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Abstract We give an overview of publications on partial actions and related concepts,
paying main attention to some recent developments on diverse aspects of the theory,
such as partial actions of semigroups, of Hopf algebras and groupoids, the global-
ization problem for partial actions, Morita theory of partial actions, twisted partial
actions, partial projective representations and the Schur multiplier, cohomology the-
ories related to partial actions, Galois theoretic results, ring theoretic properties and
ideals of partial crossed products. Among the applications we consider in more detail
the case of the Carlsen-Matsumoto C∗-algebra related to an arbitrary subshift, but
also mention many others. The total number of publications directly related to partial
actions and partial representations is more than 130, so that it is impossible even to
describe briefly the content of all of them within the constraints of the present survey.
Thus, the majority of them are only cited with respects to specific topics, trying to
give an idea about the involved matter. In order to complete the picture, we refer the
reader to a recent book by Ruy Exel, to our previous surveys, as well as to those by
other authors.
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Since the publication of our previous survey [116] the activity around partial actions
enjoyed an increasing intensity, resulting in remarkable applications and theoretic
development, as well as the publication of the book [155] by Ruy Exel. The latter
contains algebraic andC∗-algebraic background, a comprehensive treatment of graded
C∗-algebras via Fell bundles and partial C∗-crossed products, as well as prominent
applications to Wiener-Hopf C∗-algebras associated to quasi-lattice ordered groups
and graph C∗-algebras. The working team gained new participants, in particular, a
number of young researchers have been brought to the area by their supervisors.
Dedicating this survey to Antonio Paques on the occasion of his 70th birthday, I take
the opportunity to register his remarkable leadership in introducing junior scientists
into the subject.

For a reader not familiarwith our topic,we recall that partial actions appear naturally
restricting usual (global) actions as follows. Let β be a global action of a group G on
a set Y, i.e. we have a homomorphism β : G � g �→ βg ∈ S(Y ), from G into the
symmetric group S(Y ) of all bijections (permutations) Y → Y. Now, let X ⊆ Y be a
subset. For each g ∈ G denote

Xg = βg(X) ∩ X, (1)

and restricting βg to Xg−1 we obtain a bijection αg : Xg−1 → Xg between subsets of
X (partial bijections of X ). Then the collection α = {αg : g ∈ G} gives us a partial
action of G on X. Notice that obviously

(i) α1 = idX ,

and for all x ∈ X, g, h ∈ G :

(ii) ∃ αh(x), ∃ αg(αh(x)) 
⇒ ∃ αgh(x) and αg(αh(x)) = αgh(x).

Thus one defines a partial action α of a group G on a set X as a family of partial
bijections αg : Xg−1 → Xg, (g ∈ G) of X, such that (i) and (ii) are satisfied. The
subsets Xg are called the domains of α, and one refers to the triple (X,G, α) (or, more
precisely, to the quadruple (X,G, {Xg}g∈G, {αg}g∈G)) as a partial dynamical system.

If X has some structure, then one imposes appropriate restrictions on the Xg and αg.

In particular, if we define a partial action on a ring or an algebra (or, more generally,
a multiplicative semigroup), then we assume that each domain is a two-sided ideal
and each αg is an isomorphism of rings (algebras, or semigroups).1 If our ring has
an involution then the domains should be closed under the involution and each αg is
supposed to respect the involution. If X is a topological space andG is a discrete group,
then we assume that each Xg is an open subset and each αg is a homeomorphism. In
this case we say that (X,G, α) is a topological partial dynamical system. The latter
term englobes also a partial action of a topological groupG on a topological space, for

1 Notice that in [72] the authors defined a partial group action on an algebra assuming that each Xg is a
right ideal generated by an idempotent.
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the definition of which more requirements are needed (see [4, Definition 1.1]). When
definining a partial action of a discrete groupG on aC∗-algebra one assumes that each
domain is a norm closed ideal and each αg is a ∗-isomorphism of algebras. In this case
we have a C∗-algebraic partial dynamical system. The more general definition of a
(continuous) partial action of a locally compact group on a C∗-algebra was given by
Exel [149].

A partial action of a group G on an algebra gives rise to two more concepts: that
of a partial action of G on a (multiplicative) semigroup (or monoid) and the notion
of a partial action of G on a vector space (or, more generally, a κ-module over a
commutative ring κ). In the first case each domain Xg is assumed to be a two-sided
ideal in the semigroup and every αg is a semigroup isomorphism. In the second case
the Xg are subspaces (κ-submodules) and the αg are κ-linear isomorphisms.

As we saw above, any global group action on a set Y can be restricted to any subset
X, resulting in a partial action whose domains are defined by (1). With some structure
on X the above procedure works with an appropriate assumption on Y. Thus any
group action on a topological space can be restricted to an open subset, and any group
action on a ring restricts this way to an arbitrary (two-sided) ideal. This suggests an
important question: is a given partial action can be seen (after some identifications)
as a restriction of a global one? In the case of the partial actions on sets the answer is
always positive [4] (see also [155, Theorem 3.5]), however, as we shall see below, the
situation is more complex with the presence of some structure.

The definition of a partial action of a group G on a set X can be reformulated
in several ways. Denote by I(X) the set of all partial bijections of X, including the
vacuous bijection ∅ → ∅. One defines the composition of two partial bijections ϕ and
ψ of X on the largest possible subset:

φ ◦ ψ : ψ−1(ranψ ∩ dom ϕ) → ϕ(ranψ ∩ dom ϕ).

The above operation endows I(X) with a structure of an inverse monoid with zero
∅ → ∅, called the symmetric inverse semigroup of X. Then a partial action α of G
on X gives a map α : G � g �→ αg ∈ I(X), and one may wonder which maps
G → I(X) correspond to partial actions on X.

The first answer was given by Exel [151, Proposition 4.1] relating it to the important
concept of a partial representation: a map α : G → I(X) gives a partial action if and
only if for all g, h ∈ G we have

(a) α1 = idX ,

(b) αg−1αgαh = αg−1αgh .

In this case α also satisfies
(c) αgαhαh−1 = αghαh−1 .

The passage between (b) and (c) can be easily performed by applying the inverses
of the partial bijections in I(X). This result leads to the following relevant notion. A
map α : G → S from G to a monoid S is said to be a (unital) partial homomorphism
if α sends 1G to 1S and satisfies (b) and (c) above. If S is the multiplicative monoid
of a unital algebra, then we say that α is a partial representation. This is the most
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basic relation between partial actions and partial representations, but there are others
resulting in a fruitful interaction, both theoretical and practical.

The inverse semigroup I(X) possesses a natural partial order given by restriction of
partial bijections.More generally, every inverse semigroup S has a natural partial order
defined by setting a ≤ b, (a, b ∈ S) if and only if there exists an idempotent e ∈ Swith
a = be (see, for example, [219]). It is immediately seen that (ii) above means that the
composition αg ◦αh is a restriction of αgh, so that one may write αg ◦αh ≤ αgh,which
is clearly a defining property of partial actions. One may easily obtain another one,
i.e. αg−1 = (αg)

−1. Taking this into account, Kellendonk and Lawson [204,205] gave
another way to characterize the maps G → I(X) which determine partial actions. To
formalize this, recall that a function α : S → T between inverse monoids is called a
unital premorphism [205] (also referred to as a dual prehomomorphism [220]) if for
all g, h ∈ S the following properties hold:

(1) α(1S) = 1T ,

(2) α(g−1) = α(g)−1,

(3) α(g)α(h) ≤ α(gh).

Then a map α : G → I(X) determines a partial action precisely when α is a unital
premorphism.

Here we warn the reader with respect to the use of terminology. By a partial action
of a group G on a set X the authors of [205] mean a family of partial bijections
α = {αg : Xg−1 → Xg : g ∈ G} such that the corresponding map α : G → I(X)

is a non-necessarily unital premorphism, i.e. α satisfies conditions (2) and (3). If α

also satisfies (1), then α is called unital in [205]. Nevertheless, we prefer to assume
that (1) is always satisfied, and use the term unital in a different sense. Namely, by
a unital partial action we mean a partial action of group G on a ring A such that
each domain is a unital ring, i.e. generated by an idempotent which is central in A.

These are exactly those partial actions of G on a unital ringA which are globalizable
(see [117]). Moreover, if each domain is an s-unital ring, then α is called an s-unital
partial action on A (see [8,42]). Such partial actions appeared in the study of the
globalization problem for partial group actions on s-unital rings in [136].

One should also notice that the term “partial action” of a group was also used in
the literature in a close but different sense, and we refer the reader to the survey [116]
for details.

As it is was mentioned in many occasions, the formal concept of a partial action
(in the sense we are using it) appeared in the theory C∗-algebras (see [146,149,151,
232]), permitting one to endow relevant classes ofC∗-algebras with a general structure
of a partial crossed product [147,148,150,160,264] (see also [155]), and promptly
stimulating further use and discussions in the area [1,3,4,150,152,157,158,264,271–
273]. Subsequent C∗-algebraic and topological developments on partial actions were
made in [5,6,11,60,93,112,141,159,163,222,233].

More recent C∗ and topological advances include the groupoid approach to the
enveloping C∗-algebras associated to partial actions of countable discrete groups on
(locally) compact spaces in [156], the use of inverse semigroup expansions to treatC∗-
crossed products by twisted partial actions via twisted global actions of the expansion
in [68], the full (respectively, reduced) partial C∗-crossed product descriptions of full
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(respectively, reduced) C∗-algebras of countable E-unitary or strongly 0-E-unitary
inverse semigroups as well as of tight groupoids of countable strongly 0-E-unitary
inverse semigroups in [235], the study of the continuous orbit equivalence for par-
tial dynamical systems and of the partial transformation groupoids with applications
to graph C∗-algebras and semigroup C∗-algebras in [224], the partial group action
approach to produce a Bratteli-Vershik model linked to a minimal homeomorphism
between open subsets with finite disjoint complements of the Cantor set in [179], new
developments on the globalization problem for partial actions on C∗-algebras and
Hilbert bimodules in [168], the employment of the partial crossed product theory to
the investigation of the Cuntz-LiC∗-algebras related to an integral domain in [61] with
a further development in [281] for C∗-algebras associated with an injective endomor-
phism of a group with finite cokernel. Moreover, partial crossed products turned out to
be useful to dealwithC∗-algebras arising from self-similar graph actions in [162], with
C∗-algebras associated to any stationary ordered Bratteli diagram in [185], as well as
with ultragraph C∗-algebras and related infinite alphabet shifts in [187–189,191]. In
addition, in [212], partial coactions of C∗-bialgebras, in particular of C∗-quantum
groups, on C∗-algebras were defined and studied, and a globalization result was
obtained.

Partial dynamical systems were also applied in [2] to the study of the ideal struc-
ture of full and reduced cross-sectional C∗-algebras of Fell bundles, in [25] to the
investigation of C∗-algebras of dynamical systems of type (m, n), in [74] to relative
graph C∗-algebras, in [118] to C∗-algebras associated to arbitrary subshifts, in [180]
to the study of the ideals and the pure infiniteness of partial C∗-crossed products, and
in [265] to the investigation of groupoids arising from partial semigroup actions and
topological higher rank graphs. Furthermore, partial representations and cohomology
based on partial actions turned out to be useful in dealing with the separation and inter-
section properties of ideals in global reduced C∗-crossed products [206]. In addition,
continuous partial actions of Polish groups on Polish spaces, and more generally, of
separable metrizable groups on Hausdorff (in the majority of facts metrizable) spaces
were studied in [181,182,262,263]. In particular, Effros’ theorem [144] on orbits in
Polish spaces under continuous actions of Polish groups is extended in [181] to the
context of partial actions.

A remarkable recent application was achieved to paradoxical decompositions
in [23], where for a finite bipartite separated graph (E,C) the tame graph C∗-algebra
O(E,C) was introduced and proved to be isomorphic to a partial crossed product of a
commutativeC∗-algebra by a finitely generated free group. This permitted the authors
of [23] to give a negative answer to an open problem on paradoxical decompositions
in a topological setting, posed in [207,208,267].

The first algebraic results on the subject appeared in [89,91,117,120,151,204,
205,275,276], including the first algebraic application for tiling semigroups in [204]
(with further use in [283]), for E-unitary inverse semigroups in [205], to inverse
semigroups and F-inverse monoids in [275] and to inverse monoids of Möbius type
in [91]. Independently from Exel’s definition of a partial action, Coulbois [110]
used a more restrictive notion, called a pre-action, to deal with the Ribes-Zalesski
property (RZn) of groups from model theoretic point of view (see also [111]). Fur-
thermore, Birget [56] applied the partial action definition of Thompson’s groups to
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study algorithmic problems for them. Since then the algebraic approach is being devel-
oped in diverse directions in various levels of generality, including partial actions
of Hopf (or, more generally, weak Hopf) algebras [15,17–22,48,69,72,78–83,86–
88,165,250,282], semigroups [68,97,132,197–199,209,213,220,227,233,234,242,
255], inductive constellations [198], groupoids [37,40–43,178], and, more generally,
categories [244]. In particular, further algebraic applications have been found to graded
algebras [117,121], to Hecke algebras [153], to Leavitt path algebras [184,186,190,
247], to inverse semigroups [209,227], to restriction semigroups [97,213], to automata
and machines [132,234,242,255], and to Steinberg algebras [53], [54].

