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Abstract
In this survey article we provide an introduction to submanifold geometry in sym-
metric spaces of noncompact type. We focus on the construction of examples and the
classification problems of homogeneous and isoparametric hypersurfaces, polar and
hyperpolar actions, and homogeneous CPC submanifolds.
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1 Introduction

According to the original definition given by Cartan [23], a Riemannian symmetric
space is a Riemannian manifold characterized by the property that curvature is invari-
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ant under parallel translation. This geometric definition has the surprising effect of
bringing the theory of Lie groups into the picture, and it turns out that Riemannian
symmetric spaces are intimately related to semisimple Lie groups. To a large extent,
many geometric problems in symmetric spaces can be reduced to the study of proper-
ties of semisimple Lie algebras, thus transforming difficult geometric questions into
linear algebra problems that one might be able to solve.

For this reason, the family of Riemannian symmetric spaces has been a setting
where many geometric properties can be tackled and tested. They are often a source
of examples and counterexamples. The set of symmetric spaces is a large family
encompassing many interesting examples of Riemannian manifolds such as spaces
of constant curvature, projective and hyperbolic spaces, Grassmannians, compact Lie
groups and more. Apart fromDifferential Geometry, symmetric spaces have also been
studied from the point of view of Global Analysis and Harmonic Analysis, being
noncompact symmetric spaces of particular relevance (see for example [59]). They
are also an outstanding family in the theory of holonomy, constituting a class of their
own in Berger’s classification of holonomy groups.

Our interest in symmetric spaces comes from a very general question: the relation
between symmetry and shape. In a broad sense, the symmetries of a mathematical
object are the transformations of that object that leave it invariant. These symmetries
impose several constraints that reduce the degrees of freedom of the object, and imply
a regularity on its shape. More concretely, in Submanifold Geometry of Riemannian
manifolds, our symmetric objects will actually be (extrinsically) homogeneous sub-
manifolds, that is, submanifolds of a given Riemannian manifold that are orbits of a
subgroup of isometries of the ambient manifold. In other words, a submanifold P of
a Riemannian manifold M is said to be homogeneous if for any two points p, q ∈ P
there exists an isometry ϕ of M such that ϕ(P) = P and ϕ(p) = q. The symmetries
of M are precisely the isometries ϕ in this definition. Therefore, the study of homo-
geneous submanifolds makes sense only in ambient manifolds with a large group of
isometries, and thus, the class of Riemannian symmetric spaces is an ideal setup for
this problem.

Roughly speaking (see Sect. 2) there are three types of symmetric spaces: Euclidean
spaces, symmetric spaces of compact type (in case the group of isometries is compact
semisimple) and symmetric spaces of noncompact type (if the group of isometries is
noncompact semisimple). Symmetric spaces of compact and noncompact type are in
some way dual to each other, and some of their properties can be carried from one type
to the other. An example of this is the study of totally geodesic submanifolds. However,
many properties are very different. Noncompact symmetric spaces are diffeomorphic
to Euclidean spaces, and thus their topology is trivial, whereas in compact symmetric
spaces topology does play a relevant role. In fact, symmetric spaces of noncompact
type are isometric to solvable Lie groups endowed with a left-invariant metric. In our
experience, this provides awealth of examples ofmany interesting concepts, compared
to their compact counterparts.

Our aim when studying homogeneous submanifolds is two-fold. Firstly, we are
interested in the classification (maybe under certain conditions) of homogeneous sub-
manifolds of a given Riemannian manifold up to isometric congruence. Usually we
focus on the codimension one case, that is, homogeneous hypersurfaces, but we are
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also interested in higher codimension under some additional assumptions, for exam-
ple when the group of isometries acts on the manifold polarly. An isometric action is
said to be polar if there is a submanifold that intersects all orbits orthogonally. Such a
submanifold is called a section of the polar action. If the section is flat, then the action
is called hyperpolar. Polar actions take their name from polar coordinates, a concept
that they generalize. Sections are usually seen as sets of canonical forms [80], as it
is often the case that in symmetric spaces sections are precisely the Jordan canonical
forms of matrix groups.

The second problem that we would like to address is the characterization of (cer-
tain classes of) homogeneous submanifolds. It is obvious that homogeneity imposes
restrictions on the geometry of a submanifold, and this in turn has implications on
its shape. The question is whether a particular property imposed on shape by homo-
geneity is specific of homogeneous submanifolds or, on the contrary, there might be
other submanifolds having this property. For example, homogeneous hypersurfaces
have constant principal curvatures, and it is known in Euclidean and real hyperbolic
spaces that this property characterizes homogeneous hypersurfaces. However, this is
not the case in spheres, as there are examples of hypersurfaces with constant principal
curvatures that are not homogeneous. We are particularly interested in isoparamet-
ric hypersurfaces, that is, hypersurfaces whose nearby equidistant hypersurfaces have
constant mean curvature. It is easy to see that homogeneous hypersurfaces are isopara-
metric, but we will see in this survey to what extent the converse is true.

Finally, we also study CPC submanifolds, that is, submanifolds whose principal
curvatures, counted with their multiplicities, are independent of the unit normal vector.
This turns out to be an interesting notion related to several other propertieswhose study
has recently attracted our attention.

This survey is organized as follows. In Sect. 2 we review the current definition,
basic properties and types of Riemannian symmetric spaces, as well as the algebraic
characterization of their totally geodesic submanifolds. Then, we deal more deeply
with symmetric spaces of noncompact type in Sect. 3, giving special relevance to
the so-called Iwasawa decomposition of a noncompact semisimple Lie algebra. This
implies that a symmetric space of noncompact type is isometric to certain Lie group
with a left-invariant Riemannian metric. The simplest symmetric spaces, apart from
Euclidean spaces, are symmetric spaces of rank one, which include spaces of constant
curvature. Rank one symmetric spaces of noncompact type are studied in Sect. 4,
where we discuss different results regarding homogeneous hypersurfaces, isopara-
metric hypersurfaces and polar actions. Finally, we study symmetric spaces of higher
rank in Sect. 5. A refinement of the Iwasawa decomposition is obtained in terms of
parabolic subgroups in this section, and this is used to provide certain results in this
setting, such as an extension method for submanifolds and isometric actions. More-
over, we report on what is known about polar actions in this context, and explain a
method to study homogeneous CPC submanifolds given by subgroups of the solvable
part of the Iwasawa decomposition of the symmetric space.
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2 A quick review on symmetric spaces

In this section we include a short introduction to symmetric spaces. We first present
the notion and first properties (Sect. 2.1), then the different types of symmetric spaces
(Sect. 2.2), and we conclude with an algebraic characterization of totally geodesic
submanifolds (Sect. 2.3).

There are several references that the reader may like to consult to obtain further
information on this topic. Probably, the most well-known and complete references are
Helgason’s book [58] and Loos’ books [74,75]. Eschenburg’s survey [50] and Ziller’s
notes [92] are great references, especially for beginners. The books by Besse [21],
Kobayashi and Nomizu [65], O’Neill [79] and Wolf [90] also include nice chapters
on symmetric spaces. In this section we mainly follow [58,92].

2.1 The notion and first properties of a symmetric space

In any connected Riemannian manifold M we can consider normal neighborhoods
around any point p ∈ M . If we take a geodesic ball Bp(r) = {q ∈ M : d(p, q) < r},
with r small enough, as one of these neighborhoods, we can always consider a smooth
map σp : Bp(r) → Bp(r) that sends each q = expp(v) to σp(q) = expp(−v), for
v ∈ TpM , |v| < r ; hereafter, exp denotes the Riemannian exponential map. The map
σp is an involution, i.e. σ 2

p = id, which is called geodesic reflection. If, for any p ∈ M ,
one can define σp in the same way globally in M and σp is an isometry of M , then we
say that M is a (Riemannian) symmetric space.

It follows easily from the definition that symmetric spaces are complete (since
geodesics can be extended by using geodesic reflections) and homogeneous, that is,
for any p1, p2 ∈ M there is an isometry ϕ of M mapping p1 to p2 (take ϕ = σq ,
where q is themidpoint of a geodesic joining p1 and p2). ARiemannianmanifoldM is
homogeneous if and only if the group Isom(M) of isometries of M acts transitively on
M . Then,M is diffeomorphic to a coset spaceG/K endowedwith certain differentiable
structure. Here, G can be taken as the connected component of the identity element
of the isometry group of M , i.e. G = Isom0(M), which still acts transitively on M
since M is assumed to be connected, whereas K = {g ∈ G : g(o) = o} is the isotropy
group of some (arbitrary but fixed) base point o ∈ M . As the isometry group of any
Riemannian manifold is a Lie group, then G is also a Lie group, and K turns out to
be a compact Lie subgroup of G.

Let us define the involutive Lie group automorphism s : G → G, g �→ σogσo,
which satisfies G0

s ⊂ K ⊂ Gs , where Gs = {g ∈ G : s(g) = g} and G0
s is the

connected component of the identity. The differential θ = s∗ : g → g of s is a Lie
algebra automorphism called the Cartan involution of the symmetric space (at the Lie
algebra level). The isotropy Lie algebra k is the eigenspace of θ with eigenvalue 1.
Let p be the (−1)-eigenspace of θ . The eigenspace decomposition of θ then reads
g = k⊕ p, which is called the Cartan decomposition. Moreover, it easily follows that
[k, k] ⊂ k, [k, p] ⊂ p and [p, p] ⊂ k. This implies, by the definition of the Killing form
B of g (recall: B(X ,Y ) = tr(ad(X)◦ad(Y )) for X , Y ∈ g), that k and p are orthogonal
subspaces with respect to B.
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By considering the map φ : G → M , g �→ g(o), one easily gets that its differential
φ∗e at the identity induces a vector space isomorphism p ∼= ToM . The linearization
of the isotropy action of K on M , which turns out to be the orthogonal representation
K → GL(ToM), k �→ k∗o, is then equivalent to the adjoint representation K → GL(p),
k → Ad(k). Each one of these is called the isotropy representation of the symmetric
space.

2.2 Types of symmetric spaces

If the restriction of the isotropy representation of M ∼= G/K to the connected com-
ponent of the identity of K is irreducible, we say that the symmetric space M is
irreducible. This turns out to be equivalent to the property that the universal cover ˜M
of M (which is always a symmetric space) cannot be written as a nontrivial product
of symmetric spaces, unless ˜M is some Euclidean space Rn .

A symmetric space M ∼= G/K is said to be of compact type, of noncompact
type, or of Euclidean type if B|p×p, the restriction to p of the Killing form B of g, is
negative definite, positive definite, or identically zero, respectively. IfM is irreducible,
then Schur’s lemma implies that B|p×p is a scalar multiple of the induced metric on
p ∼= ToM and, according to the sign of such scalar, M falls into exactly one of the
three possible types. It turns out that if M is of compact type, then G is a compact
semisimple Lie group, and M is compact and of nonnegative sectional curvature; if
M is of noncompact type, then G is a noncompact real semisimple Lie group, and
M is noncompact (indeed, diffeomorphic to a Euclidean space) and with nonpositive
sectional curvature; and if M is of Euclidean type, its Riemannian universal cover is
a Euclidean space Rn . Moreover, in general, the universal cover of a symmetric space
M splits as a product ˜M = M0 × M+ × M−, where M0 = R

n is of Euclidean type,
M+ is of compact type, and M− is of noncompact type.

