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Abstract
Weuse that the n-sphere for n ≥ 2 is simply-connected to prove the Poincaré-Birkhoff-
Witt Theorem.
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There are several equivalent statements of the Poincaré-Birkhoff-Witt Theorem. The
version we shall prove is as follows.

Theorem Let g be a Lie algebra and define an equivalence relation on the tensor
algebra

⊗
g by imposing the relations that

a ⊗ b − b ⊗ a = [a, b] (���)

as a two-sided ideal in
⊗

g. Write the resulting associative algebra as U(g) and write
ab · · · d for the equivalence class of a ⊗ b ⊗ · · · ⊗ d. Pick a basis for g and declare
that an element ab · · · d ∈ U(g) is in ‘canonical form’ if and only if a, b, . . . , d are
basis elements with a ≤ b ≤ · · · ≤ d with respect to the ordering of the basis. Then
elements in U(g) may be consistently and uniquely written as linear combinations of
elements in canonical form.

An algebraic proof may be found, for example, in [3]. The rest of this article is
devoted to a geometric proof.
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To understand what the Poincaré-Birkhoff-Witt Theorem says, let us consider the
case of three elements a, b, c ∈ g, which we suppose are basis elements in this order
a ≤ b ≤ c, and that we would like to rewrite the element cba ∈ U(g) (given in the
‘wrong’ order) as a linear combination of canonically ordered elements. Certainly, we
can use the equivalence relation (���) to try to reorder this element:

cba = cab − c[a, b]
= acb − [a, c]b − c[a, b]
= abc − a[b, c] − [a, c]b − c[a, b],

where we have firstly swopped b and a (and then followed our noses). The only
problem is that one can firstly swop c and b instead:

cba = bca − [b, c]a
= bac − b[a, c] − [b, c]a
= abc − [a, b]c − b[a, c] − [b, c]a,

which is consistent if and only if the ‘second order’ remainder terms agree:

a[b, c] + [a, c]b + c[a, b] = [a, b]c + b[a, c] + [b, c]a.

Fortunately, this is exactly the Jacobi identity:

[a, [b, c]] + [[a, c], b] + [c, [a, b]] = 0.

We may arrange these calculations on a circle:

Figure 1

where · · · denotes second order terms. Otherwise said, the Jacobi identity is exactly
what is needed so that an excursion through the symmetric groupS3 on three letters

abc � bac � bca � cba � cab � acb � abc

is consistent inU(g). One can think of this as saying that there is no ‘holonomy’ around
the circle depicted in Figure 1.
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If we attempt a similar proof for four basis element a ≤ b ≤ c ≤ d, then we run
into trouble because there is no ‘follow your nose’ method for reordering elements
of the symmetric group S4. Instead, we may picture S4 as 24 countries in the plane
arranged like this:

Figure 2

Also depicted is a typical excursion through S4 starting and finishing at abcd,
namely

abcd�abdc�adbc�adcb�acdb�cadb�cdab�dcab

�
�

bacd dacb

�
�

bcad �cbad �cbda �cdba �dcba �dbca �dcba �dcab
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We would like to see that this excursion is consistent. There are just 8 points in the
plane where 6 countries come together. For example:

Figure 3

These are the eight points where countries of the form

a∗∗∗ or b∗∗∗ or c∗∗∗ or d∗∗∗ or ∗∗∗a or ∗∗∗b or ∗∗∗c or ∗∗∗d

meet at a vertex and these are marked by • in Figure 2. The picture above is of the
vertex ∗∗∗b and one recognises the circle from Figure 1 save that the elements a, b, c
have been relabelled d, c, a. We saw earlier that this circle corresponds to a consistent
identity for three elements in U(g) and now we obtain a consistent identity for four
elements in which b simply goes along for the ride. Geometrically, it means we may
replace the path in Figure 3 by

to obtain an alternative but simpler excursion through S4, which is consistent if and
only if the original excursion is consistent. If we can similarly pull paths through
the other 5 vertices where just four countries come together, then we can reduce any
excursion through S4 to the trivial excursion (by a series of ‘simple jerks’ in the
terminology of [1]) and our proof is complete. A typical example is
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Figure 4

but vertices like this evidently have consistent holonomy

cbad − cb[a, d]
= =

cbda bcad − [b, c]ad − bc[a, d] + [b, c][a, d]= =
bcda − [b, c]da

without using the Jacobi identity. It is because we are transposing the first two and the
last two of four letters, and such transpositions commute in S4.

So now, we may consistently reorder any four elements in U(g) and we ask about
five elements and so on. We need a similar picture of the symmetric groups SN for
all N ≥ 4. To obtain such a picture, we now admit that Figure 2 was obtained from
a tessellation of the 2-sphere by 24 geodesic triangles with angles (π/2, π/3, π/3).
Specifically, it was obtained by stereographic projection so that great circles on the
sphere are mapped to circles or straight lines on the plane whilst angles are preserved.
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Therefore, a better viewpoint on Figure 2 is as a triangulation of the 2-sphere. From
this point of view there is one more ‘easy vertex,’ as in Figure 4, out at infinity. The
fact that one can contract any excursion in S4 to the trivial excursion is due to there
being no obstructions

– at the 6 ‘easy vertices’ (commuting transpositions),
– at the 8 ‘tricky vertices’ (from the S3 case),

and the fact that the 2-sphere is simply-connected. This triangulation of the 2-sphere
is well-known in a different guise. It is obtained by letting the Weyl group of the A3
root system act on R3, as described, for example, in [2]. The triangulation is obtained
by intersecting the 24Weyl chambers with the unit sphere inR3. Since theWeyl group
of A3 may be identified withS4, one can pick a triangle to be called the ‘fundamental
triangle’ and use theWeyl group action to identify any element ofS4 with the triangle
obtained as the corresponding image of the fundamental triangle. This is how Figure 2
was obtained.

It is evident how to extend this to SN for all N ≥ 4 and, for the general pattern,
it suffices to make sure that S5 behaves as it should. The corresponding tessellation
of the unit 3-sphere is by 120 tetrahedra having (π/2, π/2, π/2, π/3, π/3, π/3) as
dihedral angles (each dihedral angle corresponds to a pair of vertices from the Dynkin
diagram • • • • , which are either adjacent (angle π/3) or not (angle π/2)). To
use the simple connectivity of the 3-sphere it now suffices to be able to move a path
on the 3-sphere through any edge of this tessellation.

As on the 2-sphere, there are two cases. Firstly, there are the ‘easy edges,’ where
just 4 tetrahedra meet at right angles. On the Dynkin diagram, edges of this type
correspond to striking out all but two 2 non-adjacent nodes

× • × • • × × • • × • × ,

in effect leaving the Weyl group of A1 × A1 as in Figure 4. It is just the Abelian group
Z2 × Z2. The ‘tricky edges’ are when 6 tetrahedron meet at angle π/3. Tricky edges
may be recorded on the Dynkin diagram by striking out all but two adjacent nodes

× × • • ←→ permuting ab∗∗∗ with a, b held fixed.

× • • × ←→ permuting a∗∗∗b with a, b held fixed.

• • × × ←→ permuting ∗∗∗ab with a, b held fixed.

The tricky edges are not obstructed since the previous reasoning using the Jacobi
identity applies (notice that we are left with A2 = • • and the Weyl group of A2 is
S3). Looking back, we see that Figure 1 is the root diagram for A2.
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