At this point we observe that the term “partial action” of a monoid (or semigroup)
is used in two slightly different senses. First Megrelishvili and Schröder in [233] gave
the following definition of a partial monoid action, extending the notion of a partial
group action: given a monoid M with unit e and a set X, a (left) partial action of M
on X is a partially defined map M × X → X, (m, x) �→ m · x, such that, for all
x ∈ X, u, v ∈ M :
(i) e · x = x, for all x ∈ X,

(i i) ∃ v · x, ∃ u · (v · x) 
⇒ ∃ (uv) · x and u · (v · x) = (uv) · x,

(i i i) ∃ v · x, ∃ (uv) · x 
⇒ ∃ u · (v · x) and u · (v · x) = (uv) · x .
A right partial action is defined symmetrically. The above was called a strong partial
action of a monoid in the article [199] by C. Hollings, whereas in his definition of
a partial monoid action (sometimes also referred to as a weak partial action) only
(i) and (i i) are assumed. Of course, if in the definition by C. Hollings (i.e. in (i)
and (i i)), we replace M by a group G, we obtain the concept of a partial group
action in the form spelled out by Kellendonk and Lawson [205]. Ignoring above (i)
we obtain the notion of a strong partial action of a semigroup, and omitting both (i)
ad (i i i) we come to that of a (weak) partial semigroup action. The partial monoid
actions considered [97,213] are weak, whereas in [197] both weak and strong partial
monoid (or semigroup) actions are discussed. Strong partial monoid actions were used
in [132] under the name “preactions” to define the concept of a preautomaton (see
also [234,242,255]). Notice that the term “partial automaton” is already in use in a
larger sense. Observe that there is a third kind of “partial actions” of monoids (or
semigroups) called in [197, Definition 3.2] incomplete actions (see also [199, p. 297]
and [266, §3]). The definition of an incomplete action is obtained by replacing (i i)
and (i i i) above by the following stronger requirement:

(i i ′) ∃ v · x, ∃ u · (v · x) ⇐⇒ ∃ (uv) · x, in which case u · (v · x) = (uv) · x,
x ∈ X, u, v ∈ M. Each incomplete action is a strong partial action, but there are
strong partial actions which are not incomplete (see Examples 2 and 3 in [197]). Note,
in addition, that the class of weak partial actions also properly contains the class of
strong partial actions [199, Example 2.11].

In the definition of a partial action of an inverse semigroup the language of premor-
phisms is usually adopted. More precisely, in [68,220] a partial action of an inverse
semigroup G on a set X is defined as an order-preserving premorphism G → I(X),

whereas in [209] an arbitrary premorphismG → I(X) is considered as a partial action.
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In [68, Definition 2.11] the notion of a partial homomorphism of an inverse semigroup
G into a semigroup is defined and it is proved that a map between inverse semigroups
is a partial homomorphism if and only if it is an order-preserving premorphism [68,
Proposition 3.1]. Thus, similarly to the group case, partial actions of inverse semi-
groups on sets from [68,220] can be characterized as partial homomorphisms of the
form G → I(X). Notice that in [227] partial actions of primitive inverse semigroups
on sets were considered and applied to E∗-unitary categorical inverse semigroups.

More generally, weak and strong right partial actions of a left restriction semigroup
S on a set X are defined by Gould and Hollings in [197, Definitions 3.3, 3.4], by
adding to the right-handed forms of (i i) and (i i i) an additional axiomwhich takes into
account the presence of the unary operation u �→ u+ :
(iv) ∃ x · u 
⇒ ∃ x · u+ and x · u+ = x,

u ∈ S, x ∈ X. Left restriction semigroups may be viewed as an axiomatization of
the partial transformation monoid PI(X) (see [196,197,200]). The latter is defined
as the semigroup of all partial maps of X, i.e. non-necessarily bijective functions of
the form X ⊇ Y → Z ⊆ X. Notice that each left restriction semigroup can be seen as
a subsemigroup of the partial transformation monoid PI(X) of some set X, which is
closed under the unary operation of “taking domains”, i.e. + : ϕ �→ iddom ϕ (see [197,
Theorem 2.2], [196, Corollary 6.3]). Since every inverse semigroup G is isomorphic
to a +-closed subsemigroup of I(X) ⊂ PI(X), it follows that G is a left restriction
semigroup. Another example of a left restriction semigroup is given by the Szendrei
expansion of a monoid [200, Proposition 3.3]. It was shown in [197, p. 367] that partial
actions of an inverse semigroup G, in the sense of [68,220], are exactly the strong
partial actions of G considered as a left restriction semigroup.

One of the relevant problems in the theory is that of the globalization: given a group
(semigroup, groupoid etc.) G acting partially on an object X, construct an embedding
of X into a larger object Y and a global action of G on Y, such that the initial partial
action can be obtained as a restriction of the global one.2 This was studied first in the
PhD Thesis [3] (see also [4]) and, independently from [3,4], in [205,276]. Subsequent
results were obtained in [27,38,102,117,122,136,156,169], and more recently in [8,
50,51,105,168,262,263]. The question was also considered for partial semigroup
actions in [197,199,209,213,227,233], for partial groupoid actions in [41,42,178],
and around partial Hopf (co)actions in [15,18,19,21,78–80].

The importance of the globalization problem lies in the possibility to relate partial
actions with global ones and this way try to move from global results to the partial
setting, producing more general facts, as well as to obtain applications to the global
case in situations in which partial actions appear naturally, as it occurred in [23]. Thus
facts about globalization from [4] were used in [237] with respect to K -theory of
reduced C∗-algebras of 0-F-inverse semigroups, in [225] in the K -theoretic study
of reduced crossed products attached to totally disconnected dynamical systems, and
in [26] for partial flows with application to Lyapunov functions. In addition, globa-
lizable partial actions were essential for the development of Galois Theory of partial
group actions in [123], for the elaboration of the concept of a partial Hopf (co)action

2 Such a global action with a natural additional assumption is called an enveloping action.
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in [72], as well as in a series of ring theoretic and Galois theoretic investigations
in [27,29,30,32,35,39,41,49,50,69,77,98,99,101,104,106,171,176,252,253].

Another way to relate partial and global actions was given in Exel’s paper [151],
in which for any group G a semigroup S(G) was defined by means of generators
{[g] |g ∈ G} and relations:

[g−1][g][h] = [g−1][gh],
[g][h][h−1] = [gh][h−1],

[g][1G] = [g],

g, h ∈ G (it follows that [1G][g] = [g]).3 It was proved that S(G) is an inverse
semigroup [151, Theorem 3.4], and the partial actions of G on a set X are in one-to-
one correspondence with the (global) actions of S(G) on X (see [151, Theorem 4.2]).
The injective map

G � g �→ [g] ∈ S(G),

is the canonical partial homomorphism, which plays a key role in the above result.
Thus, instead of embedding X into a larger set (or object), one “expands”G, obtaining
a global action on X. It directly follows from the Exel’s definition of S(G) that any
partial representation ofG can be uniquely extended bymeans of the abovementioned
map G → S(G) to a (usual) representation of S(G) [151, Proposition 2.2].

The inverse semigroup S(G) can be characterized as an expansion ofG in the sense
of Birget and Rhodes [57] (see also [58]), as follows. An expansion is defined as a
functor F from the category of semigroups into some special category of semigroups
which has the property that there is a natural transformation η from the functor F
to the identity functor such that ηS is surjective for every semigroup S. Amongst the
several expansions discussed in [57], the so called prefix expansion is relevant for us.
In [279, Proposition 1] M. Szendrei gave a simple and very useful description of the
prefix expansion Pr(G) (also denoted by G̃ R) of a group G, and proved that Pr(G) is
an F-inverse semigroup which enjoys a certain universal “F-inverse property” [279,
Corollary 3]. The latter is a consequence of a more general result [279, Theorem 2],
which states that Pr(.) is a functor from the category of groups into the category of
F-inverse semigroups, which is a left adjoint of the functor assigning the greatest
group homomorphic image to any F-inverse semigroup.

The construction can be applied to anymonoid M (or even to any semigroup) and is
called the Szendrei expansion of M [175,197–199]. In general the Szendrei expansion
Sz(M) of a monoid M differs from the Birget–Rhodes prefix expansion Pr(M), but
Sz(G) = Pr(G) if G is a group. M. Szendrei’s idea is of high importance for partial
actions, and, in oder to recall it, denote by P1(M) the set of all finite subsets of a
monoid M containing 1. Then

Sz(M) = {(A, x) : A ∈ P1(M), x ∈ A},

3 The semigroup S(G) was denoted by E(G) in [129–131].
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with the operation given by

(A, x)(B, y) = (A ∪ x B, xy).

If M is a semigroup without identity element, then one adjoins an external 1 and
replaces M by M1 = M ∪ {1} in the above definition. Kellendonk and Lawson have
shown in [205] that S(G) is isomorphic to Sz(G), and, as a consequence, to Pr(G).

It is derived from a universal property of Pr(G) with respect to premorphisms [205,
Theorem 2.4]. Thanks to the isomorphism S(G) ∼= Pr(G), Exel’s definition of S(G)

gives a presentation for Pr(G) = Sz(G) in terms of generators and relations.
The above facts turned S(G) into a highly important tool, especially when dealing

with partial projective group representations [129–131], and the cohomology theory
based on partial actions [124–126], as well as when relating crossed products by partial
actions of groupswith crossed products by inverse semigroup actions [163]. Theywere
used in [91] to study realizations of Pr(G) as an inverse monoid ofMöbius type related
to a partial action of G on a Hausdorff space. Moreover, the expansion method was
further developed and used for partial actions of inverse semigroups in [68,220], of
groupoids in [37,40,178], of monoids in [199], of restriction semigroups in [197]
and of inductive constellations in [198]. In particular, Buss and Exel gave in [68]
a presentation for the generalized prefix expansion Pr(G) of an inverse semigroup
G, introduced earlier by Lawson et al. [220]. It is proved in [68] that twisted partial
actions of G on C∗-algebras correspond to twisted global actions of Pr(G), and this
correspondence preserves C∗-crossed products.

It became clear already from the results in [3,4,205,276] that the globalization prob-
lem strongly depends on the category under consideration. In particular, globalizations
of partial actions on topological spaces always exist, nevertheless, the topological prop-
erties of the initial space are not necessarily shared by the space under the global action.
According to [4, Example 1.4] there exists a partial group action on a Hausdorff space
whose (minimal) globalization acts on a non-Hausdorff space, and, moreover, in [4,
Proposition 1.2] a criteria was given for the preservation of the Hausdorff property
under globalization. Because of the categorical equivalence between locally compact
Hausdorff spaces and commutative C∗-algebras, this implies that partial actions on
C∗-algebras are not globalizable in general (see Proposition 2.1 in [4] for a criteria
of the existence of a globalization of a partial action on commutative C∗-algebras).
On the other hand, it was shown in [4, Theorem 6.1] that they are globalizable “up
to Morita equivalence”. More precisely, the concept of Morita equivalence of partial
actions of locally compact groups on C∗-algebras was introduced and studied in [4]
(see also [273] for the case of discrete groups), as well as that of a Morita enveloping
action, which is roughly a global action, whose restriction is a partial action Morita
equivalent to the initial one. It was shown that Morita equivalent partial actions have
(strongly) Morita equivalent reduced C∗-crossed products. Furthermore, the reduced
C∗-crossed product of a partial action is (strongly) Morita equivalent to that of the
Morita enveloping action. Notice that a particular Morita equivalence fact based on a
partial action on a commutative C∗-algebra from [4] was recently related to a result
from [211] by the authors of the above mentioned paper [235]. In the latter article a
number of important Morita equivalence facts for C∗-algebras were estabilshed.
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Influenced by Abadie’s paper [4], the abstract ring theoretic analogues of the above
mentioned concepts from [4] were defined and studied in [8]. Facts similar to those
from [4] were proved in the context of idempotent rings, whose Morita theory was
developed in [177].Moreover, some furtherMorita theoretic resultswere also obtained,
including the behavior of Morita equivalent partial actions under the passage to matri-
ces of infinite sizewithfinite number of non-zero entries. The latter has noC∗-algebraic
analogue so far, and the treatment heavily depends on the techniqueworked out in [121]
to prove a ring theoretic analogue of a stabilization result for C∗-algebraic bundles
from [149].

The theory in [8] is developed for the so-called regular partial group actions on
idempotent rings. This includes all partial actions on C∗-algebras, as well as all s-
unital partial actions. Note that the s-unital condition on a ring generalizes all kind of
unity conditions in ring theory, including the existence of local units. The regularity
assumption imposes a mild restriction on the domains of the partial isomorphisms
involved in a partial action, more precisely, the intersection of domains are assumed to
coincide with their product. This is a suitable constraint since, on one hand, it resolves
the discrepancy between the definitions of partial actions given in [117,121], and on
the other, in almost all investigations on the subject the considered partial group actions
on algebras (or rings) are regular, so that this concept provides a sufficiently general
framework for the theory.

It is a well-known fact that Morita equivalent commutative rings with 1 are neces-
sarily isomorphic. More generally this holds for non-degenerate idempotent rings, as
established in [177]. An analogous result for partial actions was given in [8]: Morita
equivalent s-unital partial actions of a group G on commutative algebras must be
isomorphic. A similar fact forC∗-algebras was also established in [8]: Morita equiva-
lent partial actions of a discrete group G on commutative C∗-algebras are necessarily
isomorphic.

The theory ofMorita equivalent partial actions onC∗-algebras from [4] was further
developed by introducing the concept of a weak equivalence for arbitrary Fell bundles
over locally compact Hausdorff groups [10] and that of their strong equivalence [7].
Theweak equivalence captures the relation between a globalizable partial group action
α on aC∗-algebra and its enveloping action β: the Fell bundles corresponding to α and
β are weakly equivalent (see [10, Example 2.21]). More generally, it follows from the
results in [4,10] that everyFell bundle associated to a partial action isweakly equivalent
to the Fell bundle associated to a global action [10, Corollary 5.15]. Furthermore,
amenability is preserved under weak equivalence [10] (see also [7]).