Symmetric spaces of compact and noncompact type are related via the notion of
duality. Being more specific, there is a one-to-one correspondence between simply
connected symmetric spaces of compact type and (necessarily simply connected) sym-
metric spaces of noncompact type. Moreover, dual symmetric spaces have equivalent
isotropy representations and, therefore, irreducibility is preserved by duality. Without
entering into details, the trick at the Lie algebra level to obtain the dual symmetric
space is to change g = k ⊕ p by the new Lie algebra g∗ = k ⊕ ip, where i = √−1.
In spite of the simplicity of this procedure, dual symmetric spaces have, of course,
very different geometric and even topological properties. Examples of dual symmetric
spaces are the following:

(1) The round sphere S
n = SOn+1/SOn and the real hyperbolic space RHn =

SO0
1,n/SOn .

(2) As an extension of the previous example, the projective spaces over the division
algebras (other than R) and their dual hyperbolic spaces: the complex spaces
CPn = SUn+1/S(U1Un) and CHn = SU1,n/S(U1Un), the quaternionic spaces
HPn = Spn+1/Sp1Spn andHHn = Sp1,n/Sp1Spn , and the Cayley planesOP2 =
F4/Spin9 andOH2 = F−20

4 /Spin9. The spaces in this and the previous item, jointly
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with the real projective spaces RPn , constitute the so-called rank one symmetric
spaces.

(3) The oriented compact Grassmannian G+
p (Rp+q) = SOp+q/SOpSOq of all ori-

ented p-dimensional subspaces ofRp+q , and the dual noncompact Grassmannian
Gp(R

p,q) = SO0
p,q/SOpSOq ,whichparametrizes all p-dimensional timelike sub-

spaces of the semi-Euclidean spaceRp,q of dimension p+q and signature (p, q).
This example can be extended to complex and quaternionic Grassmannians.

(4) Any compact semisimple Lie groupG with bi-invariantmetric, whose coset space
is given by (G×G)/�G, and its noncompact dual symmetric spaceGC/G, where
GC is the complex semisimple Lie group given by the complexification of G. For
instance, SUn and SLn(C)/SUn are dual symmetric spaces.

(5) The space SUn/SOn of all Lagrangian subspaces ofR2n , and its noncompact dual
space SLn(R)/SOn of all positive definite symmetric matrices of determinant 1.

The whole list of simply connected, irreducible symmetric spaces can be found, for
example, in [58, pp. 516, 518].

Remark 2.1 In some cases above we have written M = G/K , where the action of G
on M is not necessarily effective (i.e. not necessarilyG = Isom0(M)). However, in all
cases such G-action is almost effective, that is, the ineffective kernel {g ∈ G : g(p) =
p, for all p ∈ M} of the G-action on M is a discrete subgroup of G. Being more
precise, one always considers a so-called symmetric pair (G, K ), where K is compact,
there is an involutive automorphism s ofG such thatG0

s ⊂ K ⊂ Gs , andG acts almost
effectively on M = G/K . For example, the complex hyperbolic spaceCHn is usually
expressed as SU1,n/S(U1Un) instead of (SU1,n/Zn+1)/(S(U1Un)/Zn+1), in spite of
the fact that SU1,n has the cyclic group Zn+1 as ineffective kernel. This practice is
common in the study of symmetric spaces for simplicity reasons, and because all Lie
algebras involved remain the same. The symmetric pairs (G, K ) of compact type with
G = Isom0(M) can be found in [88, pp. 324–325].

2.3 Totally geodesic submanifolds

Among different kinds of Riemannian submanifolds, the totally geodesic ones typi-
cally play an important role. This is particularly true in the case of symmetric spaces.
Indeed, although the classification of totally geodesic submanifolds in symmetric
spaces is still an outstanding problem, these submanifolds are, intrinsically, also sym-
metric, and admit a neat algebraic characterization, which we recall below.

A vector subspace s of a Lie algebra g is called a Lie triple system if [[X ,Y ], Z ] ∈ s
for any X ,Y , Z ∈ s. Let now g = k ⊕ p be a Cartan decomposition of a symmetric
spaceM ∼= G/K , corresponding to a base point o ∈ M , as above.A fundamental result
states that, if s is aLie triple systemofg contained inp, then expo(s) is a totally geodesic
submanifold of M , and it is intrinsically a symmetric space itself. And conversely, if
S is a totally geodesic submanifold of M , and o ∈ S, then s := ToS ⊂ ToM ∼= p
is a Lie triple system. In this situation, h = [s, s] ⊕ s is the Cartan decomposition
of the Lie algebra h of the isometry group of the symmetric space S. Indeed, there
is a one-to-one correspondence between θ -invariant subalgebras of g and Lie triple
systems.
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A consequence of the previous characterization is the fact that totally geodesic
submanifolds of symmetric spaces are preserved under duality: if s ⊂ p is a Lie triple
system in g = k ⊕ p, then is ⊂ ip is a Lie triple system in g∗ = k ⊕ ip. Moreover, if
s ⊂ p is a Lie triple system, then S = expo(s) is an intrinsically flat submanifold if
and only if s is an abelian subspace of p (i.e. [s, s] = 0). This follows from the Gauss
equation of submanifold geometry, the property that S is totally geodesic, and the fact
that the curvature tensor R of a symmetric space at the base point o is given by

R(X ,Y )Z = −[[X ,Y ], Z ], X ,Y , Z ∈ ToM ∼= p. (1)

Thus, one defines the rank of a symmetric space M as the maximal dimension of a
totally geodesic andflat submanifold ofM or, equivalently, the dimension of amaximal
abelian subspace of p. Clearly, the rank is an invariant that is preserved under duality.

In spite of the above algebraic characterization of totally geodesic submanifolds of
symmetric spaces and the fact that, by duality, one can restrict to symmetric spaces
of compact type (or of noncompact type), the classification problem remains open. In
particular, one does not know any efficient procedure to classify Lie triple systems in
general.

Totally geodesic submanifolds of rank one symmetric spaces are well known
(see [89, §3]). The case of rank two is muchmore involved, and has been addressed by
Chen and Nagano [26,27] and Klein [62,63]. Apart from these works, the subclass of
the so-called reflective submanifolds has been completely classified by Leung [72,73].
A submanifold of a symmetric space M is called reflective if it is a connected com-
ponent of the fixed point set of an involutive isometry of M ; or, equivalently, if it is a
totally geodesic submanifold such that the exponentiation of one (and hence all) nor-
mal space is also a totally geodesic submanifold. Finally, let us mention that the index
of symmetric spaces (that is, the smallest possible codimension of a proper totally
geodesic submanifold) has been recently investigated by Berndt and Olmos [12–14],
who proved, in particular, that the index of an irreducible symmetric space is bounded
from below by the rank. Further information on totally geodesic submanifolds of
symmetric spaces can be found in [8, §11.1].

3 Symmetric spaces of noncompact type and their Lie groupmodel

In this section we focus on symmetric spaces of noncompact type. Our goal will be
to explain that any symmetric space of noncompact type is isometric to a Lie group
endowed with a left-invariant metric. The reader looking for more information or
detailed proofs can consult, for instance, Eberlein’s [49, Chapter 2], Helgason’s [58,
Chapter VI] or Knapp’s books [64, Chapter VI, §4–5]. A nice survey that includes a
detailed description of the space SLn(R)/SOn can be found in [6]. In this section we
mainly follow [6,64].

Example 3.1 The real hyperbolic plane RH2 is the most basic example of symmetric
space of noncompact type, and the only one of dimension at most two. It is well-
known that (as any other symmetric space of noncompact type) it is diffeomorphic to
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an open disk, which gives rise, with an appropriate metric, to the Poincaré disk model
for RH2. Let us consider, however, the half-space model, by regarding RH2 as the set
{z ∈ C : Im z > 0} with metric 〈·, ·〉R2/(Im z)2. Then, the group G = SL2(R) acts
transitively, almost effectively and by isometries onRH2 via Möbius transformations:

(

a b
c d

)

· z = az + b

cz + d
.

Then, the isotropy group K at the base point o = √−1 is SO2, and hence RH2 =
SL2(R)/SO2. Moreover, any matrix in SL2(R) can be decomposed in a unique way as

(

a b
c d

)

=
(

cos s sin s
− sin s cos s

) (

λ 0
0 λ−1

) (

1 u
0 1

)

, where s, u ∈ R, λ > 0.

From an algebraic viewpoint, this decomposition turns out to encode some of the
elements involved in the Gram–Schmidt process applied to the basis of R2 given by
the column vectors of the left-hand side matrix: the orthogonal matrix is the transition
matrix from the orthonormal basis produced by the method to the canonical basis,
whereas the diagonal and upper triangular matrices contain the coefficients calculated
in the process. Moreover, the matrices on the right-hand side define three subgroups
of SL2(R), namely K = SO2, the abelian subgroup A of diagonal matrices, and the
nilpotent subgroup N of unipotent upper-triangular matrices. This so-called Iwasawa
decomposition G = K AN can be extended to any symmetric space of noncompact
type, as we will soon explain.

From a geometric perspective, we can get insight into the groups involved in the
decomposition by looking at their isometric actions on the hyperbolic plane (seeFig. 1).
Thus, the K -action fixes o and the other orbits are geodesic spheres around o, the orbits
of the A-action are a geodesic through o and equidistant curves to such geodesic, while
the N -action produces the horocycle foliation ofRH2 centered at one of the two points
at infinity of the geodesic A · o. This description of the actions make also intuitively
clear the important fact that RH2 ∼= G/K is diffeomorphic to the subgroup AN of G.

We now move on to the general setting. We start by describing some important
decompositions of the Lie algebra of the isometry group (Sect. 3.1), and then we
present the Lie group model of a symmetric space of noncompact type (Sect. 3.2).

Fig. 1 Orbit foliations of the actions of the groups K , A and N on RH2, respectively
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3.1 Root space and Iwasawa decompositions

Let M ∼= G/K be an arbitrary symmetric space of noncompact type. Then g is a
real semisimple Lie algebra, which implies that its Killing form B is nondegener-
ate. Indeed, the Cartan decomposition g = k ⊕ p is B-orthogonal, B|k×k is negative
definite (due to the compactness of K ), and B|p×p is positive definite (since M is
of noncompact type). Hence, by reverting the sign on k × k or, equivalently, by
defining Bθ (X ,Y ) = −B(θX ,Y ), for X ,Y ∈ g, we have that Bθ defines a posi-
tive definite inner product on g. It is easy to check that this inner product satisfies
Bθ (ad(X)Y , Z) = −Bθ (Y , ad(θX)Z), X ,Y , Z ∈ g.

Let a be a maximal abelian subspace of p. One can show that any two choices of a
are conjugate under the adjoint action of K (similar to the fact that any two maximal
abelian subalgebras of a compact Lie algebra are conjugate to each other). Moreover,
by definition, the rank of M ∼= G/K is the dimension of a. For each H ∈ a, X ,Y ∈ g,
we have that

Bθ (ad(H)X ,Y ) = −Bθ (X , ad(θH)Y ) = Bθ (X , ad(H)Y ),

which means that each operator ad(H) ∈ End(g) is self-adjoint with respect to Bθ .
Moreover, if H1, H2 ∈ a, then [ad(H1), ad(H2)] = ad[H1, H2] = 0, since ad : g →
End(g) is a Lie algebra homomorphism and a is abelian. Thus, {ad(H) : H ∈ a}
constitutes a commuting family of self-adjoint endomorphisms of g. Therefore, they
diagonalize simultaneously. Their common eigenspaces are called the restricted root
spaces, whereas their nonzero eigenvalues (which depend linearly on H ∈ a) are
called the restricted roots of g. In other words, if for each covector λ ∈ a∗ we define

gλ = {X ∈ g : [H , X ] = λ(H)X for all H ∈ a},

then any gλ = 0 is a restricted root space, and any λ = 0 such that gλ = 0 is
a restricted root. Note that g0 is always nonzero, as a ⊂ g0. If � = {λ ∈ a∗ :
λ = 0, gλ = 0} denotes the set of restricted roots, then we have the following Bθ -
orthogonal decomposition

g = g0 ⊕
(

⊕

λ∈�

gλ

)

, (2)

which is called the restricted root space decomposition of g.
Observe that these definitions depend on the choice of o ∈ M (or, equivalently, of

a Cartan involution θ of g) and on the choice of the maximal abelian subspace a of p.
However, different choices of o and a give rise to decompositions that are conjugate
under the adjoint action of G. For simplicity, in this article we will not specify this
dependence and we will also omit the adjective “restricted”.

