) admissible Gelfand–Tsetlin module associated with the admis-
sible set of relations C. Note that VC(T (L)) is infinite dimensional if C does not imply
S.

4 Action of Gelfand–Tsetlin subalgebra

From now on we will assume that C is an admissible subset of R and consider the
Uq -module VC(T (L)). We will analyze the action of the Gelfand–Tsetlin subalgebra
�q on modules VC(T (L)).

The action of Uq on this irreducible module is given by the Gelfand–Tsetlin for-
mulas (9). Moreover, the action of �q is given by (10). Then as in the non quantum
case, we have the following theorem:

Theorem 4.1 For any admissible C the module VC(T (L)) is a Gelfand–Tsetlin module
with diagonalizable action of the generators of the Gelfand–Tsetlin subalgebra given
by the formula (10).

Proof Essentially repeats the proof of Theorem 5.3 in [11]. ��
Remark 4.2 Note that for any x ∈ 1(q) we have γmk(L) = γmk(L + xδi j ) for any
m, k and any 1 ≤ j ≤ i ≤ n. In particular, the tableaux T (L) and T (L + xδi j ) define
the same Gelfand–Tsetlin character.

Remark 4.3 Let C be any realizable set of relations and T (L) satisfying C. Then for
any x ∈ 1(q) the tableau T (L + xδi j ) is also a C-realization and the Gelfand–Tsetlin
modules VC(T (L + xδi j )) and VC(T (L)) are isomorphic (see Remark 4.2). On the
other hand, when x

2 /∈ 1(q), the two modules are not isomorphic. In general, every
admissible set of relations defines infinitely many nonisomorphic modules.

Now we can show that �q separates basis tableaux in all constructed modules
VC(T (L)) and hence, in their irreducible quotients.
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Proposition 4.4 For any m ∈ Specm �q from the Gelfand–Tsetlin support of
VC(T (L)), the Gelfand–Tsetlin multiplicity of m is one.

Proof The action of �q is given by the formulas (10), and hence determined by the
values of symmetric polynomials on the entries of the rows of the tableaux. Given
two Gelfand–Tsetlin tableaux T (R1) and T (R2) in BC(T (L)), we have crs(T (R1)) =
crs(T (R2)) for any 1 ≤ s ≤ r ≤ n if and only if R1 = σ(R2) for some σ ∈ G. But if
σ 	= 1 then T (R1) and T (R2) have different order among the entries in r th row. Since

both T (R1) and T (R2) satisfy C and T (R1) = T (R2 + z) for some z ∈ Z
n(n−1)

2 we
come to a contradiction. ��

Therefore, we have an explicit basis of VC(T (L)), and of its irreducible quotients,
parametrized by different Gelfand–Tsetlin tableaux with an explicit basis of the gen-
erators of Uq and of �q .

It was proved in [12] that the irreducible module containing generic tableau T (R)

has a basis of tableaux

I(T (R)) = {T (S) ∈ B(T (R)) : �+(T (S)) = �+(T (R))},

where

�+(T (S)) :=
{
(i, j, k) | si, j − si−1,k ∈ 1(q)

2
+ Z≥0

}
.

The following statement is a generalization of this result. Recall that C is a maximal
set of relations satisfied by T (L) if T (L) is a C-realization and for any admissible set
of relations C′ satisfied by T (L), C implies C′.

Theorem 4.5 Admissible Gelfand–Tsetlin module VC(T (L)) is irreducible if and only
if C is a maximal set of relations satisfied by T (L).

Proof Let T (R) be any tableau in BC(T (L)) and C a maximal set of relations satisfied
by T (L). One can show easily that Uq T (R) ⊆ VC(T (L)). If T (R′) is another tableau
in VC(T (L)) then there exist {(is, js)} ⊆ {(i, j) | 1 ≤ j ≤ i ≤ n −1)} and t such that,
for any k ≤ t , T (Rk) = T (R + ∑k

s=1 psδ
is , js ) ∈ BC(T (L)), where pi ∈ {1,−1} and

T (R0) = T (R), T (Rt ) = T (R′). It is sufficient to show that we can obtain T (Rs)

from T (Rs−1). If pi = 1 (resp. pi = −1) then acting by eis (resp. fis ) on T (Rs−1)

the coefficient of T (Rs) in the image is not zero. By Theorem 4.1, there exists an
element in �q which annihilates all other tableaux except T (Rs). We conclude that
VC(T (L)) ⊆ Uq T (R).

Conversely, assume T (L) satisfies C and C is not maximal. Let C′ be the maximal
set of relations satisfied by T (L). Then VC′(T (L)) is a subquotient of VC(T (L)) and
VC′(T (L)) 	= VC(T (L)). It contradicts the irreducibility of VC(T (L)). ��

We conclude with an example of the family of highest weight modules that can be
realized as VC(T (L)) for some admissible set of relations C.
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Proposition 4.6 Set λ = (λ1, . . . , λn). The irreducible highest weight module L(λ)

is admissible Gelfand–Tsetlin module if λi − λ j /∈ Z or λi − λ j > i − j for any
1 ≤ i < j ≤ n − 1.

Proof Let T (L) be a tableau such that li j = λ j − j , C be the maximal set of rela-
tions satisfied by T (L). Then C is admissible and VC(T (L)) is irreducible admissible
module. Moreover, T (L) is a highest weight vector and VC(T (L)) is isomorphic to
L(λ). ��
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