The more restrictive notion of a strong equivalence of Fell bundles is a natural
generalization of that of a Morita equivalence of partial actions: two partial actions
on C∗-algebras are Morita equivalent if and only if the Fell bundles associated to
them are strongly equivalent [7, Corollary 4.9]. One of the main results in [7] asserts
that every Fell bundle is strongly equivalent to a semidirect product Fell bundle for a
partial action. Consequently, every Fell bundle is weakly equivalent to the semidirect
product Fell bundle of a global action. In addition, it is shown in [7, Corollary 4.3] (see
also [10, Proposition 4.13]) that weakly equivalent Fell bundles have (strongly)Morita
equivalent full and reduced cross-sectional C∗-algebras. Notice that [217, Proposition
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7.1] implies that the reduced C∗-algebra of a Fell bundle over a discrete group G is
Morita equivalent to the reduced crossed product by a global action of G.4

In the recent article [168] the problem of the existence of an enveloping action for
a partial group action on a non-necessarily unital (abstract) ring was investigated and
applied to the globalization problem for partial actions onC∗-algebras and equivalence
Hilbert bimodules. More specifically, amongst various facts it was proved that if a par-
tial action α = {αg : Ag−1 → Ag, g ∈ G} of a (discrete) group on a (non-necessarily
unital) ring A admits a globalization, then the following condition is satisfied:
For each (g, a, b) ∈ G × A × A there exists u ∈ Ag such that

cu = αg(αg−1(c)a)b and uc = αg(aαg−1(bc)), (2)

for all c ∈ Ag (see [168, Theorem 2]).
Under appropriate non-degeneracy assumptions (which always hold for C∗-algebras)
condition (2) becomes sufficient for the existence of a globalization for α.

For the C∗ case, let G be an arbitrary topological group and α be a C∗-partial
action of G on a C∗-algebra A. Contrary to the usual practice in C∗-theory, G is not
assumed to be Hausdorff nor locally compact. The topological generality of G aims
to understand the effect of the group’s topology on the existence of a globalization.
Write Gdis regarding G as a discrete group and let αdis be theC∗-partial action of Gdis

on A given by α. Then [168, Corollary 2] means that for the globalization problem
the topology of G can be forgotten, i.e. α admits a C∗-globalization if and only of so
does αdis.Moreover, [168, Theorem 5] asserts that α has aC∗-globalizaton if and only
of α admits a ring theoretic globalization. The latter is shown to be equivalent to the
condition given by the first equality in (2). As a consequence, it follows using [117,
Theorem 4.5] that a C∗-partial action α on a unital C∗-algebra A possesses a C∗-
globalization if and only if α is unital, spelling out thus aC∗-version of [117, Theorem
4.5].

The above mentioned Morita theory for partial actions on C∗-algebras [4] involves
the so-called C∗-ternary rings, which also may be seen as equivalence Hilbert bimod-
ules, and the author of [168] proves that a partial action of a topological group on
an equivalence Hilbert bimodule has a globalization if and only if its linking partial
action [4] has a C∗-globalization [168, Corollary 6]. Notice that new applications of
C∗-ternary rings to C∗-algebras were given in [9].

Another recent development on the globalization problemwas obtained in [21] with
respect to twisted Hopf partial actions. Partial actions of Hopf algebras on algebras
were defined by Caenepeel and Janssen [72] influenced by the Galois theory of partial
group actions developed in [123]. The latter stimulated also further Galois theoretic
results in [69], which were based on a coring C constructed for a unital partial action
of a finite group, offering thus a more conceptual approach to partial Galois theory via
Galois corings.5 The coring C was shown to fit the general theory of cleft bicomodules
in [65], and, in addition, in [66] descent theory for corings was applied, using C, to

4 The author thanks Fernando Abadie for drawing his attention to this fact.
5 The authors of [69] use the term idempotent partial action, nevertheless we prefer to employ the latter
name in a different sense.
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define non-Abelian Galois cohomology (i = 0, 1) for unital partial Galois actions
of finite groups. The article by Caenepeel and Janssen [72], in its turn, became the
starting point for a series of investigation of partial Hopf (co)actions (see the articles
cited above), in particular, several globalization resultswere obtained in [15,18,19,78–
80,212].

On the other hand, the twisted version of partial group actions on (abstract) algebras
were introduced and studied in [121]. This was inspired by the R. Exel’s notion of a
continuous twisted partial action of a locally compact group on aC∗-algebra (a twisted
partial C∗-dynamical system) and that of the corresponding crossed product [149].
The new construction permitted one to show that any second countable C∗-algebraic
bundle, which satisfies a certain regularity condition (automatically verified if the
unit fiber algebra is stable), is a C∗-crossed product of the unit fiber algebra by a
continuous partial action of the base group [149]. The algebraic version of the latter
fact was established in [121]. This algebraic concept was applied to Hecke algebras
in [153], where, among other results, it was proved that given a field κ of characteristic
0, a group G and subgroups H, N ⊆ G with N normal in G and H normal in N ,

there is a twisted partial action θ of G/N on the group algebra κ(N/H) such that
the Hecke algebra H(G, H) is isomorphic to the crossed product κ(N/H) ∗θ G/N .

The globalization problem for twisted partial group actions was investigated in [122],
whereas other algebraic results on twisted partial actions on rings and corresponding
crossed products were obtained in [39,44,49,50,253].

Motivated by the concept of a twisted partial group action given in [121] on one
hand, and the developments on partial Hopf actions on the other, twisted partial actions
of Hopf algebras on ringswere introduced in [20], as well as the corresponding crossed
products. Examples using algebraic groups were elaborated, more precisely, actions of
an affine algebraic group on affine varieties give rise to coactions of the corresponding
commutative Hopf algebra H on the coordinate algebras of the varieties, restrictions
of which produce concrete examples of partial Hopf coactions. Then one dualizes in
order to obtain partial Hopf actions. The dualization passage works theoretically, but
may far from being easy in concrete examples. One possibility is to try to identify
the finite dual H0 for a specific H obtained in the above way. A more flexible possi-
bility is to find a concrete Hopf algebra H1 such that H and H1 form a dual pairing.
Then [18, Proposition 8] produces a partial action of H1. A concrete example was
elaborated [20], which was easily endowed with a twisted structure by means of a 2-
cocycle. Furthermore, symmetric twisted partial Hopf actions were introduced in [20]
in order to treat the convolution invertibility of the partial cocycle in a manageable
way. This permitted one to get a relation between crossed products and the so-called
partially cleft extensions. The latter were also introduced in the same paper [20], and
the definition reflects “partiality” in more than one way, incorporating, in particular,
some equalities already proved to be significant in the study of partial group actions
and partial representations. Then one of the main facts in [20] states that the partial
cleft extensions over the coinvariants A are exactly the crossed products by symmetric
twisted partial Hopf actions on A. One should notice that it was proved in [165] that
the crossed products by twisted partial Hopf actions [20] form a particular case of the
more general weak crossed products defined in [164].
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Then it became natural to investigate the globalization problem for twisted partial
Hopf actions on rings [21]. The main result says that a symmetric twisted partial
action of a Hopf algebra H on a unital algebra A associated to the symmetric pair
of partial cocycles ω and ω′, is globalizable if, and only if, there exists a normalized
convolution invertible linear map ω̃ : H ⊗ H → A satisfying certain compatibility
conditions, intertwining the partial action of H onA and the restriction of the twisted
action of H on B. A series of examples were elaborated. In particular, a complete
characterization of partial measuring maps were given in the case of H being the
group algebra κG, the dual (κG)∗ of the group algebra κG of a finite group G, and
the Sweedler Hopf algebra H4, and A coinciding (in all three cases) with the base
field κ . Furthermore, symmetric twisted partial Hopf actions were described in details
for specific Hopf algebras. In particular, the case of a group algebra κG recovers the
theory of twisted partial actions of groups as developed in [121,122]. For the Sweedler
Hopf algebra H4, the only symmetric twisted partial actions are the global ones. In
addition, for the case of the dual (κG)∗ of the group algebra of a finite group G,
the appearing partial cocycles have remarkable symmetries, and they were related to
global cocycles of dual group algebras of quotient groups. The specific example for
the Klein four-group K4, acting on the base field κ, was done in more details, and it
was shown that the symmetric twisted partial actions of (κK4)

∗ on κ are parametrized
by the zeros (x, y) ∈ κ2 of a polynomial in x, y of degree 2.An explicit partial cocycle
for (κK4)

∗ was given which leads to a globalizable symmetric twisted partial action.
Moreover, it was shown that the example of a twisted partial Hopf action, constructed
in [20] using the relation between algebraic groups and Hopf algebras, is globalizable.

The algebraic advances on Hopf partial actions influenced a C∗-theoretic develop-
ment: in the already mentioned paper [212], the approach for partial Hopf coactions
from [19] motivated a globalization result for partial coactions of C∗-quantum groups
satisfying a mild restriction, which always holds if the quantum group is discrete, or
if the C∗-algebra of the quantum group is nuclear. The construction of the enveloping
action gives a left adjoint to the forgetful functor from coactions to partial coactions
(with an appropriate choice of categories).

The algebraic concept of twisted partial actions also motivated the study of projec-
tive partial group representations, the corresponding partial Schur Multiplier and the
relation to partial group actionswith κ-valued twistings in [129–131], and contributing
thus towards the elaboration of a background for a general cohomology theory based
on partial actions.

A (usual) projective representation of a groupG can be defined as a homomorphism
from G to the projective linear group PGLn(κ). In order to define partial projective
representations one replaces usual homomorphisms by partial ones as follows. Denote
by PMatnκ the monoid of the projective n × n matrices over a field κ , i.e. PMatnκ =
(Matnκ)/λ, where λ is the congruence given by AλB ⇐⇒ A = cB for some c ∈ κ∗.
Then we define a partial projective representation of G as a partial homomorphism of
the form G → PMatnκ [129]. Taking representatives in the congruence classes, we
may consider a partial projective representation as a function of the formG → Matnκ.

As in the classical case, factor sets appear naturally: a factor set of a partial projective
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representation � : G → Matnκ is a function σ : G × G → κ such that

σ(g, h) = 0 ⇐⇒ �(g)�(h) = 0, (3)

�(g−1)�(g)�(h) = �(g−1)�(gh)σ (g, h), (4)

and

�(g)�(h)�(h−1) = �(gh)�(h−1)σ (g, h), (5)

for all g, h ∈ G (see [129, Theorem 3]). The set

X = Xσ = {(g, h) ∈ G × G : �(g)�(h) �= 0}

is called the domain of σ (or the domain of �).
More generally, in [129] the partial projective representations are considered as

functions of the form � : G → M, where M is a so-called κ-cancellative monoid
(see [129, Definition 2]).

The theory of partial projective representations is strongly related to Exel’s semi-
group S(G). In fact, they can be alternatively defined via projective representations
of S(G), so that the theory of projective representations of semigroups and their
Schur multipliers, elaborated by Novikov in [238–240] (see also [241]), comes
into the picture as an essential working tool. The usual cohomology of semigroups
does not serve the projective semigroup representations, instead the more general
0-cohomology [240] fits them with its natural partial flavor.

The factor sets of the partial projective representations of G form a commutative
semigroup, whose equivalence classes constitute the partial Schur Multiplier pM(G).
The latter is a commutative inverse semigroup, and as such it is a semilattice of
abelian groups pMX (G), called components, where X runs over the domains of the
partial projective representations of G. One of the component, namely, the group
of the equivalence classes of the totally defined factor sets pMG×G(G), contains
the usual Schur Multiplier M(G) of G, but pMG×G(G) is essentially bigger than
M(G). In [130] the structure pMG×G(G)was investigated over an algebraically closed
field κ and the technique of [130] was further developed in [131], permitting one to
extend the description to any component pMX (G), and to show that each pMX (G)

is an epimorphic image of pMG×G(G). Furthermore, it was also shown in [131] that
each pMX (G) is an epimorphic image of a direct power of κ∗ (κ is assumed to be
algebraically closed).

Since the partial projective representations of a group G are intimately related to
the projective representations of the inverse semigroup S(G), it was natural to explore
this connection and use it as a working tool. This relation was established in [129]
and further explored in [130,131], incorporating some simplifications. One of them
is a passage from the semigroup S(G) to its quotient S3(G). In order to define the
latter, we identify S(G) with Sz(G), sending the generator [g] ∈ S(G), g ∈ G,

from the initial definition of S(G) to the pair ({1, g}, g) ∈ Sz(G), [205]. Denoting
by Nk the ideal {(R, g) ∈ S(G) | |R| ≥ k + 1} of S(G), the semigroup S3(G) is
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the quotient S(G)/N3(G).6 Reductions based on this passage permitted one to obtain
characterizations of partial factor sets of G over an algebraically closed field, one of
which gives defining equalities for the partial factor sets that curiously have nothing to
do with the 2-cocycle identity, but nicely incorporate the symmetry under the action
of the symmetric group S3 [131, Theorem 5.6]. These results led to general facts on
the structure of the components of pM(G) and allowed one to perform calculations
for concrete groups.

R. Exel’s concept of a continuous twisted partial action [149] and its purely ring
theoretic version [121] involve a general twisting which satisfies the 2-cocycle identity
in some restricted sense, and it was natural to fit this in some cohomology theory. A
relation of this cohomology to the partial Schur Multiplier is naturally expected, as the
classical Schur Multiplier is isomorphic to the cohomology group H2(G, C), where
the action of G on C is trivial. The main idea is to replace usual G-modules, i.e.
global actions of G on abelian groups, by partial G-modules, which are partial actions
of G on commutative monoids. The first step was done in [124] with more recent
developments in the preprints [125,126]. Since the twistings in [121] take values in
multiplier algebras of products of some ideals, it was reasonable to avoid multipliers
at the beginning, imposing a rather usual restriction on the partial action, namely, that
it is unital. We recall that a partial action on a ring (or a semigroup) is called unital
if each domain is an ideal generated by an idempotent, which is central in the ring
(semigroup).

If we assume that the ring A under a unital twisted partial action of a group G
is commutative, then the action falls into two parts: a partial action α of G on A
and its twisting. This way we derive the notion of a partial 2-cocycle (the twisting)
whose values belong to groups of invertible elements of appropriate ideals of A.