It is easy to check that the following properties are satisfied:

(i) [gλ, gμ] ⊂ gλ+μ, for any λ, μ ∈ a∗.
(ii) θgλ = g−λ and, hence, λ ∈ � if and only if −λ ∈ �.
(iii) g0 = k0 ⊕ a, where k0 = g0 ∩ k is the normalizer of a in k.

123



84 São Paulo Journal of Mathematical Sciences (2021) 15:75–110

For each λ ∈ �, define Hλ ∈ a by the relation B(Hλ, H) = λ(H), for all H ∈ a.
Then we can introduce an inner product on a∗ by 〈λ,μ〉 := B(Hλ, Hμ). Thus, with a
bit more work one can show that � is an abstract root system in a∗, that is, it satisfies
(cf. [64, §II.5]):

(a) a∗ = span�,
(b) for α, β ∈ �, the number aαβ = 2〈α, β〉/〈α, α〉 is an integer,
(c) for α, β ∈ �, we have β − aαβ α ∈ �.

This system may be nonreduced, that is, there may exist λ ∈ � such that 2λ ∈ �.
Now we can define a positivity criterion on � by declaring those roots that lie at

one of the two half-spaces determined by a hyperplane in a∗ not containing any root
to be positive. If �+ denotes the set of positive roots, then � = �+ ∪ (−�+). As is
usual in the theory of root systems, one can consider a subset� ⊂ �+ of simple roots,
that is, a basis of a∗ made of positive roots such that any λ ∈ � is a linear combination
of the roots in � where all coefficients are either nonnegative integers or nonpositive
integers. Of course, the cardinality of � agrees with the dimension of a, i.e. with
the rank of G/K . The set � of simple roots allows to construct the Dynkin diagram
attached to the root system �, which is a graph whose nodes are the simple roots, and
any two of them are joined by a simple (respectively, double, triple) edge whenever the
angle between the corresponding roots is 2π/3 (respectively, 3π/4, 5π/6); moreover,
if the system is nonreduced, two collinear positive roots are drawn as two concentric
nodes.

Due to the properties of the root space decomposition, the subspace

n =
⊕

λ∈�+
gλ

of g is a nilpotent subalgebra of g. Moreover, a ⊕ n is a solvable subalgebra of g
such that [a ⊕ n, a ⊕ n] = n. Any two choices of positivity criteria on � give rise to
isomorphic Dynkin diagrams and to nilpotent subalgebras n that are conjugate by an
element of NK (a).

A fundamental result in what follows is the Iwasawa decomposition theorem. At
the Lie algebra level, it states that

g = k ⊕ a ⊕ n

is a vector space direct sum (but neither orthogonal direct sum nor semidirect sum).
Let us denote by A and N the connected Lie subgroups of G with Lie algebras a and
n, respectively. Since a normalizes n, the semidirect product AN is the connected Lie
subgroup of G with Lie algebra a ⊕ n. Then the Iwasawa decomposition theorem at
the Lie group level states that the multiplication map

K × A × N → G, (k, a, n) �→ kan

is an analytic diffeomorphism, and the Lie groups A and N are simply connected.
Indeed, as A is abelian and N is nilpotent, they are both diffeomorphic to Euclidean
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spaces [64, Theorem 1.127]. Hence, the semidirect product AN is also diffeomorphic
to a Euclidean space.

3.2 The solvable Lie groupmodel

Recall the smooth map φ : G → M , h �→ h(o), from the end of Sect. 2.1. The restric-
tion φ|AN : AN → M is injective; indeed, if φ(h) = φ(h′) with h, h′ ∈ AN , then
h−1h′(o) = o, and hence h−1h′ ∈ K ∩ AN , which, by the Iwasawa decomposition,
implies that h−1h′ = e. It is also onto: if p ∈ M , then by the transitivity of G there
exists h ∈ G such that h(p) = o, but using the Iwasawa decomposition we can write
h = kan, with k ∈ K , a ∈ A, n ∈ N , and then p = h−1(o) = n−1a−1k−1(o) =
(an)−1(o). Finally, φ|AN is a local diffeomorphism: as ker φ∗e = k, we have that
(φ|AN )∗e : a ⊕ n → ToM is an isomorphism, and, by homogeneity, any other differ-
ential (φ|AN )∗h is also bijective.

Therefore, φ|AN : AN → M is a diffeomorphism. If we denote by g the Rieman-
nianmetric onM , we can pull it back to obtain a Riemannian metric (φ|AN )∗g on AN .
Hence, we trivially have that (M, g) and (AN , (φ|AN )∗g) are isometric Riemannian
manifolds.

Let now h, h′ ∈ AN ⊂ G, and denote by Lh the left multiplication by h in G.
Then

(h−1 ◦ φ|AN ◦ Lh)(h
′) = h−1(hh′(o)) = h′(o) = φ|AN (h′),

from where we get h−1 ◦ φ|AN ◦ Lh = φ|AN as maps from AN to M . Hence, since
h−1 is an isometry of (M, g), and using the previous equality, we have

L∗
h(φ|AN )∗g = L∗

h(φ|AN )∗(h−1)∗g = (h−1 ◦ φ|AN ◦ Lh)
∗g = (φ|AN )∗g.

This shows that (φ|AN )∗g is a left-invariant metric on the Lie group AN .
Altogether, we have seen that any symmetric space M ∼= G/K of noncompact

type is isometric to a solvable Lie group AN endowed with a left-invariant metric. In
particular, any symmetric space of noncompact type is diffeomorphic to a Euclidean
space and, since it is nonpositively curved, it is a Hadamard manifold. This allows us
to regard any of these spaces as an open Euclidean ball endowed with certain metric,
as happens with the ball model of the real hyperbolic space.

Moreover, it is sometimes useful to view a symmetric space of noncompact type
M as a dense, open subset of a bigger compact topological space M ∪ M(∞) which,
in this case, would be homeomorphic to a closed Euclidean ball. In order to do so, one
defines an equivalence relation on the family of complete, unit-speed geodesics in M :
if γ and σ are two of them, we declare them equivalent if they are asymptotic, that
is, if d(γ (t), σ (t)) ≤ C , for certain constant C and for all t ≥ 0. Each equivalence
class of asymptotic geodesics is called a point at infinity, and the set M(∞) of all
of them is the ideal boundary of M . By endowing M ∪ M(∞) with the so-called
cone topology, M ∪ M(∞) becomes homeomorphic to a closed Euclidean ball whose
interior corresponds to M and its boundary to M(∞). Two geodesics are asymptotic
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precisely when they converge to the same point in M(∞). We refer to [49, §1.7] for
more details.

The Lie groupmodel turns out to be a powerful tool for the study of submanifolds of
symmetric spaces of noncompact type. The reason is that one can consider interesting
types of submanifolds by looking at subgroups of AN or, equivalently, at subalgebras of
a⊕n. For this reason, a good understanding of the root space decomposition is crucial.
Of course, not every submanifold (even extrinsically homogeneous submanifold) ofM
can be regarded as a Lie subgroup of AN , but very important types of examples arise in
thisway, sometimes combinedwith someadditional constructions, aswewill comment
on in the following sections. In any case, if one wants to study submanifolds of AN
with particular geometric properties, one needs to havemanageable expressions for the
left-invariant metric on AN and its Levi-Civita connection. We obtain the appropriate
formulas below.

Let us denote by 〈·, ·〉AN the inner product on a⊕n given by the left-invariant metric
(φ|AN )∗g on AN . Assume for the moment that M is irreducible. Then, as mentioned
in Sect. 2.1, the inner product φ∗go on ToM induced by the metric g on M is a scalar
multiple of the modified Killing form Bθ , i.e. φ∗go = kBθ , for some k > 0. Let us
define the inner product 〈·, ·〉 := kBθ on g, and find the relation between 〈·, ·〉AN and
〈·, ·〉. Thus, if X ,Y ∈ a⊕ n, and denoting orthogonal projections (with respect to Bθ )
with subscripts, we have

〈X ,Y 〉AN = (φ|AN )∗go(Xk + Xp,Yk + Yp) = go(φ∗Xp, φ∗Yp) = kBθ (Xp,Yp)

= kBθ

(

1 − θ

2
X ,

1 − θ

2
Y

)

= k

4
Bθ (2Xa + Xn − θXn, 2Ya + Yn − θYn)

= k

4
(4Bθ (Xa,Ya) + Bθ (Xn,Yn) + Bθ (θXn, θYn))

= k
(Bθ (Xa,Ya) + 1

2
Bθ (Xn,Yn)

)

= 〈Xa,Ya〉 + 1

2
〈Xn,Yn〉. (3)

If M is reducible, one can adapt the argument (by defining 〈·, ·〉 as a suitable multiple
of Bθ on each factor) to prove the same formula. Note that 〈·, ·〉 inherits from Bθ the
property

〈ad(X)Y , Z〉 = −〈Y , ad(θX)Z〉, for X ,Y , Z ∈ g. (4)

Using the Koszul formula, and relations (3) and (4), one can obtain an important
formula for the Levi-Civita connection ∇ of the Lie group AN . Indeed, if X ,Y , Z ∈
a ⊕ n, and taking into account that [a ⊕ n, a ⊕ n] ⊂ n, we have

〈∇XY , Z〉AN = 1

2

(〈[X ,Y ], Z〉AN − 〈[Y , Z ], X〉AN − 〈[X , Z ],Y 〉AN
)

= 1

4

(〈[X ,Y ], Z〉 − 〈[Y , Z ], X〉 − 〈[X , Z ],Y 〉)

= 1

4
〈[X ,Y ] + [θX ,Y ] − [X , θY ], Z〉. (5)
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Note that we started and finished with different inner products. Thus, in order to obtain
an explicit formula for ∇XY one has to impose some restrictions on X and Y . For
example, if X and Y do not belong to the same root space, then [θX ,Y ] and [X , θY ]
are orthogonal to a, whence in this case 2∇XY = ([X ,Y ] + [θX ,Y ] − [X , θY ])a⊕n.

4 Submanifolds of rank one symmetric spaces

In this sectionwe review some results about certain important types of submanifolds in
the rank one symmetric spaces of noncompact type.We start by describing these spaces
in further detail (Sect. 4.1), and then we comment on homogeneous hypersurfaces
(Sect. 4.2), isoparametric hypersurfaces (Sect. 4.3), and polar actions (Sect. 4.4) on
these spaces.

4.1 Rank one symmetric spaces

As mentioned in Sect. 2.2, the symmetric spaces of noncompact type and rank one are
the hyperbolic spacesFHn ,n ≥ 2, over the distinct division algebras,F ∈ {R,C,H,O}
(n = 2 if F = O). We observe that CH1, HH1 and OH1 are isometric (up to rescaling
of the metric) to RH2, RH4 and RH8, respectively.

The isotropy representation (i.e. the adjoint action of K on p) of rank one symmetric
spaces is transitive on the unit sphere of p. Therefore, these Riemannian manifolds
are not only homogeneous, but also isotropic, which implies that they are two-point
homogeneous. Indeed, two-point homogeneous Riemannian manifolds are symmetric
and, except for Euclidean spaces, have rank one [84], [90, §8.12], and therefore the
only noncompact examples (other than Euclidean spaces) are the symmetric spaces of
noncompact type and rank one. Moreover, they are precisely the symmetric spaces of
strictly negative sectional curvature (even more, their sectional curvature is pinched
between c and c/4 for some c < 0).