The concept of a partial 2-coboundary then follows from that of an equivalence of
twisted partial actions introduced in [122]. Of course, in the general definition we do
not need a ring structure on A, so assuming that A is a commutative multiplicative
monoid, one comes to the definition of the second cohomology group H2(G, A).

The groups Hn(G, A) with arbitrary n are defined in a similar way. More precisely,
given a partial G-module A, i.e. a commutative monoid endowed with a partial action
α = {αg : Ag−1 → Ag, g ∈ G}, for any n > 0 one defines n-cochains of G with
values in A as functions f : Gn → A, such that f (x1, . . . , xn) is an invertible element
of the ideal A(x1,...,xn) = Ax1 Ax1x2 . . . Ax1...xn . By a 0-cochain we mean an invertible
element of A. Then the set Cn(G, A) of n-cochains is an abelian group under the
pointwise multiplication with the identity element

en(x1, . . . , xn) = 1x11x1x2 . . . 1x1...xn ,

and the inverse of f ∈ Cn(G, A) being f −1(x1, . . . , xn) = f (x1, . . . , xn)−1, where
f (x1, . . . , xn)−1 means the inverse of f (x1, . . . , xn) in A(x1,...,xn).
Next, for any f ∈ Cn(G, A) and x1, . . . , xn+1 ∈ G define the coboundary map:

(δn f )(x1, . . . , xn+1) = αx1(1x−1
1

f (x2, . . . , xn+1))

6 The semigroup S3(G) was denoted by E3(G) in [130,131].
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n∏

i=1

f (x1, . . . , xi xi+1, . . . , xn+1)
(−1)i

f (x1, . . . , xn)
(−1)n+1

.

Here the inverse elements are taken in the corresponding ideals. If n = 0 and a is an
invertible element of A,we set (δ0a)(x) = αx (1x−1a)a−1. Then δn is a homomorphism
Cn(G, A) → Cn+1(G, A), and

δn+1δn f = en+2

for any f ∈ Cn(G, A) (see [124]). Now, as in the classical case, we define the abelian
groups Zn(G, A) = Ker δn , Bn(G, A) = Im δn−1 and

Hn(G, A) = Ker δn/Im δn−1

of partial n-cocycles, n-coboundaries and n-cohomologies of G with values in A,
n ≥ 1 (H0(G, A) = Z0(G, A) = Ker δ0).

One actuallymay replace A by an appropriate submonoid Ã, which is inverse [124].
This brings A closer to the classical case, as the commutative inverse monoids are
natural generalizations of abelian groups, not being too far from them.

One of the difficulties with the partialG-modules is that they do not form an abelian
category. Nevertheless, our partial cohomology can be related to the Lausch-Leech-
Loganathan cohomology of inverse semigroups (see [218,223,229]) via the R. Exel’s
inverse monoid S(G). From a unital partial action of G on A one comes to an action
of S(G) and then to an “almost” Lausch’s S(G)-module structure on A. The latter
can be seen as a module in the sense of H. Lausch over an epimorphic image of S(G),
provided that A is an inverse partial G-module. Thus our category is made up of
abelian “pieces” which are categories of Lausch’s modules over epimorphic images
of S(G). This way we are able to define free objects and free resolutions which lead to
Hn(G, A) [124].We also showed that the partial Schurmultiplier pM(G) is a union of
2-cohomology groups of G with values in non-necessarily trivial partial G-modules.

Then it was natural to give an interpretation of the partial 2-cohomology group in
terms of extensions. This was initiated in [125], and at some point it became clear that
it is preferable to abandon the restriction on a partial action to be unital, imposed by
cohomology theory in [124], covering thus a more general situation. The key notion is
that of an extension of a semilattice of groups A by a groupG [124], the main example
being the crossed product A ∗α G by a twisted partial action α of G on A. Such an
extension is related to the notion of an extension of A by an inverse semigroup S, that of
a twisted S-module and the corresponding crossed product given in [218]. In particular,
given an extension A → U → G there is a refinement A → U → S → G such that
A → U → S is an extension of A by S, where S is an E-unitary semigroup. In order
to make the theory work well we impose an admissibility condition on the extensions
A → U → G, and the S-module structures on A, that we obtain this way, possesses
twistings which satisfy a normality condition, considered byN. Sieben in [272], which
is stronger than the one imposed byLausch [218]. For this reasonwe call themSieben’s
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twisted modules. Then we are able to show that any admissible extension A → U →
G is equivalent to some crossed product extension A → A ∗α G → G, and the
final fact in [125] establishes an equivalence preserving one-to-one correspondence
between twisted partial actions of groups on A and Sieben’s twisted module structures
on A over E-unitary inverse semigroups.

The theory of extensions in [125] went beyond the cohomology theory in [124], so
that it became clear that it is more natural to deal with a more general multiplier valued
cohomology theory. This is done in [126] where the cohomology groups Hn(G, A),

with A being a non-necessarily unital partial G-module, were defined. For an inverse
semigroup S and an S-module structure on A we also define the cohomology groups
Hn≤(S1, A1) based on order preserving cochains and relate them to Hn(G, A). This is
motivated by the fact that Sieben’s twisted S-modules have order preserving twistings.
The elements of the second cohomology group H2(G, A) are proved to be in one-
to-one correspondence with the equivalence classes of the extensions of A by G. In
addition, we define the concept of a split extension A → U → G and prove that the
elements of H1(G, A) are in one-to-one correspondence with the equivalence classes
of splittings of U.

Note that partial group cohomology turned out to be useful to study ideals of global
reduced C∗-crossed products: to a given global C∗-dynamical system the authors
of [206] associate a partial C∗-dynamical system, giving rise to a “twisted partial
representation”, which is a projective partial representation, whose factor set (twist)
is a partial 2-cocycle σ . If σ is a 2-coboundary, then the initial (global) C∗-dynamical
system is said to have “vanishing obstruction”. As the authors say: “In a certain pre-
cise sense, the twist is the only obstruction to understanding the ideal structure of
the reduced crossed product”. Assuming the vanishing obstruction property, several
necessary and sufficient conditions for the ideal intersection property are given. The
latter is known to be closely related to the ideal separation property.

Further results on partial projective representations were obtained in [128,131,226,
243,257,258,260,261] (see also the short survey [259]). In particular, computations
of the partial Schur multiplier of concrete groups in [131,226,243,258,260] show that
each component is, in fact, isomorphic to a direct power of κ∗, suggesting that this
should be true for all groups. This motivated the recent preprint [137], in which this
conjecture was confirmed for all finite groups over an algebraically closed field. This
surprisingly gives a better understanding of the structure of pM(G) than one has for
that of the usual Schur Multiplier.

Using [129, Proposition 2] one can show that a partial factor set σ satisfies the
following weak 2-cocycle condition:

1 ∈ {x, y, z, xy, yz, xyz} ⇒ δ2σ(x, y, z) = 0. (6)

The key idea in [137] is to replace κ∗ by an arbitrary abelian group A and define
pre-cocycles which are functions σ : G × G → A obeying condition (6). They
form a group denoted by pZ2(G, A). Since the equivalence of partial factor sets
is defined modulo classical coboundaries, it is reasonable to introduce the factor
group pZ2(G, A)/B2(G, A), which is denoted by pH2(G, A) and called the pre-
cohomology group of G with values in A. Aiming to generalize the components
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pMX (G) of the partial Schur multiplier pM(G), one wishes to restrict pre-cocycles
to domains. By [131, Proposition 5.3] there is a bijection between the domains of
factor sets of partial projective representations of G and the following set of ideals:

� = {I � S(G) | N3 ≤ I �= S(G)}.

The correspondence takes a domain X to the ideal I ∈ � such that for all x, y ∈ G :

(x, y) ∈ X ⇐⇒ [x][y] /∈ I.

Let now A ∪ {0} be the semigroup obtained by adjoining a zero 0 to the group A
(we assume the multiplicative notation for A).7 Considering for any ideal I ∈ � the
function εI : G × G → A ∪ {0} determined by

εI (g, h) =
{

0 if [g][h] ∈ I,
1A otherwise,

and setting

Z2(G, I ; A) = pZ2(G, A)εI , B2(G, I ; A) = B2(G, A)εI ,

the quotient

H2(G, I ; A) = Z2(G, I ; A)/B2(G, I ; A),

is called the second partial cohomology group relative to I with coefficients in A. As
the abelian groups pMX (G) assembles into the partial Schur multiplier pM(G), it is
natural to define the second partial cohomology semilattice of groups of G by

H2(G,�; A) =
∐

I∈�

H2(G, I ; A).

Another fruitful point in [137] is to view partial factor sets as liftings (sections)
ϕ : G → E of partial homomorphisms ψ : G → M related to appropriate central
extensions κ∗ → E → M fitting the following commutative diagram:

G

ψ
ϕ

κ∗ ι
E

π
M

(7)

Then for anyσ ∈ Z2(G, I ; A) it is possible to construct a central extension A → E →
M, a partial homomorphism ψ : G → M and its lifting (section) ϕ : G → E, such

7 In [137] A is additive and the zero element is denoted by ∞.
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that the diagram (7) is commutative upon the replacement of κ∗ by A, and σ plays the
role of the factor set related to ϕ as in (3), (4), (5). This leads to a bijection between the
elements of H2(G, I ; A) and the equivalence classes of certain appropriately defined
central extensions [137, Theorem 3.3]. This way the partial Schur multiplier pM(G)

over an arbitrary field κ coincides with the second partial cohomology semilattice of
groups with values in A = κ∗, the components of which being second relative partial
cohomology groups.

Theorem 4.3 em [137] gives a precise structure of the pre-cohomology group for a
finite group G of order n an any abelian group A :

pH2(G, A) � Am−n ⊕ A ⊗ G/[G,G],

where m = (n2 + 2|G(3)| + 3|G(2)| + 5)/6 and G(k) stands for the set of elements
of order k in G. Notice that Z2(G, N3; A) = pZ2(G, A). The structure result [137,
Theorem 5.2] for a general relative cohomology group H2(G, I ; A) is less precise but
it is good enough to conclude that if G is finite, A = κ∗ and κ is algebraically closed,
then each H2(G, I ; κ∗) is isomorphic to a finite direct power of κ∗.

The relative partial cohomology is consistent with the partial cohomology in [124]:
each second partial cohomology group relative to an ideal is isomorphic to the second
partial cohomology group with values in an appropriate unital partial G-module [137,
Theorem 6.1]. As a consequence, one concludes that for a finite G and an arbitrary
field κ, each component of pM(G) is isomorphic to a single cohomology group with
values in some partial G-module. The latter fact brings the partial Schur theory closer
to the classical one.

While partial group actions and partial group representations are strongly related to
inverse semigroups, a generalization of the latter, namely, the (two-sided) restriction
semigroups, found interesting applications of partial actions of monoids in [97,213].
The notion of a (two-sided) restriction semigroup is based on the existence of twounary
operations u �→ u+ and u �→ u∗ , which resemble themaps x �→ x−1x and x �→ xx−1

in an inverse semigroup. Its axiomatic definition incorporates the defining identities of
both left and right restriction semigroups, as well as two connecting relations (u+)∗ =
u+, (u∗)+ = u∗ (see [97] or [213]). In particular, every subsemigroup of an inverse
semigroup that is closed under + and ∗ serves as an example of a restriction semigroup.
The role of the relevant class of the E-unitary inverse semigroups is played now by the
proper restriction semigroups, for which in [97] a structure theorem in terms of double
partial actions of monoids on semilattices was given. This extends classical results for
inverse and ample semigroups. The double partial action from [97] can be reformulated
in terms of only one partial action, and in [213] classes of proper restriction semigroups
determined by the properties of this partial action where classified. In particular, a
new important class of proper restriction semigroups was introduced this way, which
were called ultra proper restriction semigroups, and which nicely relates to other
well-established classes. The author of [213] uses partial actions to obtain various
relevant results, in particular, globalizations of a partial actions are applied to establish a
McAlister-type theorem, aswell an embedding fact intoW -products, extending known
results, and producing new and simpler proofs.
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Another recent application of partial actions to semigroup theory was given
in [209], offering a simple proof of a weakened version of an embedding theorem
by O’Carroll [249]. The notion of a partial crossed product semigroup (also called
partial semidirect product, if the twisting is trivial), considered earlier with some vari-
ations8 in [124,125,129,130,205,275], becomes useful for this purpose: given an
idempotent pure congruence ρ on an inverse semigroup S, there is a partial action τ

of S/ρ on the semillatice of the idempotents of S such that S embeds into the partial
semidirect product determined by τ (see [209, Theorem 3.4]). Recall that a partial
action of an inverse semigroup is defined in [209] by means of an arbitrary premor-
phism into the symmetric inverse monoid, so that this notion is weaker than that one
adopted in [68,220], where the premorphism is assumed to be order-preserving. The
image of S in the partial semidirect product is specified with the help of the con-
cept of a fully strict partial action of an inverse semigroup on a semilattice. It is also
proved, using globalization, that O’Carroll’s [249, Theorem 4] is [209, Theorem 3.4]
with globalizable τ. It is pointed out by means of an example that τ is not always
globalizable.

Having elaborated the bases of a cohomology theory of partial G-modules, one
may try to extend the technique from [122] to globalize partial n-cocycles. The main
result in [122] asserts that an arbitrary unital twisted partial action α of a group G
on a (unital) ring A, which is a product of indecomposable rings (blocks), admits an
enveloping action, i.e. there exists a twisted global action β of G on a ring B such
that A can be embedded into B as a two-sided ideal, such that α can be seen as the
restriction of β to A and B = ∑

g∈G βg(A). Moreover, if B has 1B, then any two
globalizations of α are equivalent in a natural sense.

IfA is commutative, then the above mentioned results from [122] mean that given a
unital G-module structure onA, for any 2-cocycle of G with values inA there exists a
(usual) 2-cocycle u of G related to the global action on B such that w is the restriction
of u. Moreover, if B has 1B, then any two globalizations of w are cohomologous.

The proofs in [122] are rather technical. Nevertheless, thanks to some improvements
we managed in [127] to extend to arbitrary n-cocycles the results from [122] in the
commutative case. As in [122] the globalization accours in two steps. First we show
that given a unital partial G-module structure on a commutative ring A, a partial
n-cocycle w with values in A is globalizable if and only if a certain extendibility
property holds for w. The second, and more technical step, consists of establishing
the extendibility property, assuming that A is a product of blocks.

With respect to the uniqueness of a globalization we prove that given a globalizable
unital partial action α of G on a ring A, such that A is a product of blocks, any two
globalizations of a partial n-cocyclew related to α are cohomologous. More generally,
arbitrary globalizations of cohomologous partial n-cocycles are also cohomologous.
This gives an improvement even for the case n = 2, as we do not require that α is
unitally globalizable. This means that the global n-cocycles take values in the group
of the invertible elements U(M(B)) of the algebraM(B) of the multipliers of B.One
should notice that the global action of G on B naturally extends toM(B). This allows

8 In the case of a partial action on a semilattice, the corresponding semidirect product construction was
essentially known much earlier without using the notion of a partial action (see, in particular, [249,256]).
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us to establish an isomorphism between the partial cohomology group Hn(G,A) and
the global one Hn(G,U(M(B))).

Product of blocks were also considered in the more recent preprint [108], in which
the authors characterize partial actions of groups on a finite product of indecomposable
rings, dealing also with their enveloping actions.

An interesting recent advance on the globalization problem was obtained in [105],
where the concept of a partial action of a group on a small weak κ-category was
defined, as well as that of the corresponding partial skew category. The latter is a small
weak non-necessarily associative category, a notion which is also defined in the same
paper [105]. The relation of the partial skew category with the concept of the κ-algebra
of a category and that of the category of a κ-algebra (with a given set of idempotents)
is discussed, as well as the asocitivity of the partial skew category. Using the notion of
an ideal in a category the authors define the concept of a restriction of a global action
resulting in a partial action, as well as that of a globalization. Amongst other results, a
criterion is given for the existence of a globalization for a partial action α of a group G
on a small weak κ-category, under the assumption that G acts globally on the objects
via α. Moreover, if a globalization exists, then it is unique up to an equivalence.

Another latest development on the globalization problem was obtained in [262],
were under appropriate conditions a criteria for the existence of a metrizable glob-
alization for a given continuous partial action of a separable metrizable group G on
a separable metrizable space X was given. If G and X are both Polish spaces, then
the globalization is a Polish space too. The existence of a universal globalization for
continuous partial actions of a countable discrete group on Polish spaces is also dis-
cussed. This topic was further studied by the same authors in [263], where amongst
other results it was proved that the enveloping space (i.e. the space under the envelop-
ing action) of a partial action of a Polish group on a Polish space is a standard Borel
space.

The globalization problem from the universal algebra point of viewwas investigated
in [210], in which a reflector of a partial action is constructed in the corresponding
subcategory of global actions, and the question when this reflector is a globalization
is considered. In particular, the notion of a partial action of a group on a relational
system is introduced and it is shown that it admits a universal globalization which is
a reflector. Partial group actions on partial algebras are also defined, whose domains
are assumed to be relative subalgebras, and for such partial actions a necessary and
sufficient condition for the existence of a globalization is given. For partial actions
on total algebras the above mentioned reflector is constructed and shown to be the
universal globalization. For algebras with identities the desired reflector is also pro-
duced, but it may not be a globalization. A characterization of globalizable, in the
corresponding variety, partial actions is proved, which is applied to give an example
of a non-globalizable partial action by taking the variety of semigroups.

The authors relate the globalization problem in a variety of algebras to embeddings
of generalized amalgams into an algebra from the variety. In the case of the variety
of groups this is a well-know and highly interesting topic, which was considered for
other varieties too. With any partial action θ of a group on an algebra from a variety
V a generalized amalgam A of V -algebras is associated, such that θ is globalizable
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if and only if A is embeddable into a V -algebra. The globalization problem is also
considered in [210] for partial actions on semigroups whose domains are ideals.

In the majority of cases the concept of the globalization considered by the authors
is based on the restriction process described at the beginning of this survey, with
domains given by formula (1). Nevertheless, it may happen that a partial action α =
{αg : Xg−1 → Xg, g ∈ G}, extends to a global action β in such a way that one has
only the inclusions Xg ⊆ Y ∩ βg(Y ), rather than the equalities (1). Moreover, it may
be useful to extend a partial action α on a ringA to a better partial action α∗ on a larger
ring Q without assuming that A is an ideal in Q. If α∗ happens to be globalizable
(in the above canonical sense), then the passage from α to the globalization of α∗ is
definitely an inetesting tool. These ideas lead to weaker versions of the notion of a
globalization.

Such a situation appeared first in Ferrero’s paper [169], according to which a global
action β of a group G on a ring B is called a weak globalization of a partial action
α = {αg : Dg−1 → Dg, g ∈ G} of G on a ring A if there is a monomorphism
ϕ : A → B of rings such that

βg ◦ ϕ|Dg−1 = ϕ ◦ αg for all g ∈ G.

The main result in [169] says that any partial action α of a group G on a semiprime
ring A possesses a weak globalization.9 The proof is a fruitful idea which was used
in other articles in similar situations, the main step being an extension of α to a
unital (and therefore globalizable) partial action α∗ of G on the Martindale ring Q
of right quotients of A. Then the (canonical) globalization (B, β) of α∗ gives a weak
globalization of α. Notice that one does not need to assume that A has 1.

A subsequent article [102] also deals with non-necessarily unital semiprime rings,
but the problem was considered from the point of view of the canonical globalization.
A closure condition was imposed on the domains and a property involving multipliers
was usedwhich appeared in [136] with respect to the globalization problem on s-unital
rings. As we mentioned already, a partial actions α = {αg : Dg−1 → Dg, g ∈ G}, of
a groupG on a unital ringA is globalizable if and only of α is unital, i.e. each ideal Dg

is a unital ring. Now, in the case of a left s-unitalA it is necessary, but not sufficient to
assume that each Dg is a left s-unital ring (i.e. α is left s-unital). The criterion given
in [136] says that α is globalizable if and only of α is left s-unital and for each g ∈ G
and a ∈ A there exists a multiplier γg(a) of A such that

Aγg(a) ⊆ A and xγg(a) = αg(α
−1
g (x)a), ∀x ∈ Dg. (8)

Now the main result in [102] says that a partial action α of a group G on a non-
necessarily unital semiprime ringA, such that each ideal Dg is closed, is globalizable
if and only if the above condition (8) is satisfied. Factoring the ring under the global
action by the prime radical the authors come to a semiprime globalization, which

9 In fact, it is assumed in [169] that α is proper, i.e. each Dg is non-zero, however, later in Ferrero [170]
observed that this condition is unnecessary for the proof of this result.
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is shown to be unique. A certain relation with the weak globalization from [169] is
discussed.

In a more recent article [51] the above globalization result from [102] was refined
as follows. Let α = {αg : Dg−1 → Dg, g ∈ G} be a partial action of a group G on
a non-necessarily unital semiprime ring A and (B, β) be the weak globalization of α

as above. IdentifyingA with its copy in B, write W = ∑
g∈G β(A), and let β ′ be the

restriction of β to W. Observe that W is a ring and A is an ideal in W if and only
if Aβg(A) ⊆ A, for all g ∈ G. Producing multipliers which satisfy (8) the authors
prove that (W, β ′) is a globalization of α, provided that each Dg is a direct summand
of A.

It is essentially more complicated to produce a weak globalization in the twisted
case, which was considered in [50] with more involved use of the quotient rings
technique. Let α be a twisted partial action of a group G on a non-necessarily unital
semiprime ring A. The authors in [50] extend first α (together with its mupliplier
valued twisting) to a unital twisted partial action α∗ on the left Martindale ring of
quotients Q(A) ofA. Unfortunately, there are no known tools to guarantee that α∗ is
globalizable, unless Q(A) is a product of indecomposable rings [122]. So the authors
go further and extend α∗ to a unital twisted partial action α∗∗ of G on the left maximal
ring of quotients Qm(Q(A)) of Q(A). Actually, one may assume that Qm(Q(A)) =
Qm(A). Now assuming in addition that A is a left Goldie ring, one has that Qm(A)

coincides with the classical ring of quotients of A, which is semisimple by Goldie’s
Theorem. Consequently, Qm(A) is a direct product of indecomposable rings and the
already mentioned fact from [122] on the globalization of twisted partial actions is
applicable, resulting this way in a weak globalization for α.

Ferrero’s technique [169] was used again in [27] to extend a unital (= globalizable)
partial action α on an α-semiprime (unital) ring A to the Martindale ring Q of α-
quotients ofA. Denoting by (B, β) the (usual) globalization of (A, α), and extending
β to an action β∗ ofG on theMartindale ring Q of β-quotients ofB, the author studies
the relations between the involved actions and rings. In particular, a criterion is given
when β∗ is a globalization for α∗.

The above mentioned paper [123] extends to the partial action setting the Galois
Theory of commutative rings by Chase et al. [85], including several equivalent defini-
tions of a partial Galois extension and establishing a fundamental theorem on Galois
correspondence. In [85] the authors also gave the exact sequence

0 → H1(G,U(A))→Pic(AG)→Pic(A)G→H2(G,U(A))→B(A/Aα)→
→ H1(G,Pic(A))→H3(G,U(A)),

which generalizes the two most fundamental facts from Galois cohomology of fields,
namely, the Hilbert’s Theorem 90 and the isomorphism of the relative Brauer group
B(A/Aα) with the second cohomology group H2(G,A∗). The latter isomorphism is
obtained by associating to any 2-cocycle from Z2(G,A∗) the corresponding crossed
productA∗G. The above sequence was derived in [85] from the Amitsur cohomology
seven terms exact sequence by Chase and Rosenberg [84], specifying it to the case
of a Galois extension. The proof in [84] used spectral sequences and was not con-
structive. The first constructive proof was given by Kanzaki [203], introducing and
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applying generalized crossed products. Since then much attention have been payed
to the sequence and its parts establishing generalizations and analogues in various
contexts.

Having developed the partial Galois theory in [120] on one hand, and the partial
group cohomology in [124] on the other, it was reasonable to establish the analogue
of the Chase-Harrison-Rosenberg exact sequence in the context of a partial Galois
extension of commutative rings. The treatment in the partial action setting turned out
to be more laborious, and some conceptual adjustments were needed to be made. The
corresponding homomorphisms were constructed in [133], whereas the exactness of
the sequence is proved in [134]. Amongst the new ingredients we introduce the Picard
monoids PicSAα (A) and PicS(A), the latter being an inverse semigroup which is a
disjoint union of the Picard groups of all direct summands of A. Moreover, a partial
action α∗ of the Galois group G on PicS(A) is used, as well as a partial action
version of the generalized crossed products and two partial representations of the
form G → PicSAα (A). As the final result we have obtained the following seven-
terms exact sequence

0 → H1(G, α,A)→Pic(Aα)→PicS(A)α
∗ ∩ Pic(A)→H2(G, α,A)→

→ B(A/Aα)→H1(G, α∗,PicS(A))→H3(G, α,A).

Other recent Galois theoretic results were produced for partial group actions on
rings in [201,202,214–216], and for partial coactions on coalgebras in [81]. The latest
survey by Paques [251] gives an overview of Galois theories, inlcuding those based
on partial actions.

Partial representations are in the origin of the successful approach to the study of
C∗-algebras generated by partial isometries via partial actions. By a partial isomtery
in a ∗-algebra A (in particular, in a C∗-algebra) one means an element s ∈ A with
ss∗s = s. By a projection in A one understands a ∗-symmetric idempotent, i.e. an
element p ∈ A such that p∗ = p and p2 = p.A partial ∗-representation u : G → A,

g �→ ug, (g ∈ G), by definition is a partial representation such that ug−1 = u∗
g, for

all g ∈ G. It follows from the definition that each ug, (g ∈ G) is partial isometry.
A product of partial isometries is not necessarily a partial isometry, and an algebra

generated by partial isometries, in general, may be rather wild, unlikely to yield to
any attempt at understanding its structure. Nevertheless, algebras (abstract or C∗)
generated by the range of a partial representation have a chance to be endowed with
the structure of a crossed product by a partial action, permitting one to understand their
algebraic behavior. One of the first prominent examples of the use of this techniquewas
established in the case of the Cuntz–Krieger algebras OA defined as follows [113]:
given an n × n matrix A = {ai j }1≤i, j≤n with entries in {0, 1} one defines OA as
being the universal C∗-algebra generated by partial isometries S1, . . . , Sn subject to
the conditions:

CK1)
n∑

i=1

Si S
∗
i = 1, and
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CK2) S∗
i Si =

n∑

j=1

ai, j S j S
∗
j .

It was shown for them in [150] that there exists a partial representation of the free
group Fn sending the i th canonical generator of Fn to Si . This idea was subsequently
generalized in [157] to treat the case of infinite matrices and was used to give the
first definition of an analogue of Cuntz–Krieger algebras for transition matrices on
infinitely many states, dropping the row-finite condition used in earlier investigations.
The algebras defined in [157] are called the Exel-Laca algebras.

The key idea is as follows. Let u : G → B be a partial representation into an
algebra B. If B is a ∗-algebra, then u is assumed to be a partial ∗-representation. It is
a well-known to the experts fact that the eg = ugug−1 , (g ∈ G), form a commutative
set E of idempotents, which are projections in the ∗-case. Let A be the subalgebra
of B generated by E . In the C∗-case A is the C∗-subalgebra geberated by E, i.e. the
smallest C∗-subalgebra ofA containing E . Let Dg be the ideal inA generated by eg ,
i.e. Dg = Aeg, and let τg : Dg−1 → Dg be the map defined by

τg(a) = ugaug−1 , ∀g ∈ G. (9)

Then τ = {τg : Dg−1 → Dg, g ∈ G} is a partial action of G onA [117, Lemma 6.5]
(in the C∗-case τ is a C∗-algebraic partial action, which can be seen by carrying over
the purely algebraic proof). Furthermore, in the ring theoretic case by [117, Proposition
6.8] there is a homomorphism from the crossed product (skew group ring)A�τ G to
B, which is an epimorphism in our case, as B is generated by the elements ug, g ∈ G.