The root space decomposition (2) of a symmetric space M = FHn of rank
one is rather simple. One can show that � = {−α, α} if M = RHn , and � =
{−2α,−α, α, 2α} otherwise. Thus the root space decomposition can be rewritten as

g = k0 ⊕ a ⊕ g−2α ⊕ g−α ⊕ gα ⊕ g2α.

Of course, a ∼= R, g−2α ∼= g2α and g−α
∼= gα . Note that the connected subgroup K0

of K with Lie algebra k0 normalizes each one of the spaces in the decomposition. See
Table 1 for the explicit description of the group K0 and the spaces in the decomposition.
Determining all this information involves a few linear algebra computations; see [42,
Chapter 2] for the case of the complex hyperbolic space CHn .

According to Sect. 3.2, a symmetric space M ∼= G/K of noncompact type is
isometric to a Lie group AN with a left-invariant metric. In the rank one setting, A
is one-dimensional, and, by declaring α as a positive root, N can be taken to be the
connected subgroup of G with Lie algebra n = gα ⊕ g2α .
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Table 1 Symmetric spaces of noncompact type and rank one

Symmetric space G K K0 gα g2α

Real hyperbolic space RHn SO0
1,n SOn SOn−1 R

n−1 0

Complex hyperbolic space CHn SU1,n S(U1Un) Un−1 C
n−1

R

Quaternionic hyperbolic space HHn Sp1,n Sp1Spn Sp1Spn−1 H
n−1

R
3

Cayley hyperbolic plane OH2 F−20
4 Spin9 Spin7 O R

7

The geometric interpretation of the groups involved in the Iwasawa decomposition
of G is similar to that of M = RH2, described in Example 3.1 and Fig. 1. The action
of the isotropy group K on M = FHn has o as a fixed point, and the other orbits
are geodesic spheres around o. The action of A gives rise to a geodesic through o
(since a is a Lie triple system), and the other orbits are equidistant curves. Note that
any geodesic curve, such as A · o, determines two points at infinity; the choice of a
positivity criterion on the set � of roots (equivalently, choosing n = gα ⊕ g2α or
n = g−α ⊕ g−2α) is interpreted geometrically as selecting one of the two points at
infinity determined by A ·o. Thus, the orbits of the N -action are horospheres centered
precisely at the point at infinity x determined by the choice of n. In other words,
if γ is a unit-speed geodesic such that A · o = {γ (t) : t ∈ R} and converging to
x ∈ M(∞), then the orbits of the N -action are the level sets of the Busemann function
fγ (p) := limt→∞(d(γ (t), p) − t). See [42, §2.2] and [49, §1.10] for details.

Example 4.1 We will illustrate the use of Formula (5) by calculating the extrinsic
geometry of horospheres in FHn . Via the Lie group model, the horosphere N · o is
nothing but the Lie subgroup N of AN . Thus, its tangent space at any g ∈ N is given
by the left-invariant fields of n at g. If B ∈ a satisfies 〈B, B〉AN = 1, then it defines a
unit normal vector field on N . Hence, the shape operator S of N with respect to B is
given by SX = −∇X B, for X ∈ n. If X ∈ gλ, for λ ∈ {α, 2α}, then by the comment
following (5), we have

SX = −∇X B = −1

2

([X , B] + [θX , B] − [X , θB])
a⊕n

= λ(B)X ,

where we have used the definition of the root space gλ, the fact that [θX , B] ∈ g−λ is
orthogonal to a⊕n, and θ(B) = −B. Hence, N · o has two distinct constant principal
curvatures, α(B) and 2α(B), with respective principal curvature spaces gα and g2α .
Finally, note that all horospheres in M are congruent to each other. Indeed, any two
horosphere foliations are congruent by an element in K . Moreover, the geodesic A · o
intersects all N -orbits and, since A normalizes N , any two N -orbits are congruent
under an element of A.

The Lie group model of a rank one symmetric space contains some underlying
additional structure that is often very helpful. Let us define a linear map J : g2α →
End(gα) by

〈JZU , V 〉AN = 〈[U , V ], Z〉AN , for all U , V ∈ gα, Z ∈ g2α,
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or, equivalently by (3) and (4), JZU := [Z , θU ]. Then, up to rescaling of the metric of
M (and hence of 〈·, ·〉AN ), the endomorphism JZ satisfies (see [70, Proposition 1.1])

J 2Z = −〈Z , Z〉AN Idgα , for all Z ∈ g2α.

Thus, the map J induces a representation of the Clifford algebra Cl
(

g2α,−〈·, ·〉AN
)

on gα (see [71, Chapter 1] for more information on Clifford algebras and their repre-
sentations). This converts AN with the rescaled left-invariant metric into a so-called
Damek–Ricci space, and its nilpotent part N into a generalized Heisenberg group.
These concepts were introduced by Damek and Ricci [32] and by Kaplan [61], respec-
tively, and a comprehensivework for their study is [20]. Regarding rank one symmetric
spaces of noncompact type as Damek–Ricci spaces has the advantage of allowing to
use the power of the theory of Clifford modules to obtain more manageable formulas
and more general arguments. For example, Formula (5) for the Levi-Civita connection
of AN adopts the form

∇aB+U+X (bB + V + Y ) =
(

1

2
〈U , V 〉AN + 〈X ,Y 〉AN

)

B − 1

2
(bU + JXV + JYU )

+1

2
[U , V ] − bX , (6)

where a, b ∈ R, U , V ∈ gα , X , Y ∈ g2α .
In what follows we review some results about certain types of submanifolds and

isometric actions on symmetric spaces of noncompact type and rank one.

4.2 Homogeneous hypersurfaces

A submanifold P of a Riemannian manifold M is said to be (extrinsically) homoge-
neous if for any p, q ∈ P there exists an isometry ϕ of the ambient manifold M such
that ϕ(p) = q and ϕ(P) = P . Equivalently, P is a homogeneous submanifold if it
is an orbit of an isometric action on M , i.e. there exists a subgroup H of Isom(M)

such that P = H · p for some p ∈ P . Moreover, P is embedded if and only if
H = {ϕ ∈ Isom(M) : ϕ(P) = P} is closed in Isom(M), which means that the
associated isometric action is proper. From now on, isometric actions will be assumed
to be proper.

Remark 4.2 The collection of orbits of an isometric action is the standard example of
a singular Riemannian foliation. A singular Riemannian foliation F on a Riemannian
manifold M is a decomposition of M into connected, injectively immersed subman-
ifolds L ∈ F (called leaves) such that they are locally equidistant to each other, and
there is a collection of smooth vector fields on M that spans all tangent spaces to all
leaves; see [1,2] for more information on this concept. Singular Riemannian foliations
can have leaves of different dimensions: the ones of highest dimension are called regu-
lar, and the others are singular. Orbit foliations, that is, singular Riemannian foliations
induced by isometric actions, are sometimes called homogeneous foliations.
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When an isometric action has codimension one orbits, then it is called a cohomo-
geneity one action, and its codimension one orbits are homogeneous hypersurfaces.
The homogeneity property for hypersurfaces is a rather strong condition. This
motivates the problem of classifying homogeneous hypersurfaces or, equivalently,
cohomogeneity one actions up to orbit equivalence, in specific Riemannian manifolds,
mainly in those with large isometry group. Such classification is known, for example,
for Euclidean and real hyperbolic spaces (as a consequence of Segre’s [82] and Car-
tan’s [24] works on isoparametric hypersurfaces, see Sect. 4.3), irreducible symmetric
spaces of compact type [66], and simply connected homogeneous 3-manifolds with
4-dimensional isometry group [48]. Below we focus on the classification problem in
symmetric spaces of noncompact type, and refer the reader to [5, §6] and [8, §2.9.3
and Chapters 12–13] for more information on cohomogeneity one actions.

As in any other Hadamard manifold, cohomogeneity one actions on symmetric
spaces of noncompact type have at most one singular orbit [7, §2] and no exceptional
orbits [76, Corollary 1.3]. If there is one singular orbit, then the other orbits are
homogeneous hypersurfaces which arise as distance tubes around the singular orbit. If
there are no singular orbits, then all orbits are homogeneous hypersurfaces, and they
define a regular Riemannian foliation of the ambient space.

Cohomogeneity one actions on hyperbolic spaces have been investigated byBerndt,
Brück andTamaru in a series of papers. Berndt andBrück [7] classified cohomogeneity
one actions with a totally geodesic orbit on hyperbolic spaces M = FHn :

Theorem 4.3 Let F be a totally geodesic singular orbit of a cohomogeneity one action
on FHn, n ≥ 2. Then F is congruent to one of the following totally geodesic subman-
ifolds:

• in RHn: {o}, RH1, . . . ,RHn−1;
• in CHn: {o}, CH1, . . . ,CHn−1,RHn;
• in HHn: {o}, HH1, . . . ,HHn−1,CHn;
• in OH2: {o}, OH1,HH2.

Conversely, each of these totally geodesic submanifolds arises as the singular orbit of
some cohomogeneity one action.

In particular, if M = RHn , not every totally geodesic submanifold of M defines
homogeneous distance tubes. Moreover, it follows from Cartan’s work [24] that sin-
gular orbits of cohomogeneity one actions on RHn must be totally geodesic.

Berndt and Brück [7] also found examples of cohomogeneity one actions with a
nontotally geodesic singular orbit (for M = RHn). This important construction goes
as follows. Consider the Lie algebra a ⊕ gα ⊕ g2α of AN . Take a subspace w of gα

and define the subalgebra
sw := a ⊕ w ⊕ g2α (7)

of a ⊕ n. Assume that the orthogonal complement w⊥ := gα � w of w in gα is such
that

N 0
K0

(w) acts transitively on the unit sphere of w⊥ (8)

where N 0
K0

(w) denotes the connected component of the identity of the normalizer of
w in K0. Then, if Sw is the connected subgroup of AN with Lie algebra sw, the group
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N 0
K0

(w)Sw acts with cohomogeneity one on M , and with Sw · o as singular orbit if

dimw⊥ ≥ 2.
Berndt and Brück proceeded to analyze which subspaces w of gα satisfy Con-

dition (8). In the case M = CHn , they characterized this condition in terms of the
so-called Kähler angles of w⊥. Given any real subspace V of a complex Euclidean
space (R2k, J ), where J is a complex structure onR2k (i.e. J ∈ so(2k) and J 2 = − Id),
the Kähler angle of a nonzero v ∈ V with respect to V is the angle ϕ ∈ [0, π/2]
between Jv and V . When all unit v ∈ V have the same Kähler angle ϕ with respect
to V , then we say that V has constant Kähler angle ϕ. For example, subspaces
with constant Kähler angle 0 or π/2 are precisely the complex and totally real sub-
spaces, respectively. However, there are subspaces with any constant Kähler angle
ϕ ∈ (0, π/2); these can be classified, see [7, Proposition 7]. Now recall from Table 1
that gα

∼= C
n−1 ∼= (R2n−2, J ). Thus, it was proved in [7] that w ⊂ gα satisfies (8) if

and only if w⊥ has constant Kähler angle ϕ and dimw⊥ ≥ 2; moreover, the singular
orbit Sw · o is nontotally geodesic whenever ϕ = 0.