In the C∗ case, thanks to [155, Proposition 11.14], there is a ∗-homomorphism from
the (full) C∗-algebraic crossed product A �

full
τ G onto B. In some cases one is able

to prove that the epimorphism obtained this way is, in fact, an isomorphism. Here
we temporarily use the non-standard notation A �

full
τ G for the (full) C∗-algebraic

crossed product in order to make difference with the ring-theoretic crossed product
A �τ G. One should also note that in the theory of C∗-algebras there is also the so-
called reduced C∗-algebraic crossed product A �

red
τ G by a partial action (see [155]

for details).
A very recent use of this technique in [118] made it possible to endow the Carlsen–

Matsumoto C∗-algebra OX of an arbitrary subshift X with the structure of a C∗-
crossed product (in this case the full and the reduced C∗-algebraic crossed products
coincide). The approach based on partial actions and partial representations results in
an alternative definition of OX , which is more convenient for our technique.

In order to describe briefly the idea of this application, let � be a finite alphabet
and �N be the set of all infinite words x1x2x3 . . . in alphabet � (i.e. xi ∈ �). Taking
the discrete topology on � and the product topology on �N, one has that �N is a
Hausdorff compact totally disconnected space. Then the (left) shift map

S : �N → �N

is defined by removing the first letter, and it is easily seen to be continuous. By a
(left) subshift X one means a closed S-invariant subset of �N. Important examples
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of subshifts are obtained as follows. Given an arbitrary subset F of finite words in
alphabet �, called the set of forbidden words, denote by

X = XF

the set of all infinite words x such that no member of F occurs in x as an interval
(contiguous block of letters). Then it is well known that XF is a subshift and any
subshift is of this form. IfF is finite, then XF is called a subshift of finite type. Subshifts
are the objects of study of Symbolic Dynamics (see [228]), and it is interesting to bring
new point of view relating algebras to them.

It turns out that there is a natural partial action on X, which is defined as follows.
For each a ∈ � denote by Xa the set of all words in X which begin with a. Restricting
the shift map S we obtain the function Xa → X, whose image will be denoted by
Xa−1 . Evidently, Xa−1 consists of all x ∈ X for which ax ∈ X. Thus the restriction
of S results in the partial bijection Xa → Xa−1 , which will be denoted by θa−1 . We
also write θa : Xa−1 → Xa for its inverse.

Let now F = F(�) be the free group over �, i.e. the free group whose set of
canonical generators is �. Thus with each generator a ∈ � of Fn we may associate
a partial bijection θa : Xa−1 → Xa of X. Composing the θa’s and their inverses one
may associate to each g ∈ Fn a partial bijection θg : Xg−1 → Xg of X, so that
θ = {θg, g ∈ G} will be a partial action of Fn on X (see [155, Proposition 4.10]). We
call θ the standard partial action associated to X. In particular, any finite word γ in
alphabet � is an element in Fn and

θγ (x) = γ x, θγ −1(γ x) = x ∀x ∈ Xγ −1 .

Now taking the relative topology on X one may wonder whether or not θ is a
topological partial action. It follows by [118, Proposition 2.5] that θ is topological if
and only if X is of finite type. So we clearly have a difficulty with θ in the non-finite
type case. Subshifts of finite type can be recoded and seen as Markov subshifts, i.e.
subshifts obtained from graphs (see [228]). Since the C∗-algebras related to Markov
subshifts are the Cuntz-Krieger algebras, which are well-understood from the point of
view of partial actions, we are mainly interested in the case of subshifts of non-finite
type, so the above mentioned problem with θ should be resolved somehow.

Despite the bad topological behavior of the standard partial action, we may use it
to define a partial ∗-representation of F by bounded operators, which will be crucial
for our approach. For each g in F, denote by ug the unique bounded linear operator

ug : �2(X) → �2(X),

such that for each x in X ,

ug(δx ) =
{

δθg(x), if x ∈ Xg−1 ,

0, otherwise,
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where θ is the standard partial action associated to X . Then the map g �→ ug is a
partial ∗-representation of F on �2(X).

Denote by MX the closed ∗-algebra of bounded operators on �2(X) generated by
{ug : g ∈ F}. It follows by [118, Proposition 6.1] that MX coincides with the C∗-
algebra defined by Matsumoto [231, Lemma 4.1] (see also [75]), and we callMX the
Matsumoto algebra associated to X.

Denoting by λ the left regular representation of the free group F = F(�) on �2(F)

and by {δg}g∈F the canonical orthonormal basis of �2(F), one has that

λg(δh) = δgh,∀g, h ∈ F.

Using the partial representation u we define a new partial representation ũ of F on
�2(X) ⊗ �2(F), by tensoring u with λ, namely

ũg = ug ⊗ λg,∀g ∈ F.

Then we define theCarlsen–Matsumoto C∗-algebraOX associated to a given subshift
X as the closed ∗-algebra of operators on �2(X) ⊗ �2(F) generated by the set ũ(F) =
{ũg g ∈ F}. It follows from [118, Theorem 10.2] that the above defined C∗-algebra
OX is isomorphic the C∗-algebra defined by Carlsen in [73, Definition 5.1].

Having at hand the partial representation ũ : F → OX we use the above mentioned
technique (9) to produce a C∗-algebraic partial action τ of F on the commutative C∗-
subalgebraDX ofOX generated by the projections ũgũ∗

g, g ∈ F.One readily identifies
DX with theC∗-subalgebra ofMX generated by the projections eg = ũgũ∗

g, g ∈ F, as
ũgũ∗

g = eg ⊗ 1. Then it is straightforward to shows that there exists a ∗-homorphism
DX �

full
τ F → OX [118, Proposition 9.2], which is surjective, as OX is generated by

the elements ũg, g ∈ F. In fact, further considerations and known results lead to the
following isomorphisms of C∗-algebras:

DX �
full
τ F ∼= OX ∼= DX �

red
τ F.

ByGelfand’s Theorem, theC∗-algebraDX is isomorphic toC(�X ),where�X stands
for the spectrumofDX . It is knownby theC∗-theory of partial actions (see [155,Corol-
lary 11.6]) that there is a topological partial action ϑ of F on �X which corresponds
to τ, and which we call the spectral partial action. Using C∗-theoretic notation the
above isomorphisms may be rewritten in the form

C(�X ) �
full
ϑ F ∼= OX ∼= C(�X ) �

red
ϑ F.

Due to the above mentioned difficulty with the standard partial action, the main topo-
logical partial dynamical system related to an arbitrary subshift is (�, ϑ), and for this
reason a special attention should be payed to the topological space �. In [118] some
properties of the elements of � are given, so that if we look at them as subsets of
the Cayley graph of F, then they have the aspect of a river basin. It does not seem to
be possible to find a complete set of properties characterizing �, but we know that it
contains a dense copy of X (not necessarily with the same topology), permitting to
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deal with the other, more elusive elements.We are able to give necessary and sufficient
conditions for such relevant properties of ϑ as minimality and topological freeness, in
a rather “graphical” language, similar to those known for the case of Markov subshifts
[150, Theorems 12.6, 13.19]. Then we use these conditions to give a criterion for the
simplicity of OX in terms of X [118, Theorem 14.5].

The above shows the importance of a partial representation u : G → A when the
algebraA (abstract or C∗) is generated by the rangeU of u. IfA is a ∗-algebra then in
this case we say that A is generated by a tame set of partial isometries. Equivalently,
each element of the multiplicative semigroup 〈U ∪ U∗〉 generated by U ∪ U∗ is
a partial isometry (see [155, Definition 12.9 and Proposition 12.13]). Even if a ∗-
algebra is generated by a wild (non-tame) set of partial isometries, one may impose
additional relations on the generators in order to force them to behave well. This is
concretely done in the recent paper [25] for the case of the Leavitt C∗-algebra Lm,n .

The latter is the topological analogue of the algebra L(m, n) considered by Leavitt
[221]. The case L(1, n) is a part of the well developed theory of the Leavitt-path
algebras, which are ring-theoretic analogues of the graphC∗-algebras. The generating
set U of Lm,n is a wild set of partial isometries, and a way to turn around of this
difficulty is to consider the C∗-algebra Om,n which is the quotient of Lm,n by the
closed ideal generated by the elements x − xx∗x, where x runs over the semigroup
〈U ∪ U∗〉. This guarantees the tameness of the generating set of Om,n, allowing one
to apply the above mentioned technique based on partial representations and partial
actions. As a consequence,Om,n is shown to have a full C∗-algebraic crossed product
structure by a partial action (see [25, (2.5)]). It is interesting to notice that, unlike
the case of algebras related to subshifts, Om,n is not isomorphic to the corresponding
reduced C∗-algebraic crossed product [25, Theorem 7.2].

Analogously to the case of (usual) representations, there is an algebra responsi-
ble for the partial representations. In the case of the ∗-representations of a group by
bounded operators, the partial group C∗-algebra C∗

p(G) defined in [151] plays this
role, whereas its ring theoretic version κpar G is the semigroup algebra κS(G), con-
sidered in [120]. According to a structural result from [120], if G is a finite group and
κ is a commutative ring (which is assumed to be associative and unital), the the partial
group algebra decomposes as follows:

κpar G ∼=
⊕

H ≤ G
1 ≤ m ≤ [G : H ]

bm(H)

m
Mm (κH) ,

where κH stands for the group algebra of H over κ and bm(H) denotes the number of
subsets A ⊆ G, such that |A| = m|H |, 1 ∈ A, H = {g ∈ G | gA = A} .A recursive
formula for the coefficients bm(H)

m given in [120, (14)] was corrected in [135, (2)].
In [89, Theorem 2.4 ], Choi gave an interesting formula for the coefficients bm(H)

using the Möbius function, but one needs to be careful with Choi’s notation in [89]
(see [139, Remark 3.2]).

The proof of the above structural result used the finite groupoid � = �(G) associ-
ated to a finite group G, the elements of � being the pairs (A, g), where g ∈ G and A
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is a subset of G containing the identity 1 = 1G ∈ G and the element g−1. The product
of pairs (A, g) · (B, h) in � is defined for pairs for which A = hB, in which case:

(hB, g) · (B, h) = (B, gh).

Then one considers the groupoid algebra κ�(G), which is unital with

1κ�(G) =
∑

A�1G
(A, 1G),

together with the map λp : G �−→ κ�(G):

λp(g) =
∑

A�g−1

(A, g), (10)

which turns out to be a partial representation.
It is readily seen that any partial representation u : G → A into a unital algebra

A uniquely extends to a homomorphism of algebras κpar G → A given by [g] �→
u(G), (g ∈ G). Theorem 2.6 in [120] says that a similar universal property holds
for κ�(G), from which we derive that κpar G ∼= κ�(G), provided that G is finite.
This identification with the groupoid algebra then easily leads to the above structural
fact.

After the publication of [120] it was mentioned in private communications inde-
pendently by several researchers10 familiar with inverse semigroups that the above
structural result for partial group algebras can be obtained using the theory of semi-
group algebras. We spelled out this in detail in [128, Remark 2.5], without claiming
novelty neither for the idea nor for the proof.

It was observed by Exel [151] that the complex partial group algebras Cpar Z4 and
Cpar [Z2×Z2] of the cyclic group Z4 of order 4 and the Klein-four group, respectively,
are not isomorphic, whereas their usual complex group algebras are isomorphic toC

4.

This suggested to consider the isomorphism problem for the partial group algebras:

Which properties of G are determined by κpar G?

In particular, does the isomorphism of algebras κpar G1 ∼= κpar G2 imply G1 ∼= G2?
A negative answer for the latter question was given already in [120], producing two

non-isomorphic finite non-commutative groups of order 605with isomorphic complex
partial group algebras. However, it was proved in [120, Theorem 4.4] that if G1 and
G2 are finite abelian groups and κ is an integral domain with charκ not dividing
|G1| = |G2|, then κpar G1 ∼= κpar G2 exactly when G1 ∼= G2. An analogous result in
the modular case (i.e. when char κ divides |G1|) was established in [135, Theorem
3.7]. The above mentioned counter-example from [120] for the isomorphism question
was improved in [138] by giving counter-examples over C for orders |G| = 25 and
|G| = 35, and pointing out that there are no counter-examples for |G| < 25 and
|G| = pn < 35, p �= 2.

10 Eric Jespers, Stanley Orlando Juriaans, Boris Novikov.
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Notice that in the above mentioned positive results on the isomorphism question
from [120,135] it is assumed that both given groupsG1 andG2 are abelian. So onemay
wonder whether or not the partial group algebra κpar G determines the commutativity
of G.

More specifically, suppose that G1 and G2 are finite groups and G1 is abelian. Is
true that

Cpar G1 ∼= Cpar G2 
⇒ G2 is abelian?

In [138] a list of integers was obtained which form a complete list of invariants of
κpar G,whereG is a finite p-group and κ is an algebraically closed field with char κ �=
p. The invariants were expressed as sums in terms of subgroups of G and numbers
of their irreducible κ-representations. Then they were applied to the isomorphism
problem, and it was shown, in particular, that κpar G determines the commutativity of
a finite p-group G where p is an odd prime.

The list of the invariants includes, of course, the order of the group, and this
does not depend on the fact of G being a p-group. Indeed, for an arbitrary finite
group G the isomorphism κpar G ∼= κ�(G) implies that the dimension of κpar G is
equal to

dim(κ�(G)) =
n−1∑

k=0

(k + 1)

(
n − 1

k

)
= 2n−2(n + 1),

where |G| = n. The right hand side of the above formula is a strictly increasing
function on n, so that if G1 and G2 are finite groups such that κpar G1 ∼= κpar G2, then
|G1| = |G2|.

It turns out to be much more complicated to obtain a full list of invariants for the
case when G is an arbitrary finite group. Nevertheless, in [139] a series of natural
invariants were given, which are useful for the isomorphism question, provided that
the group order is odd. We point out the following two of them:

1. The number of Sylow p-subgroups of G (with odd |G|);

2. [H : H ′] where H is a Sylow p-subgroup of G.

In particular, it follows that if |G| is odd, then Cpar G determines the commutativity
of the group G [139, Corollary 5.3].

The above mentioned commutativity problem is much more difficult for finite
groups of even order. In particular, the following question remains open.

Open problem: Suppose that G1 and G2 are finite 2-groups such that G1 is abelian
and Cpar G1 ∼= Cpar G2. Is it true that G2 is also abelian?

We were not able to find a counter-example for the above problem using GAP.
The invariants in [138] were obtained using a formula for bm(H), which involves

counting in the subgroup lattice of a finite p-group G. The formula was gener-
alized in [139, Theorem 3.1] and used to give an alternative proof for the above
mentioned Choi’s formula [89, Theorem 2.4 ]. It was also proved that if G1 and
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G2 are finite groups such that there exists an isomorphism between the subgroup
lattices of G1 and G2 which preserves subgroup rings, then κpar G1 ∼= κpar G2,

where κ is a commutative ring [139, Theorem 4.2]. This improves an earlier result
from [135] in which it was additionally assumed that the lattice isomorphism pre-
serves subgroups conjugation. Several examples were also given in [139], including a
counter-example for the isomorphism problem of partial group algebras over Q with
|G1| = |G2| = 243 = 35, as well as the least counter-example over C in the case of
odd group order (|G1| = |G2| = 189 = 3 · 7 · 9).

The decomposition of partial group algebras into a product of matrix algebras over
subgroup rings gives information about the structure of the matrix partial represen-
tations of the finite group G. If G is infinite, no such structural result is known, in
particular κpar G is not isomorphic to κ�(G), as κ�(G) is not unital. Nevertheless,
it is possible to relate the finite dimensional representations of κpar G with those of
κ�(G). To this end, for each connected component � of �(G), whose set VD of
vertices is finite, one uses an analogue λ� : G → κ�, of the partial representation
(10). The map λ� is defined by

λ�(g) =
∑

A∈VD
A�g−1

(A, g),

and it is shown to be a partial representation too. Identifying K� with a matrix alge-
bra of the form Mn(κH) for some subgroup H of G, the map λ� becomes a partial
representation of the form G → Mn(κH), called elementary. Then the main result
Theorem 2.2 of [140] says that composing the elementary partial representations of
G with the irreducible (usual) representations of κ� (for all such �), we obtain all
irreducible partial representations of G. A similar fact holds for the indecomposable
partial representations, by replacing above the term “irreducible” by “indecompos-
able”. The proof is rather technical, and one of the steps asserts that the subalgebra
of κ� generated by the elements λ�(g), g ∈ G, coincides with κ�. The argument
given in [140] needed a correction which was done in [128, Proposition 2.2].

The above mentioned domains X of the partial projective representations of G
where further studied in the recent article [128], mentioned above. It was shown
already in [129] that they are exactly the T -invariant subsets of G × G, where T is
a semigroup of order 25 acting on G × G. Surprisingly, the structure of T does not
depend on G and it is a disjoint union of the symmetric group S3 and an ideal which is
a completely 0-simple semigroup. The domains X form a lattice C(G) with respect to
the set-theoretic inclusion, intersection and union, and we know from [130, Theorem
4] that in the case of of a finite groupG they are exactly the finite unions of elementary
domains, i.e. domains of elementary partial representations.

The main structural pieces in C(G) are the atoms (i.e. minimal domains) and the
T -orbits which are not atoms. The latter are called blocks. Corollary 3.18 from [128]
establishes the uniqueness of a minimal decomposition of a domain into a union
of atoms and blocks. The domains are strongly related to the ideals of the semi-
group S3(G) [131, Proposition 5.3], so that the above fact can be translated into the
uniqueness of a decomposition of any non-zero ideal in S3(G) into an intersection of
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meet-prime ideals. The main decomposition result in [128] is Theorem 4.3 which in
the case of a finite G gives a decomposition of a non-minimal elementary domain into
blocks and asserts its uniqueness under the assumption of minimality. On the other
hand, Corollary 4.8 in [128] states the corresponding fact for the ideals in S3(G).

The concept of a partial group representation was extended to that of a partial
representations of a Hopf algebra in [18,22]. In fact, the first version of a definition
of a partial representation of a Hopf algebra was given in the article [18], where the
globalization problem for partial Hopf actions on algebras was also studied. Influenced
by [72] the latter was considered with respect to restrictions of global actions on right
ideals (contrary to the above mentioned idea of restrictions on two-sided ideals).
This generality resulted in an economical but an asymmetric concept of a partial
representation [18, Definition 6]. In many important results on partial Hopf actions
one assumes that the partial actions are symmetric [22, (PA4)], a condition which is
always satisfied by partial group actions. Using symmetric partial Hopf actions one
comes to a new concept of a partial representation of a Hopf algebra [22, Definition
3.1] which can be obtained from the initial definition given in [18] by adding three
more axioms.

An interaction between partial actions and partial representations, similar to that
in [117] was also established in the Hopf case [22]. Furthermore, in [22] for any
Hopf algebra H a Hopf analogue Hpar of κpar G was also introduced and studied. In
particular, the map H � h → [h] ∈ Hpar , where the [h]’s are the defining generators
of Hpar (see [22, Definition 4.1]), is a partial representation, which factors any other
partial representation of the Hopf algebra H [22, Theorem 4.2], similarly to the group
case. The above mentioned technique (9) to produce partial crossed products from
partial group representations permits one to endow κpar G with a crossed product
structure A �τ G, where τ is a partial action of G on the subalgebra A ⊆ κpar G,

generated by the idempotents [g][g−1], (g ∈ G) [117, Theorem 6.9]. Analogously,
Hpar is a partial smash product of the form A#H [22, Theorem 4.8], where A is the
subalgebra of Hpar generated by the elements

∑
(h)[h1][S(h2)], (h ∈ H).A universal

characterization of A is given in [22, Theorem 4.12] under the assumption that the
antipode of H is invertible.

TheHopf case turns out to bemore complex, enjoying features whichwere invisible
in the group case. In fact, Hpar has the structure of a Hopf algebroid [22, Theorem
4.10], resulting in a functor from the category of Hopf algebras to that of Hopf alge-
broids [22, Proposition 4.11].Moreover, we know that ifG is a finite group then κpar G
is finite dimensional. In the Hopf case, however, Example 4.14 shows that Hpar may
be infinite dimensional, even if H is finite dimensional (this is the case of the Sweedler
Hopf algebra H4).

The obtained facts lead to an isomorphism of the category of Hpar -modules and the
category of the so-called partial H-modules (and naturally defined morphisms). Here
the reader should notice a difference between the use of the term “partial module”
in [124–126] and in [22]. As it was explained above, in the partial cohomology theory
of groups by a partialG-module we understand a commutativemonoid Awith a partial
action of G on A, whereas in [22, Definition 5.1], for any Hopf algebra H over a field
κ, by a partial H -module the authors mean a κ-vector space M together with a partial
representation of the form H → Endκ(M). The latter extends to the Hopf case the
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notion of a G-space given in [140], and can be reformulated in terms of certain partial
actions of G on M [45, Example 5.4]. Another categorical isomorphism is established
between the category of symmetric partial H -module algebras and the algebra objects
in the category of partial H -modules [22, Theorem 5.6].

The authors in [22] also obtained several fact on the so-called partial G-gradings. It
is well-known that G-gradings on algebras are exactly the coaction of the group Hopf
algebra κG on algebras. Thus one may define a partial grading of G on an algebraA
as a partial coaction of κG on A. In particular, partial representations are applied to
obtain a complete characterization of the partialZ2-gradings on algebras [22, Theorem
6.8], which, in other words, gives a transparent description of all partial superalgebras
as a product of an arbitrary (usual) superalgebra and its ideal. Even earlier in [17], an
example was given of a partial action of the dual group algebra (κG)∗ on an ideal I
of the group algebra κG, which, of course, can be considered as a partial G-grading
on I.

More generally, in [15] the authors introduce and study the concept of a partial
action of a Hopf algebra H on a κ-category, also called a partial H-module cate-
gory, and consider group gradings on κ-categories as a special case of Hopf module
categories. Partial H -module categories generalize both partial Hopf actions on alge-
bras and H -module categories. The latter were introduced in [94] in order to relate
smash extensions to Galois coverings of κ-categories. The authors of [15] prove that
any partial H -module category C possesses a unique, up to isomorphisms, minimal
globalizatrion D, define the notion of the partial smash product category C#H and
prove that C#H and D#H are Morita equivalent (in the sense of [94]). These facts
generalize the analogous results obtained earlier in [18] for Hopf actions on algebras.
Furthermore, a structural result is established for the partial gradings of κ-linear cat-
egories by finite groups whose order is not divisible by char κ, and several examples
are elaborated [15].

The symmetry between the algebra and coalgebra structures of a Hopf algebra, as
well as the concept of the finite dual of a Hopf algebra, provides a natural ambient
for duality phenomena. The duality between actions and coactions of locally compact
groups on von Neumann algebras [236] inspired Cohen and Montgomery [96] to
study duality between group actions and group coactions on algebras, which was
later generalized by Blattner and Montgomery [59] for the Hopf algebra framework.
In [230] the Cohen–Montgomery theorem was extended for partial actions of groups.
Further generalizations were made in [19] for partial Hopf actions.

A comprehensive treatment of duality between partial Hopf actions and partial Hopf
coactions was recently given in [48]. In particular, under certain (co)commutativity
conditions a connection between partial (co)actions and Hopf algebroids was estab-
lished in [48], one of the important steps being to endow the partial smash product
A#H with a structure of an A-Hopf algebroid, provided that H is cocommutative
and A is commutative. Furthermore, for a commutative Hopf algebra H and a right
partial H -coaction on a commutative algebra A the authors construct a commutative
A-Hopf algebroid A⊗H , the so-called partial split Hopf algebroid. In the opposite
direction, from certain commutative A-Hopf algebroids the authors come to partial
Hopf coactions. Moreover, a so-called skew-duality is established betweenA#H and
A⊗H, under certain conditions. In addition, considering the concept of a partial Hopf
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action and that of a partial Hopf coaction on coalgebras, an interaction between the
corresponding C-rings and cosmash coproducts is also explored. Several other valu-
able facts are also proved and interesting examples are given, one of them based on
algebraic groups. Without giving formal definitions, partial actions of affine algebraic
groups were used earlier in [20] to produce concrete partial Hopf coactions and then,
dualizing, a partial Hopf action. Now the authors formalize the definition and show,
as expected, that there is a one-to-one correspondence between the partial actions of
an affine algebraic group G on an affine variety M and the partial Hopf coactions of
the coordinate Hopf algebra of G on the coordinate ring of M [48], which generalizes
a similar classical fact known in the global case.

Hopf algebroids appear also with respect to partial Hopf cohomology, which is the
matter of the hot off the press preprint [47]. As it was mentioned above, partial G-
modules in [124] mean unital partial actions of a group G on a commutative monoid
A. Assuming that A is a (unital) algebra, it is possible to extend the notion of a partial
cohomology group from [124] to the context of a partial action of a co-commutative
Hopf algebra H on a commutative algebra A [47], giving a natural generalization
of Sweedler’s cohomology [278] to the partial action setting. In [124] the monoid
A is replaced by an appropriate inverse submonoid Ã, which does not change the
cohomology. In the Hopf case Ã is a certain quotient algebra of the symmetric algebra
generated by the images of all reduced partial n-cochains. The algebra Ã possesses
a partial action of H, so that, as in the group case, the isomorphism Hn

par (H, A) ∼=
Hn

par (H, Ã) of the corresponding cohomology groups holds. Furthermore, Ã enjoys
a structure of a commutative and co-commutative Hopf algebra [47, Theorem 4.5]. In
addition, by a result from [20] one naturally concludes that the partial crossed products
A#ωH (with commutative A and co-commutative H ) are in a bijective correspondence
with the cohomology classes [ω] ∈ H2

par (H, A).

Asignificant new feature in [47] is the fact that the partial crossed product Ã#ωH is a
Hopf algebroid over the base algebra E(A) = 〈h ·1A | h ∈ H〉 [47, Theorem5.10]. The
latter suggests that it should be possible to look at the partial Hopf cohomology from
the point of view of the cohomology of Hopf algebroids (see [64]). Another important
Hopf algebroid comes into the picture with respect to the notion of a partially Cleft
extension from [20], which, in the present setting, is shown to be a cleft extension by
a Hopf algebroid in the sense of [63]. More precisely, given a co-commutative Hopf
algebra H acting partially on a commutative and co-commutative Hopf algebra Ã,

and a partial 2-cocycle ω ∈ Z2
par (H, Ã), the partial smash product E( Ã)#H is a Hopf

algebroid over E( Ã) by [48, Theorem 3.5]. Then [47, Theorem 6.6] states that the
partial crossed product A#ωH is a right E( Ã)#H -module algebra whose subalgebra

of the co-invariants is Ã, and the extension Ã ⊆ A#ωH is a cleft extension by the Hopf

algebroid E( Ã)#H . Recalling from [20] that any partially cleft H -extension over the
co-invariants can be seen as a crossed product extension, we obtain the desired fact.
The article is enriched with examples and suggestions for further research.