In the caseM = OH2, by analyzing the Spin7-action on gα
∼= R

8, Berndt andBrück
proved that w satisfies (8) if and only if dimw ∈ {0, 1, 2, 4, 5, 6}, where only w = 0
yields a totally geodesic singular orbit. Interestingly, the case M = HHn is much
more involved and, indeed, it is still open. In [7] it was proved that Condition (7)
in this case implies that w⊥ has constant quaternionic Kähler angle (see Sect. 4.3,
after Theorem 4.5, for the definition), and several subspaces with this property were
found (more examples were constructed in [36]). However, neither a classification of
subspaces ofHk , k ≥ 2, with constant quaternionic Kähler angle, nor the equivalence
between this property and Condition (8) are known.

Regarding cohomogeneity one actions without singular orbits, Berndt and
Tamaru [16] proved (as a particular case of a more general result, cf. Sect. 5.2) that
there are only two such actions on M = FHn up to orbit equivalence. One of these
actions is that of the nilpotent part N of the Iwasawa decomposition, giving rise to a
horosphere foliation (see Example 4.1). The other one is given by the action of the
connected subgroup S of AN with Lie algebra s = a ⊕ (gα � RU ) ⊕ g2α , for any
U ∈ gα; note that this corresponds to (7) for the choice of a hyperplane w in g2α .
This S-action gives rise to the so-called solvable foliation on a symmetric space of
noncompact type and rank one.

Based on the results mentioned above, Berndt and Tamaru [18] were able to prove
a structure result for cohomogeneity one actions on rank one symmetric spaces which
states that each of these actions must be of one of the types described above.

Theorem 4.4 Let M = FHn be an symmetric space of noncompact type and rank one,
and let H act on M with cohomogeneity one. Then one of the following statements
holds:

(1) The H-orbits form a regular Riemannian foliation on M which is congruent to
either a horosphere foliation or a solvable foliation.

(2) There exists exactly one singular H-orbit and one of the following two cases
holds:
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(i) The singular H-orbit is one of the totally geodesic submanifolds in Theo-
rem 4.3.

(ii) The H-action is orbit equivalent to the action of N 0
K0

(w)Sw, where w is a

subspace of gα such that N 0
K0

(w) acts transitively on the unit sphere of w⊥,
and Sw is the connected subgroup of AN with Lie algebra sw = a⊕w⊕g2α .

Combining this theorem with the results in [7], Berndt and Tamaru derived the
classification of cohomogeneity one actions up to orbit equivalence on RHn and CHn

for n ≥ 2, and on HH2 and OH2. The classification on HHn , n ≥ 3, remains open.

4.3 Isoparametric hypersurfaces

An immersed hypersurface P in a Riemannian manifold M is an isoparametric hyper-
surface if, locally, P and its nearby equidistant hypersurfaces have constant mean
curvature. An isoparametric family of hypersurfaces or isoparametric foliation (of
codimension one) is a singular Riemannian foliation such that its regular leaves are
isoparametric hypersurfaces. These objects have been studied since the beginning
of the twentieth-century and their investigation has therefore a long and interesting
history. We refer to the excellent surveys [28,86] for a detailed account on this history.

Segre [82] classified isoparametric hypersurfaces inEuclidean spacesRn byproving
that theymust be open subsets of affine hyperplanesRn−1, spheres Sn−1 or generalized
cylinders Rk × S

n−k−1. Cartan [24] proved that, in spaces of constant curvature, a
hypersurface is isoparametric if and only if it has constant principal curvatures. Then,
he classified such hypersurfaces in real hyperbolic spaces RHn : the examples must be
open subsets of totally geodesic RHn−1 or their equidistant hypersurfaces, distance
tubes around totally geodesic RHk , k ∈ {0, . . . , n − 2}, or horospheres. Thus, in
spaces of nonpositive constant curvature, isoparametric hypersurfaces are open parts
of homogeneous hypersurfaces.

Observe that homogeneous hypersurfaces are isoparametric and have constant prin-
cipal curvatures. However, none of the converse implications is true. In round spheres
S
n there are inhomogeneous isoparametric hypersurfaces (with constant principal cur-

vatures) [51]. In fact, the classification problem in spheres is much more involved; for
more information, we refer the reader to some of the latest advances in the topic,
such as [25,29,60,78,83]. In spaces of nonconstant curvature, the problem becomes
very complicated. Apart from the results we will review below, there is a classifica-
tion on complex projective spaces CPn , n = 15 [45], quaternionic projective spaces
HPn , n = 7 [47], the product S2 × S

2 [87], and simply connected homogeneous
3-manifolds with 4-dimensional isometry group [48], such as the products S2 × R,
RH2 × R, the Heisenberg group Nil3 or the Berger spheres. Interestingly, in all the
cases mentioned so far (as well as in the rest of examples presented in this paper)
an isoparametric hypersurface is always an open subset of a leaf of an isoparametric
foliation of codimension one that fills the whole ambient space.

In spaces of nonconstant curvature, isoparametricity and constancy of the princi-
pal curvatures are two properties with no general theoretical relation. Berndt [3,4]
classified curvature-adapted hypersurfaces with constant principal curvatures in com-
plex and quaternionic hyperbolic spaces. Here, curvature-adapted means that the
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shape operator S and the normal Jacobi operator Rξ = R(·, ξ)ξ of the hypersur-
face commute (hereafter ξ is a unit normal smooth field on the hypersurface); hence
both operators diagonalize simultaneously, which simplifies calculations involving the
fundamental equations of submanifolds (Gauss, Codazzi…) and Jacobi fields adapted
to the hypersurface (to calculate, for example, the extrinsic geometry of equidistant
hypersurfaces or focal sets, cf. [8, §10.2]). In the complex case, a hypersurface inCHn

is curvature-adapted if and only if it is Hopf, that is, the Reeb vector field Jξ is an
eigenvector of the shape operator at every point, where J is the Kähler structure of
CHn . It follows from Berndt’s classifications that all curvature-adapted hypersurfaces
with constant principal curvatures in CHn andHHn are open subsets of homogeneous
hypersurfaces. However, not all homogeneous hypersurfaces described in Sect. 4.2 are
curvature-adapted: only horospheres and homogeneous tubes around totally geodesic
submanifolds have this property. Without the curvature-adaptedness condition, the
study of hypersurfaces with constant principal curvatures is much more convoluted,
and only some partial results forCHn are known; see [34] for a recent advance, and [43]
for a survey.

In view of the results mentioned above and the fact that a curvature-adapted
hypersurface in a rank one symmetric space is isoparametric if and only if it has
constant principal curvatures [53, Theorem 1.4], it follows that a curvature-adapted
isoparametric hypersurface in CHn or HHn is an open part of a homogeneous hyper-
surface. However, again, without the curvature-adaptedness condition, basically no
other results regarding isoparametric hypersurfaces in our setting were known until a
few years ago.

In [35], Díaz-Ramos and Domínguez-Vázquez constructed the first examples of
inhomogeneous isoparametric hypersurfaces in a family of symmetric spaces of non-
compact type, namely in complex hyperbolic spaces. Later, the authors generalized
this result to Damek–Ricci spaces and, in particular, to the other symmetric spaces
of noncompact type and rank one [36]. This construction, which we explain below,
makes use of the basic idea of Berndt–Brück cohomogeneity one actions described
in Sect. 4.2.

Given a symmetric space of noncompact type and rank one,M = FHn , consider the
subalgebra sw = a⊕w⊕g2α of a⊕n defined in (7), where noww can be any proper
vector subspace of gα . Let Sw be the connected subgroup of AN with Lie algebra sw.
UsingFormula (6) it is not difficult to prove thatWw := Sw·o is aminimal submanifold
of M . Then, by introducing the notion of generalized Kähler angle (which we explain
below) and using Jacobi field theory, Díaz-Ramos and Domínguez-Vázquez proved
the following [36]:

Theorem 4.5 The distance tubes around the minimal submanifold Ww in a rank one
symmetric space of noncompact type are isoparametric hypersurfaces, and have con-
stant principal curvatures if and only ifw⊥ = gα �w has constant generalized Kähler
angle.

The concept of generalized Kähler angle extends both the Kähler angle and the
quaternionic Kähler angle mentioned in Sect. 4.2. Let z ∼= R

m be a Euclidean space
with inner product 〈·, ·〉, and v a Clifford module over Cl(z,−〈·, ·〉). Consider J : z →
End(v) the restriction to z of the Clifford algebra representation. Recall from Sect. 4.1
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that the rank one symmetric spaces of noncompact type have a naturally associated
map J as above, with v = gα and z = g2α . Now let V be a vector subspace of v. For
each nonzero v ∈ v, consider the map

Fv : z → R, Z �→ 〈(JZv)V , (JZv)V 〉,

where (·)V denotes orthogonal projection onto V . Observe that Fv is a quadratic form
on z, and its eigenvalues belong to the interval [0, |v|2]. Hence, such eigenvalues are of
the form |v|2 cos2 ϕi (v), i = 1, . . . ,m = dim z, for certain angles ϕi (v) ∈ [0, π/2].
Then, one defines the generalized Kähler angle of v with respect to V as the ordered
m-tuple of angles (ϕ1(v), . . . , ϕm(v)). We say that V has constant generalized Kähler
angle if the m-tuple (ϕ1(v), . . . , ϕm(v)) is independent of the nonzero v ∈ V . Note
that, if m = 1, we recover the notion of Kähler angle. The concept of quaternionic
Kähler angle introduced in [7] agrees with that of generalized Kähler angle in the
case where m = 3 and v is a sum of equivalent irreducible Cl3-modules (i.e. v is a
quaternionic vector space).

Regarding complex or quaternionic hyperbolic spaces, CHn or HHn , with n ≥ 3,
most real subspaces of gα (∼= C

n−1 or Hn−1, respectively) have nonconstant general-
ized Kähler angle; e.g. the orthogonal sum of a complex and a totally real subspace in
C
n−1 does not have constant Kähler angle. Thus, Theorem 4.5 ensures the existence of

inhomogeneous isoparametric families of hypersurfaces with nonconstant principal
curvatures in CHn and HHn , n ≥ 3.

The case of the Cayley plane is even more interesting. As proved in [7] and men-
tioned in Sect. 4.2, if the subspace w of gα has dimension 3, the tubes around Ww

are not homogeneous. However, any subspace of gα
∼= O has constant general-

ized Kähler angle; in the case dimw = 3, the generalized Kähler angle of w⊥ is
(0, 0, 0, 0, π/2, π/2, π/2). Thus, the tubes around the corresponding Ww constitute
an inhomogeneous isoparametric family of hypersurfaces with constant principal cur-
vatures in OH2. This is the only such example known in any symmetric space, apart
from the FKM-examples in spheres [51].

The homogeneous isoparametric foliations described in Sect. 4.2, jointly with the
inhomogeneous ones presented in this section, constitute an important family of exam-
ples which may encourage us to tackle the classification problem of isoparametric
hypersurfaces in the rank one symmetric spaces of noncompact type. However, this
is a much more complicated problem. Indeed, the only advance so far in this direc-
tion is the classification of isoparametric hypersurfaces in complex hyperbolic spaces
obtained recently by the authors [38]. This constituted the first complete classifica-
tion of isoparametric hypersurfaces in a complete family of symmetric spaces since
Segre’s [82] and Cartan’s [24] works in the 30s.

Theorem 4.6 Let M be a connected real hypersurface in a complex hyperbolic space
CHn, n ≥ 2. Then M is isoparametric if and only if it is an open subset of one of the
following:

(i) A tube around a totally geodesic CHk , k ∈ {0, . . . , n − 1}.
(ii) A tube around a totally geodesic RHn.
(iii) A horosphere.
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(iv) A leaf of a solvable foliation.
(v) A tube around a submanifold Ww, for some subspacew of gα with dim(gα �w) ≥

2.

In particular, each isoparametric hypersurface inCHn is an open part of a complete,
topologically closed leaf of a (globally defined) isoparametric foliation onCHn . Either
such foliation is regular (examples (iii) and (iv)) or has one singular orbit (examples
(i), (ii) and (v)) which is minimal and homogeneous. Moreover, the homogeneous
hypersurfaces inCHn are precisely those in examples (i) through (iv), and those in (v)
with w⊥ = gα � w of constant Kähler angle. Thus, an isoparametric hypersurface
in CHn is an open part of a homogeneous one if and only if it has constant principal
curvatures.

The proof of Theorem 4.6 is rather involved. The starting point is to consider the
Hopf map π : AdS2n+1 → CHn from the anti De Sitter spacetime AdS2n+1, and
to prove that the preimage π−1(M) of a hypersurface M in CHn is isoparametric
(in a semi-Riemannian sense) if and only if M is isoparametric. Since AdS2n+1 has
constant curvature, π−1(M) is isoparametric precisely when it has constant principal
curvatures. However, since π−1(M) is a Lorentzian hypersurface, its shape operator
does not need to be diagonalizable. By analyzing each one of the four possible Jordan
canonical forms for such shape operator, one can show (using elementary algebraic
and geometric calculations) that three of them correspond to each one of the examples
(i), (ii), (iii) above. Dealing with the fourth Jordan canonical form is much more
convoluted, and requires delicate calculations with Jacobi fields and various geometric
ideas. Finally, such Jordan form turns out to correspond with examples (iv) and (v) in
Theorem 4.6.

4.4 Polar actions

An isometric action on a RiemannianmanifoldM is called polar if there is a (a fortiori,
totally geodesic) connected immersed submanifold � of M that intersects all orbits,
and every such intersection is orthogonal. The submanifold� is called a section of the
action; if � is flat with respect to the induced metric, the action is called hyperpolar.
Cohomogeneity one actions constitute a particular case of hyperpolar actions.

The notion of polarity traces back at least to Dadok’s classification [31] of polar rep-
resentations (equivalently, polar actions on round spheres): such polar actions coincide
exactly with the isotropy representations of symmetric spaces, up to orbit equivalence.
Later, polar actions have been studied mainly in the context of symmetric spaces of
compact type: see [81] (cf. [54]) for the classification in the rank one spaces, [67]
and [69] for the irreducible spaces of arbitrary rank, and [33] for a survey. For gen-
eral manifolds, there are some topological and geometric structure results, see [1,
Chapter 5] and [55]. Moreover, the notions of polar and hyperpolar action have been
extended to the realm of singular Riemannian foliations by requiring the existence of
sections through all points; see [1, Chapter 5], [2]. Thus, homogeneous polar foliations
are nothing but the orbit foliations of polar actions.

In symmetric spaces of noncompact type, very few results are known. The classifi-
cation of polar actions on real hyperbolic spaces RHn follows from Wu’s work [91].
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Theorem 4.7 A polar action onRHn, n ≥ 2, is orbit equivalent to one of the following:

(i) The action of SO1,k × Q, where k ∈ {0, . . . , n− 1} and Q is a compact subgroup
of SOn−k acting polarly on Rn−k .

(ii) The action of N ×Q, where N is the nilpotent part of the Iwasawa decomposition
of SO1,n, and Q is a compact subgroup of SOn−k acting polarly on R

n−k .

The first classification result in a symmetric space of noncompact type and noncon-
stant curvaturewas achievedbyBerndt andDíaz-Ramos [9] for the complexhyperbolic
plane CH2. This classification consists of five cohomogeneity one actions and four
cohomogeneity two actions, up to orbit equivalence. Interestingly, all of them can be
characterized geometrically [40].

Theorem 4.8 A submanifold of CH2 is isoparametric if and only if it is an open part
of a principal orbit of a polar action on CH2.

Here, we refer to the notion of isoparametric submanifold (of arbitrary codimen-
sion) given by Heintze et al. [56], as a submanifold P with flat normal bundle, whose
parallel submanifolds have constant mean curvature in radial directions, and such that,
for each p ∈ P , there is a totally geodesic submanifold �p such that Tp�p = νp P .
Thus, an isoparametric foliation (of arbitrary codimension) is a polar foliation whose
regular leaves are isoparametric. The orbit foliations of polar actions constitute the
main set of examples of isoparametric foliations.

Regarding cohomogeneity two polar actions on CH2, one can additionally
prove [39]:

Theorem 4.9 A submanifold of CH2 is an open subset of a principal orbit of a coho-
mogeneity two polar action if and only if it is a Lagrangian flat surface with parallel
mean curvature. Moreover, such surfaces have parallel second fundamental form.

Coming back to the classification problem of polar actions on CHn , the case
n = 2 was extended by Díaz-Ramos, Domínguez-Vázquez and Kollross to all dimen-
sions [37].

Theorem 4.10 A polar action on CHn, n ≥ 2, is orbit equivalent to the action of the
connected subgroup H of U1,n with one of the following Lie algebras:

(i) h = q⊕ so1,k ⊂ un−k ⊕ su1,k , k ∈ {0, . . . , n}, where the connected subgroup Q
of Un−k with Lie algebra q acts polarly with a totally real section on C

n−k .
(ii) h = q⊕ b⊕w⊕ g2α ⊂ su1,n, where b is a subspace of a,w is a subspace of gα ,

and q is a subalgebra of k0 which normalizes w and such that the connected
subgroup of SU1,n with Lie algebra q acts polarly with a totally real section on
w⊥ = gα � w.

In case (i), one H -orbit is a totally geodesic RHk and the other orbits are contained
in the distance tubes around it. In item (ii), either b = a, in which case the orbit H · o
contains the geodesic A ·o, or b = 0, in which case H ·o is contained in the horosphere
N ·o. Moreover, in case (ii), any choice of real subspacew ⊂ gα

∼= C
n−1 gives rise to

at least one polar action; the justification of this claim makes use of a decomposition

123



São Paulo Journal of Mathematical Sciences (2021) 15:75–110 97

theorem [37, §2.3] for real subspaces of a complex vector space as an orthogonal sum
of subspaces of constant Kähler angle. Thus, whereas in CH2 the moduli space of
polar actions up to orbit equivalence is finite, inCHn , n ≥ 3, it is uncountable infinite.

Remark 4.11 It is curious to observe that the orbit H · o corresponding to case (ii) in
Theorem 4.10 with b = a is precisely the singular leaf of the isoparametric foliations
referred to in Theorems 4.5 and 4.6(v). In particular, it is a minimal submanifold,
and the orbit foliation of the H -action constitutes a subfoliation of the isoparametric
family of hypersurfaces given by the tubes around H · o.

5 Submanifolds of symmetric spaces of arbitrary rank

In this section we start by presenting some structure results for symmetric spaces of
arbitrary rank, namely, their horospherical decomposition and the associated canoni-
cal extension procedure (Sect. 5.1). Then we comment on the classification problem
of cohomogeneity one and hyperpolar actions (Sect. 5.2), and on a recent result on
homogeneous CPC submanifolds (Sect. 5.3).

5.1 Horospherical decomposition and canonical extension

In this subsectionwe introduce these two important tools for the study of submanifolds
in higher rank symmetric spaces. Further information can be found in [64, §VII.7],
[49, §2.17], [22, §I.1] and [44].

Let M ∼= G/K be a symmetric space of noncompact type. We follow the notation
of Sect. 3. Let � be the set of roots of M , and � a set of simple roots, |�| = rank M .

Let � be any subset of �. Let �� = � ∩ span� be the set of roots spanned by
elements of �, and �+

� = �+ ∩ span� the positive roots in ��. Then, we define

l� = g0 ⊕
⎛

⎝

⊕

λ∈��

gλ

⎞

⎠ , n� =
⊕

λ∈�+\�+
�

gλ, a� =
⋂

λ∈�

ker λ,

which are reductive, nilpotent and abelian subalgebras of g, respectively. Define also

m� = l� � a�, a� = a � a� =
⊕

λ∈�

RHλ.

The subalgebra q� = l� ⊕n� = m� ⊕a� ⊕n� is said to be the parabolic subalgebra
of the real semisimple Lie algebra g associated with the subset � ⊂ �. The decom-
positions q� = l� ⊕ n� and q� = m� ⊕ a� ⊕ n� are known as the Chevalley and
Langlands decompositions of q�, respectively.

Remark 5.1 By considering L� as the centralizer of a� inG, and N� as the connected
subgroup of G with Lie algebra n�, one can define the parabolic subgroup Q� =
L�N� of G associated with the subset � ⊂ �. Geometrically speaking, parabolic
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subgroups ofG are isotropy groups of points at infinity, i.e. Q� = {g ∈ G : g(x) = x}
for some x ∈ M(∞) (except for the case� = �, which gives rise to Q� = G). Thus,
unlike points in M , isotropy groups of points at infinity are noncompact, and (except
for rank M = 1) there are several (but finitely many, exactly 2rank M − 1) conjugacy
classes of them.

Consider the subspace

b� = m� ∩ p = a� ⊕
(

⊕

λ∈�+
�

pλ

)

,

where pλ = (1 − θ)gλ is the orthogonal projection of gλ onto p. Then b� is a Lie
triple system (see Sect. 2.3) in p. We denote by B� the corresponding totally geodesic
submanifold of M which, intrinsically, is a symmetric space of noncompact type and
rank |�|, and is known as the boundary component of M associated with the subset
� ⊂ �. The Lie algebra of Isom(B�) is s� := [b�, b�] ⊕ b�. Thus, if S� is the
connected subgroup of G with Lie algebra s�, then B� = S� · o. It is not difficult to
see that B� can be regarded, under the isometry M ∼= AN , as the connected subgroup
of AN with Lie algebra a� ⊕ (⊕

λ∈�+
�
gλ

)

.
The horospherical decomposition theorem states that the map

A� × N� × B� → M, (a, n, p) �→ (an)(p),

is an analytic diffeomorphism, where A� and N� are the connected subgroups of G
with Lie algebras a� and n�, respectively.

In other words, this result implies that the connected closed subgroup A�N� of
AN acts isometrically and freely on M , and each A�N�-orbit intersects B� exactly
once. Moreover, such intersection is always orthogonal (see [10, Proposition 4.2]).
Thus, the A�N�-action on M is free and polar with section B�. Moreover, as shown
by Tamaru [85], all the orbits of the A�N�-action are Einstein solvmanifolds and
minimal submanifolds of M and, actually, they are mutually congruent by elements of
S�. The A�N�-orbits are totally geodesic if and only if � and � \ � are orthogonal
sets of roots.

The reinterpretation of the horospherical decomposition as a free, polar action with
minimal orbits gives rise to the so-called canonical extension method, which was
introduced in [19] for cohomogeneity one actions, and generalized in [44] to other
types of actions, foliations and submanifolds. This method allows to extend such
geometric objects from a boundary component B� to the whole symmetric space M ,
that is, from symmetric spaces of lower rank to symmetric spaces of higher rank. And,
more importantly, one can do so by preserving some important geometric properties.

In order to formalize this, let P be a submanifold of codimension k in B�. Then

A�N� · P := {h(p) : h ∈ A�N�, p ∈ P} =
⋃

p∈P

A�N� · p
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is a submanifold of codimension k in M . The mean curvature vector field of A�N� · P
is A�N�-equivariant and, along P , coincides with that of P . This implies that, if
P has parallel mean curvature, is minimal, has (globally) flat normal bundle, or is
isoparametric, then A�N� · P has the same property.

One can also extend singular Riemannian foliations from B� to M by extending
their leaves as above. Thus, ifF is a singular Riemannian foliation on B� that is polar,
hyperpolar, or isoparametric, then the extended foliation A�N� · F = {A�N� · L :
L ∈ F} has the same property. Moreover, ifF is homogeneous, that is, if it is the orbit
foliation of an isometric action of a subgroup H ⊂ S� of isometries of B�, then the
extended foliation A�N� ·F is the orbit foliation of the isometric action of A�N�H
on M .

This technique plays an important role both in the construction of interesting types
of submanifolds in symmetric spaces of higher rank, as well as in their classifica-
tion. In [44] it was used, for example, to extend the examples of inhomogeneous
isoparametric hypersurfaces presented in Sect. 4.3 to symmetric spaces of higher rank
and type BCr , such as noncompact complex and quaternionic Grassmannians, or the
complexified Cayley hyperbolic plane E−14

6 /Spin10U1. Also, it was used to construct
inhomogeneous isoparametric foliations of codimension higher than one on noncom-
pact real Grassmannians, as well as new examples of polar but nonhyperpolar actions
on spaces of rank higher than one.

5.2 Cohomogeneity one, hyperpolar and polar actions

By the very definition of rank, cohomogeneity one and hyperpolar actions on rank
one symmetric spaces constitute the same family of actions. In higher rank, there are
hyperpolar actions of greater cohomogeneity. Moreover, in any rank, there are polar
actionswhich are not hyperpolar; for example, A�N� acts polarly but not hyperpolarly
on M , whenever � = ∅. However, the classification problem of any of these types of
actions is widely open.

The most general result regarding cohomogeneity one actions on symmetric spaces
of noncompact type is due to Berndt and Tamaru [19]:

Theorem 5.2 Let M ∼= G/K be an irreducible symmetric space of noncompact type,
and let H be a connected subgroup of G acting on M with cohomogeneity one. Then
one of the following statements holds:

(1) The orbits form a regular foliation on M and the H-action is orbit equivalent
to the action of the connected subgroup of AN with one of the following Lie
algebras:

(i) (a � RX) ⊕ n for some X ∈ a.
(ii) a ⊕ (n � RU ), where U ∈ gλ, for some λ ∈ �.

(2) There exists exactly one singular orbit and one of the following two cases holds:

(i) H is contained in a maximal proper reductive subgroup L of G, the actions
of H and L are orbit equivalent, and the singular orbit is totally geodesic.
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(ii) H is contained in a maximal proper parabolic subgroup Q� of G and the
H-action is orbit equivalent to one of the following:
(a) The canonical extension of a cohomogeneity one action with a singular

orbit on the boundary component B� of M.
(b) The action of a group obtained by nilpotent construction.

Cohomogeneity one actions with no singular orbits, i.e. giving rise to homogeneous
regular Riemannian foliations, were classified in [16]; they correspond to case (1) in
Theorem 5.2. Note that they are induced by subgroups of AN .

Cohomogeneity one actions with a totally geodesic singular orbit were classified
in [17], and they correspond to case (2)-(i) above. Interestingly, the associated orbit
foliations arise as tubes around certain reflective submanifolds, except for a few excep-
tional cases.

The case that is still open is that of cohomogeneity one actions with a nontotally
geodesic singular orbit, case (2)-(ii) in Theorem 5.2. Themain difficulty has to do with
the so-called nilpotent constructionmethod, which somehow extends the construction
of cohomogeneity one actions with a nontotally geodesic singular orbit in rank one
symmetric spaces (Sect. 4.2). We skip the explanation of the method here, and refer
the reader to [19] or to [11], where this method was investigated. In these papers one
can also find the only complete classifications known so far on symmetric spaces of
higher rank, namely on SL3/SO3, SL3(C)/SU3, G2

2/SO4, GC
2 /G2 and SO0

2,n/SO2SOn ,
n ≥ 3.

In the more general setting of hyperpolar actions, the only known result is the
classification of hyperpolar actions with no singular orbits on any symmetric space of
noncompact type, up to orbit equivalence, due to Berndt et al. [10]. In other words,
this result describes all hyperpolar homogeneous regular Riemannian foliations on
symmetric spaces of noncompact type.

Theorem 5.3 A hyperpolar action with no singular leaves on a symmetric space of
noncompact type M is orbit equivalent to the hyperpolar action of the connected
subgroup of AN with Lie algebra

(a � V ) ⊕
(

n �
(

⊕

λ∈�

RXλ

))

,

where � ⊂ � is any subset of mutually orthogonal simple roots, and V is any
subspace of a�.

Note that the condition 〈λ,μ〉 = 0 for any λ,μ ∈ � implies that the associated
boundary component B� is the Cartesian product of |�| symmetric spaces of rank
one, B� = ∏

λ∈� FλHnλ , Fλ ∈ {R,C,H,O}. Thus, the intersection of the folia-
tion described in Theorem 5.3 with B� is the product foliation of solvable foliations
(cf. Sect. 4.2) on each factor FλHnλ . The case V = 0 corresponds to the canonical
extension of such product foliation.

Regarding polar actions on symmetric spaces of rank higher than one, very little is
known. Let us simply mention the classification of polar actions with a fixed point on
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any symmetric space by Díaz-Ramos and Kollross [41], and the investigation of polar
actions by reductive subgroups due to Kollross [68].

5.3 Homogeneous CPC submanifolds

A submanifold P of a Riemannian manifold M will be called a CPC submanifold
if its principal curvatures, counted with multiplicities, are independent of the normal
direction. In particular, a CPC submanifold is always austere (that is, the multiset
of its principal curvatures is invariant under multiplication by −1) and, hence, min-
imal. Although the terminology CPC comes from constant principal curvatures, the
property of being CPC is more restrictive than the one studied in [57] (cf. [8, §4.3]).
However, this notion is intimately related to cohomogeneity one actions. Indeed, if a
cohomogeneity one action on a Riemannian manifold has a singular orbit, then the
slice representation at any point of this orbit is transitive on the unit sphere of the
normal space, which implies that all shape operators with respect to any unit normal
vector are conjugate and, hence, the singular orbit is CPC. The converse is not true
in general. In fact, as mentioned after Theorem 4.3, there are totally geodesic (and,
hence, CPC) submanifolds in the complex hyperbolic space whose distance tubes are
not homogeneous.

In real space forms, a submanifold is CPC if and only if the distance tubes around
it are isoparametric hypersurfaces with constant principal curvatures. The necessity in
this equivalence is no longer true in spaces of nonconstant curvature (a counterexam-
ple is the one mentioned in the previous paragraph, in view of Theorem 4.6), but the
sufficiency holds in anyRiemannianmanifold for submanifolds of codimension higher
than one [52]. Moreover, totally geodesic submanifolds are examples of CPC subman-
ifolds. Thus, the study of CPC submanifolds encompasses important problems, such as
the classifications of totally geodesic submanifolds, cohomogeneity one actions, and
isoparametric hypersurfaces with constant principal curvatures. Let us also emphasize
that the singular leaf of the inhomogeneous isoparametric family of hypersurfaces
with constant principal curvatures on the Cayley hyperbolic plane described in Sect.
4.3 was, up to very recently, the only known example of a homogeneous, nontotally
geodesic, CPC submanifold that is not an orbit of a cohomogeneity one action on a
symmetric space of noncompact type.

In what follows we will report on the main results and ideas of a recent work by
Berndt andSanmartín-López [15] regardingCPC submanifolds in irreducible symmet-
ric spaces of noncompact type. One of the main goals of [15] was precisely to provide
a systematic approach to the construction of homogeneous, nontotally geodesic, CPC
submanifolds, producing a large number of examples that are not orbits of coho-
mogeneity one actions. Another remarkable point is the introduction of an original
and innovative technique based on the algebraic examination of the root system of
symmetric spaces in order to calculate the shape operator of certain homogeneous
submanifolds.

Let M ∼= G/K be an irreducible symmetric space of noncompact type; as usual,
we follow the notation in Sect. 3. Let α0, α1 ∈ � be two simple roots connected
by a single edge in the Dynkin diagram of the symmetric space M . Consider a Lie
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subalgebra s = a ⊕ (n � V ) of a ⊕ n, where V is a subspace of gα0 ⊕ gα1 . This
implies that V = V0 ⊕ V1 with Vk ⊂ gαk for k ∈ {0, 1}. Let S be the connected
closed subgroup of AN with Lie algebra s. In the following lines, we will explain the
approach to the classification of the CPC submanifolds of the form S · o. Moreover,
in the final part of this section, we will see that with weaker hypotheses on s we still
achieve the same classification result.

The orbit S · o is a homogeneous submanifold and therefore it suffices to study
its shape operator S at the point o. Since Sξ X = −(∇Xξ)�, where (·)� denotes the
orthogonal projection onto s, the idea is to analyze carefully the terms involved in the
expression (5) for the Levi-Civita connection of M . Let ξ ∈ V be a unit normal vector
to S · o and let X ∈ s be a tangent vector to S · o. First, assume that X ∈ a. Then

[X , ξ ] + [θX , ξ ] − [X , θξ ] = −[X , θξ ] ∈ g−α0 ⊕ g−α1 .

Hence, [X , θξ ] has trivial projection onto a⊕n. Thus, Sξ X = −(∇Xξ)� = 0 for any
tangent vector X ∈ a and any normal vector ξ ∈ V . Now take ξ ∈ V and X ∈ g�

λ

with λ ∈ �+. Using (5) and some other considerations that we omit for the sake of
simplicity, we obtain

Sξ X = −1

2
([X , ξ ] − [X , θξ ])� . (9)

Therefore, we deduce

Sξ X ∈ (gλ+α0 ⊕ gλ+α1) ⊕ (g�
λ−α0

⊕ g�
λ−α1

), (10)

for each ξ ∈ V and each X ∈ g�
λ with λ ∈ �+. This shows that we need to understand

how the shape operator S relates the different positive root spaces among them.
In order to clarify this situation, we introduce a generalization of the concept of α-

string [64, p. 152]. For α0, α1 ∈ � and λ ∈ � we define the (α0, α1)-string containing
λ as the set of elements in � ∪ {0} of the form λ + nα0 + mα1 with n,m ∈ Z. This
allows to define an equivalence relation on�+. We say that two roots λ1, λ2 ∈ �+ are
(α0, α1)-related if λ1 − λ2 = nα0 + mα1 for some n,m ∈ Z. Thus, the equivalence
class [λ](α0,α1) of the root λ ∈ �+ consists of the elements which may be written as
λ+nα0 +mα1 for some n,m ∈ Z. We will write [λ] for this equivalence class, taking
into account that it depends on the roots α0 and α1 defining the string. Put �+/ ∼
for the set of equivalence classes. The family {[λ]}λ∈�+ constitutes a partition of �+.
Using this notation, from (9) and (10) we get that

Sξ

⎛

⎝

⊕

γ∈[λ]
g�
γ

⎞

⎠ ⊂
⊕

γ∈[λ]
g�
γ for all λ ∈ �+. (11)

This is the key point for studying if the orbit S · o is CPC. We will explain (11) in
words. For each λ ∈ �+ the subspace

⊕

γ∈[λ] g�
γ is an Sξ -invariant subspace of the

tangent space s. Moreover, S · o is a CPC submanifold if and only if the eigenvalues
of Sξ are independent of the unit normal vector ξ when restricted to each one of those
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invariant subspaces
⊕

γ∈[λ] g�
γ , for every λ ∈ �+. Thus it suffices to consider the

orthogonal decomposition

n � V =
⊕

[λ]∈�+/∼

⎛

⎝

⊕

γ∈[λ]
g�
γ

⎞

⎠ , (12)

and to study the shape operator when restricted to each one of these Sξ -invariant
subspaces. Since α0 and α1 span an A2 root system, then neither 2α0 nor 2α1 are
roots. Hence, the (α0, α1)-string of α0 consists of the roots α0, α1 and α0 + α1. Thus,
one of these subspaces is gα0 ⊕gα1 ⊕gα0+α1 . This approach would be interesting if the
rest of the subspaces respected some pattern and they could be determined explicitly.
The following result addresses both questions. Recall that α0 and α1 are simple roots
connected by a single edge in the Dynkin diagram. We define the level of a positive
root as the sum of the nonnegative coefficients of its expression with respect to the
basis �. Let λ ∈ �+ be the root of minimum level in its (α0, α1)-string. Assume that
it is not spanned by α0 and α1. Then, (taking indices modulo 2) we have:

(i) If 〈λ, α0〉 = 0 = 〈λ, α1〉, then [λ] = {λ}.
(ii) If |αk | ≥ |λ| and 〈λ, αk〉 = 0, then [λ] = {λ, λ + αk, λ + αk + αk+1}.
(iii) Otherwise, [λ] = {λ, λ+αk, λ+αk +αk+1, λ+2αk, λ+2αk +αk+1, λ+2αk +

2αk+1}.
The roots λ, α0 and α1 span a manageable subsystem and, roughly speaking, the
proof follows from a case-by-case examination on the possible Dynkin diagrams for
this subsystem. The CPC condition means that the eigenvalues of the shape operator
do not depend on the normal vector when restricted to each one of the subspaces
⊕

γ∈[λ] g�
γ in (12), where [λ] is one of the three possible types of strings above.

If λ is under the hypotheses of case (i), then gλ belongs to the 0-eigenspace of the
shape operator. This claim follows from (10) and the fact that neither λ+αk nor λ−αk

are roots for k ∈ {0, 1}.
We analyze case (ii) in order to give the key ideas for a nontrivial case. Let us start

with some general considerations. For a fixed l ∈ {0, 1}, let γ ∈ �+ be the root of
minimum level in its αl -string, which consists of the roots γ and γ +αl . Fix a normal
unit vector ξl ∈ Vl and define

φξl = |αl |−1 ad(ξl) and φθξl = −|αl |−1 ad(θξl). (13)

These maps φξl and φθξl turn out to be inverse linear isometries in the sense that
φθξl ◦ φξl |gγ = idgγ and φξl ◦ φθξl |gγ+αl

= idgγ+αl
. Moreover, for each X ∈ gγ we

have

∇Xξl = −|αl |
2

φξl (X) and ∇φξl (X)ξl = −|αl |
2

X . (14)

Let us come back to the study of case (ii). Write ξ = cos(ϕ)ξk + sin(ϕ)ξk+1 with
ϕ ∈ [0, π

2 ], ξk ∈ Vk and ξk+1 ∈ Vk+1. The following diagram may help to understand
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the situation. Note that the nodes represent root spaces and not roots.

gλ gλ+αk
gλ+αk+αk+1φξk

φθξk

φξk+1

φθξk+1

Take a unit tangent vector X ∈ gλ. Using Sξ X = −(∇X ξ)� and (14) for the pair
(γ, αl) ∈ {(λ, αk), (λ + αk, αk+1)}, we can see that the 3-dimensional vector space
spanned by X , φξk (X), (φξk+1 ◦ φξk )(X) is Sξ -invariant. The matrix representation of
Sξ restricted to gλ ⊕ gλ+αk ⊕ gλ+αk+αk+1 is then given by dim(gλ) blocks of the form

|α0|
2

⎛

⎝

0 cos(ϕ) 0
cos(ϕ) 0 sin(ϕ)

0 sin(ϕ) 0

⎞

⎠ , (15)

with respect to the decomposition gλ ⊕ φξk (gλ) ⊕ (φξk+1 ◦ φξk )(gλ). The eigenvalues
of the above matrix are 0 and ±|α0|/2. They do not depend on ϕ. It is also important
to note that the nonzero principal curvatures depend on the length of the root α0.

Case (iii) is slightly more difficult than the one we have just studied. Roughly
speaking, it is necessary to generalize (14) having in mind the following diagram:

ad(ξk ) ad(ξk+1)

ad(ξk )

ad(ξk+1)

ad(ξk+1)

ad(ξk )

gλ gλ+αk
gλ+2αk+αk+1

gλ+2αk

gλ+αk+αk+1

gλ+2αk+2αk+1

The principal curvatures of the shape operator do not depend on the normal vector
when restricted to subspaces induced by strings of type (iii).

Thus, the problem can be reduced to studying the shape operator when restricted
to

g�
α0

⊕ g�
α1

⊕ gα0+α1 .

In other words, one needs to study CPC submanifolds in a symmetric space with
Dynkin diagram of type A2, which would conclude the classification result.

However, as mentioned above, we can state a more general result concerning CPC
submanifolds. Denote by �′ the set of simple roots α ∈ � with 2α /∈ �. Note that
there is at most one simple root in� that does not belong to�′, and this happens when
the restricted root system of M is of type BCr . Consider a Lie algebra s = a⊕(n�V )

with V ⊂ ⊕

α∈�′ gα . This implies that V = ⊕

α∈� Vα for some set � ⊂ �′. Similar
ideas to those that led us to (15) allow to deduce that for each root α ∈ � the nonzero
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eigenvalues of Sξα are proportional to the length of α. Then, if � contains roots α and
β of different lengths, it follows that the shape operators Sξα and Sξβ have different
eigenvalues, which implies that S · o is not CPC.

Moreover, assume that � contains at least three roots. Then � has at least two
orthogonal roots, say α0 and α1. We will explain briefly why this cannot lead to a CPC
submanifold S · o. The key point is to find a positive root λ ∈ �+ with nontrivial
αk-string but trivial αk+1-string, for some k ∈ {0, 1} and indices modulo 2. According
to (14), there must exist a tangent vector X ∈ gλ ⊕ gλ+αk such that Sξk X = μX ,
for a unit normal ξk ∈ Vαk and some μ = 0. However, from (10) we deduce that
Sξk+1X = 0 for a unit normal ξk+1 ∈ Vαk+1 . Thus, if we take a normal unit vector
ξ = cos(ϕ)ξk + sin(ϕ)ξk+1 for ϕ ∈ [0, 2π ], then we get Sξ X = cos(ϕ)μX . Thus
S · o cannot be CPC since we have an infinite family of different principal curvatures.

Finally, if V is contained in a single root space gα , α ∈ �′, then the S-action on M
is the canonical extension of a cohomogeneity one action with a totally geodesic orbit
on the boundary component B{α} ∼= RHn (see Sect. 5.1). Hence, if dim V ≥ 2, S · o
is a singular orbit of a cohomogeneity one action, and then CPC; if dim V = 1, S · o
is the only minimal orbit of an action as in Theorem 5.2(1-ii), which also happens to
be CPC. Altogether, we can state the main result of [15]:

Theorem 5.4 Let s = a⊕ (n� V ) be a subalgebra of a⊕ n with V ⊂ ⊕

α∈�′ gα . Let
S be the connected closed subgroup of AN with Lie algebra s. Then the orbit S ·o is a
CPC submanifold of M ∼= G/K if and only if one of the following statements holds:

(I) There exists a simple root λ ∈ �′ with V ⊂ gλ.
(II) There exist two nonorthogonal simple roots α0, α1 ∈ �′ with |α0| = |α1| and

subspaces V0 ⊂ gα0 and V1 ⊂ gα1 such that V = V0 ⊕ V1 and one of the
following conditions holds:

(i) V0 ⊕ V1 = gα0 ⊕ gα1;
(ii) V0 and V1 are isomorphic to R and V0 ⊕ V1 is a proper subset of gα0 ⊕ gα1;
(iii) V0 and V1 are isomorphic to C, V0 ⊕ V1 is a proper subset of gα0 ⊕ gα1 and

there exists T ∈ k0 such that ad(T ) defines complex structures on V0 and V1
and vanishes on [V0, V1];

(iv) V0 and V1 are isomorphic to H, V0 ⊕ V1 is a proper subset of gα0 ⊕ gα1 and
there exists a subset l ⊂ k0 such that ad(l) defines quaternionic structures on
V0 and V1 and vanishes on [V0, V1].

Moreover, only the submanifolds given by (I) and (II)(i) can appear as singular orbits
of cohomogeneity one actions.

Remark 5.5 Onemay askwhether this result is still true if V is a subspace of the sum of
root spaces corresponding to the roots in � (instead of �′). However, this seems to be
amore difficult problem. Indeed, it includes, in particular, the classification problem of
CPC submanifolds of the type S ·o in the quaternionic hyperbolic spacesHHn , n ≥ 3,
which turns out to be equivalent to the classification of subspaces of gα

∼= H
n−1 with

constant quaternionic Kähler angle. As we mentioned in Sect. 4.2, this is nowadays
an open problem.
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6 Open problems

We include a list of open problems related to the research presented above.

(1) In view of the exposition in Sect. 4.2, classify homogeneous hypersurfaces in
quaternionic hyperbolic spaces HHn , n ≥ 3. More generally, classify the real
subspaces V ofHn−1 with constant quaternionic Kähler angle, and, for each one
of them, determine if there is a subgroup of Sp1Spn−1 that acts transitively on
the unit sphere of V .

(2) Make further progress in the classification problem (mentioned in Sect. 4.3) of
hypersurfaceswith constant principal curvatures in the complexhyperbolic spaces
CHn . This is a very difficult problem that lacks powerful ideas and techniques,
apart from a clever combination of the information provided by the Codazzi and
Gauss equations of submanifolds.

(3) Classify curvature-adapted hypersurfaces with constant principal curvatures in
the Cayley hyperbolic plane OH2.

(4) Initiate the investigation of non-curvature-adapted hypersurfaces with constant
principal curvatures in HHn and OH2.

(5) Is there any nonisoparametric hypersurface with constant principal curvatures in
a symmetric space? In a general Riemannian setting, one can probably construct
such a hypersurface for some specific ambient metric, but, even in this case, no
concrete example is known to us.

(6) Prove that compact embedded hypersurfaces with constant mean curvature in
rank one symmetric spaces of noncompact type must be geodesic spheres. Any
idea towards the solution of this problem is likely to have profound implications
and many applications to other problems (such as the symmetry of solutions to
the so-called overdetermined boundary value problems, see e.g. [46]).

(7) Obtain a better understanding of the nilpotent construction method for cohomo-
geneity one actions, mentioned in Theorem 5.2(2-ii-b). This seems to be a crucial
step towards the solution of the classification problem of cohomogeneity one
actions on irreducible symmetric spaces of noncompact type. Another approach
may come from generalizing Theorem 5.4 to the study of CPC submanifolds aris-
ing from arbitrary subgroups of the solvable part of the Iwasawa decomposition.

(8) Construct, if possible, new examples of inhomogeneous isoparametric hypersur-
faces in symmetric spaces of noncompact type and rank higher than one. All the
examples known so far arise as canonical extensions of isoparametric hypersur-
faces in rank one symmetric spaces.

(9) Construct new examples of inhomogeneous isoparametric submanifolds of codi-
mension higher than one in symmetric spaces of noncompact type. The only
known examples are those appearing in Wu’s classification for real hyperbolic
spaces [91], and their canonical extensions to noncompact real Grassmannians.
Such submanifolds are leaves of non-hyperpolar isoparametric foliations. Is there
any example of an inhomogeneous hyperpolar foliation of codimension higher
than one on a symmetric space of noncompact type, unlike the compact case [30]
(cf. [77])?
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(10) Make progress in the classification problem of totally geodesic submanifolds,
mentioned in Sect. 2.3. This problem seems nowadays infeasible in full gener-
ality. However, with the algebraic method explained in Sect. 5.3 we are able to
calculate very efficiently the shape operator ofmany homogeneous submanifolds.
These ideas may help to obtain some classification result in certain higher rank
symmetric spaces.
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