As we mentioned already, the term “partial G-module”, where G is a group, is
being understood in two related but different senses: initially the concept of a partial
G-space was considered in [140], which means a κpar G-module, or equivalently,
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a κ-module M equipped with a partial representation G → Endκ(M), and which
was generalized to Hopf case in [22] to deal with partial Hopf representations; the
other one means a partial action of G on a commutative semigroup (whose domains
are assumed to be ideals), and is used to deal with partial cohomology in [47,124–
127,133,134,137] and [206]. Of course, it is also natural to take the first meaning
and define the corresponding cohomology of G, as it has been recently done in [16].
More precisely, denote by B the commutative subalgebra of κpar G generated by all
idempotents eg = [g][g−1], g ∈ G (this subalgebra was denoted above by A, but we
prefer now to reserve the symbol A for a general algebra). The partial representation
G � g �→ [g] ∈ κpar G results by (9) in a unital partial action τ of G on B, which
in its turn gives rise to a partial representation λ : G → Endκ(B), by the standard
formula

λ(g) : B � b �→ τg(beg−1) = [g]b[g−1] ∈ B. (11)

The latter endows B with a structure of a left κpar G-module, and one may consider
κpar G as an augmented ring (see [76,ChapterVIII]) bymeans of the leftκpar G-module
epimorphism ε : κpar G → B, defined by

s = [g1][g2] . . . [gn] �→ eg1eg1g2 . . . eg1g2...gn = ss−1.

Then one takes the cohomology of the augmented ring κpar G → B with values in an
arbitrary κpar G-module M [16], i.e. one defines

Hn
par (G, M) = Extnκpar G(B, M).

Notice the difference between this use of the notation Hn
par and that in the above

mentioned paper [47]. Observe also that the ordinary group cohomology can be seen
as the cohomology of the augmented ring κG → κ, g �→ 1, with values in a κG-
module, whereas, the Hochschild cohomology of an associative algebra A can be
defined as the cohomology of the augmented ringA⊗Ao → A, a ⊗ a′ �→ aa′, with
values in an A ⊗ Ao-module (i.e. an A-bimodule), where Ao stands for the opposite
algebra ofA (see [76]).Given a unital partial actionα of a groupG on an algebraA over
a field κ, the authors of [16] use Grothendieck’s result [268, Theorem 10.47] in order
to prove the existence of a spectral sequence relating the Hochschild cohomology of
the partial skew group ringA�α G with Hn

par (G,−) and the Hochschild cohomology
of A.

To compare the cohomology from [16] with that from [124], one may adapt the
projective resolution given in [124] to the case of vector spaces, so that the n-cocycles
and n-coboundaries are defined by similar formulas. This may give the impression
that the two cohomologies coincide. Nevertheless, one should notice a significant
difference in the concepts of G-modules. A κG-module can be seen as a partial action
of G on a vector space [45, Example 5.4]. In the definition of a partial group action
on a vector space (see [8, Remark 2.3]) one assumes that each domain is a subspace
and the involved bijections are κ-maps. It is evident that the category of κG-modules
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is abelian. On the other hand, the partial G-modules from [124] are partial actions
of G on commutative semigroups. Their domains are unital two-sided ideals in the
semigroup. Thus, if the semigroup under the partial action turns out to be a group,
then the action has to be global. It is pointed out in [124] that the category of partial
G-modules is not abelian. The requirement that the domains are ideals is essential to fit
the theory of twisted partial group actions on algebras. As a consequence, it allows one
to define partial crossed products in the category of inverse semigroups and interpret
low-dimensional cohomology groups in terms of extensions. Furthermore, important
structural results in semigroup theory use partial actions on meat-semilattices whose
domains are order ideals. Semilattices can be considered as semigroups, and order
ideals are semigroup ideals.

A natural situation in which both cohomologies appear is that of a unital partial
action α of a group G on a commutative algebraA. The domains are ideals generated
by idempotents 1g, g ∈ G, in particular, they are vector subspaces. In this case the
above formula (11) becomes

π(g) : A � a �→ αg(a1g−1) ∈ A,

which gives a partial representation π of G by κ-linear transformations of A. Thus
the cohomology from [16] deals with the additive structure of A. Focusing on the
multiplicative semigroup ofA one has a partialG-module in the sense of [124] and the
corresponding cohomology is based on the multiplicative structure of A. This shows
that the cohomology groups from the two theories have little in common, except for
the case n = 0, in which both of them are related to partial invariants.

The importance of groupoids for partial representations was mentioned above. On
the other hand, in [5] a locally compact groupoid (called transformation groupoid)
was related to any continuous partial action θ of a second countable locally compact
Hausdorff group G on a second countable locally compact Hausdorff space X and
used to prove that the C∗-algebra of the groupoid is isomorphic to the C∗-crossed
product C0(X) �

full
θ G (here the partial action of G on C0(X), dual to that of G

on X, is denoted by the same symbol θ ). In the discrete group case another way to
associate a groupoid to a partial action was given in [6]. More recent results involving
groupoids related to partial actions include the groupoidC∗-algebra characterization of
the enveloping C∗-algebras associated to partial actions of countable discrete groups
on locally compact spaces with applications in [156], as well as the study of the
amenability of groupoids related to partial semigroup actions, englobing groupoids
associated to directed graphs, higher rank graphs and topological higher rank graphs
in [265]. Moreover, an algebraic version of the above mentioned result from [5] was
established in [53] which says that given a continuous partial action of a discrete group
G on a locally compact totally disconnected Hausdorff space with clopen domains, the
Steinberg algebra of the associated transformation groupoid and the skew group ring
by the corresponding partial action of G on the compactly supported locally constant
function algebra are isomorphic. In the same article [53] the authors show that any
Steinberg algebra [95,277], associated to an ample Hausdorff groupoid, can be seen
as a partial skew inverse semigroup ring.

123



São Paulo J. Math. Sci. (2019) 13:195–247 231

The use of groupoids was essential in [235] for partial crossed product charac-
terizations of certain inverse semigroup C∗-algebras. This was done by dealing with
the above mentioned transformation groupoid of a partial group action from [5] (also
defined independently in [205] in the discrete case), as well as with the universal
groupoid G(S) of an inverse semigroup S. The latter is the groupoid of germs of a
certain natural action of S on the space of the semi-characters Ê , where E = E(S)

stands for the idempotents of S. The groupoid of germs of an inverse semigroup action
is defined in a similar spirit with the transformation groupoid of a partial action, taking
into account the natural partial order of S. The reader is referred to [154] for a detailed
construction. The authors of [235] prove that if S is a countable E-unitary (or strongly
0-E-unitary) inverse semigroups, then there is a partial action θ of themaximum group
image G of S on Ê such that G(S) is isomorphic to the transformation groupoid of
θ. This led to the above mentioned crossed product descriptions. Moreover, the tight
spectrum Êtight (see [154]) is invariant under the action of S, and it is shown in [235]
that the corresponding groupoid of germs Gtight (S) is also isomorphic to a transfor-
mation groupoid of a partial action of G. As a consequence, the full C∗-algebra of
Gtight (S) is isomorphic to the crossed product C0(Êtight )�

full G. The latter furnishes
a general explanation for a number of partial crossed product facts.

Apart from their importance to partial (semi)group actions and partial group rep-
resentations, groupoids became an object of study also subject to their own partial
actions. This was influenced by the paper [178], in which the definition of a partial
action of an ordered groupoid on a set was given, and it was proved that any such partial
action is globalizable. Furthermore the Birget–Rhodes expansion G̃ R of an ordered
groupoid G was defined and it was shown that there is a one-to-one correspondence
between the partial actions of G on a set X and the actions of G̃ R on X, extending
Exel’s result from [151], mentioned above.

The study of partial groupoid action on rings began in the working group leaded by
Antonio Paques, the first publication being [40], in which the notion of a partial action
α of an ordered groupoid G on a ringA was introduced and the corresponding partial
skew groupoid ringA�α G was defined. It was also proved that the meet-preserving
actions of G̃ R on A are in a one-to-one correspondence with those partial actions of
G on A, in which the domain of each partial bijection is an ideal in A. Furthermore,
if α is a partial action of G on A and β is the corresponding action of G̃ R on A then
A �α G is an epimorphic image of A �β G̃ R, which extends a result from [163],
obtained in the case of partial group actions. Analogous facts for partial actions of
inductive groupoids on algebras were obtained in [37], motivated by the fact that the
category of inverse semigroup is isomorphic to that of the inductive groupoids.

The concept was further generalized in [41], where the definition of a partial action
of an arbitrary groupoid on a ringwas given, a criterion for its globalizationwas proved
under the assumption that the identities of the groupoid act (trivially) on unital rings,
showing also that the partial skew groupoid ring and the corresponding global one are
Morita equivalent. The latter fact was used to establish Galois theoretic results. More
general globalization and Morita equivalence facts were recently obtained in [42],
where the unital condition on the above mentioned domains was replaced by the s-
unital condition. This extends also the results in [136] for partial group actions on
s-unital rings.
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The general definition from [41] gives, in particular, a notion of a groupoid action,
used in [174], where Cohen–Montgomery-type duality theorems for (co)actions of
groupoids were proved, and in [173] to study the Azumaya property for skew groupoid
rings, obtaining a nice relation with the notions of a Galois extension and Hirata-
separability.Another recent development is aGalois theory in the style ofGrothendieck
and Dress for groupoids acting on commutative rings [254], including a Galois cor-
respondence result. The definition of a (global) groupoid action in [41] is equivalent,
under some conditions, to that given in [70]. Furthermore, in a latest article [43] nec-
essary and sufficient conditions for the skew groupoid ring A ∗α G to be a separable
extension of A were given, where G is a finite connected groupoid acting partially on
a ring A. For a general G with finite number of objects the problem of separability is
reduced to the connected case. If an arbitrary groupoid G acts globally on A then the
separability of the extension forces G to be finite.

The globalization problem in the general setting of partial category actions was
investigated in the new article [244], in which the concept of a partial action of a
category on a set is defined, aswell as that of a continuous partial action of a topological
category on a topological space. It is proved that any partial action of a category on
an arbitrary set admits a universal globalization, and the latter fact is also true in the
context of continuous partial category actions. It is also shown that the new concept
fits nicely the notion of a partial action of a groupoid on a set.

A new advance produced by the group of A. Paques comes from the fact that
groupoid algebras and Hopf algebras are both englobed by weak Hopf algebras. The
partial actions of weak Hopf algebras on rings were defined in [78] and studied with
respect to the globalization problem, and the existence of a Morita context between
the partial smash product and the corresponding global one. A difficulty arises here
when defining partial smash products due to the fact that the tensor product is taken not
over the ground field. Amongst various interesting results a complete characterization
of the partial actions of a weak Hopf algebra on the base field was given, suggesting
a way to produce new examples. The authors also study the relation between partial
groupoid actions, in the sense of [41], and partial actions of groupoid algebras as weak
Hopf algebras, showing how partial groupoid actions fit into this general context.

AHopf algebra H may act partially on an algebraA from the right and from the left,
and if these two actions commute, then we have the concept of a partial H -bimodule
algebra as defined by Paques et al. [79]. Similarly, the authors of [79] define partial
H -bicomodule algebras and study the globalization problem for both structures. The
relations between the partial H0-biactions and the partial H -bicoactions is studied,
where H0 stands for the finite dual of H. In addition, under the assumption that H0

separates points, the authors prove that the globalization of a partial H0-bimodule
algebra and that of the corresponding partial H -bicomodule algebra are isomorphic
as H0-bimodule algebras.

As a dual counterpart of the globalization theorems for partial Hopf (co)actions
on algebras in [18,19], the globalization problem for partial Hopf (co)actions on
coalgebras was recently considered in [80]. More precisely, it is proved that every
partial module coalgebra is globalizable and, under a certain rationality condition,
the globalization for a partial comodule coalgebra also exists. The relations between
actions and coactions on algebras and coalgebras are analyzed, aswell as between their
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globalizations (sometimes assuming some natural conditions). Interesting examples
are also given.

Multiplier algebras entered the theory of partial actions at the stage of its founda-
tions: R. Exel’s definition of a continuous twisted partial action of a locally compact
group on a C∗-algebra uses invertible multipliers of certain ideals as values of the
twist [149]. This was transferred to abstract algebras [121], as well as to semi-
groups [126]. In purely ring theoretic setting, multipliers turned out to be crucial
to deal with the associativity of partial crossed products [117,121], whose arguments
were also used for semigroups in [124–126], and which also provided an algebraic
proof of the associativity of partial C∗-crossed products, which was initially achieved
by means of approximate identities. Furthermore, multipliers are essential ingredients
of the crossed product criterion for graded algebras [121, Theorem 6.1], as well as of
the more general partial cohomology theory [126].

On the other hand,multipliers came into theHopf theoretic picture inA.VanDaele’s
definition of “non-unital Hopf algebras”, i.e. the so-called multiplier Hopf alge-
bras [280], in which the co-multiplication takes values in the multiplier algebra of
the tensor product, � : H → M(H ⊗ H). This concept was born in 1994, and since
then much attention is being payed to various aspects of multiplier Hopf algebras and
their generalizations. In particular, A. Paques introduced the authors of the hot of print
article [36] to the subject and suggested to investigate their actions and co-actions on
non-necessarily unital algebras. The notion of a partial action of a regular multiplier
Hopf algebra H on an algebra R with a nondegenerate product is introduced and stud-
ied in [36], as well as that of a coaction of H on R. The relation between the actions
and coactions is discussed. The main result gives, under natural assumptions, a Morita
context connecting the coinvariant algebra RcoH with an appropriate smash product.
Finally a notion of a partial Galois coaction is related to this Morita context.

A rather general version of Hopf Galois theory was elaborated in [14], dealing with
the so-called lax entwining structures introduced by Caenepeel and Janssen in [71],11

and their particular cases of weak and partial entwining structures. Weak entwining
structures can be obtained from comodule algebras over weak bialgebras, whereas
partial entwining structures can be constructed from partial actions of bialgebras on
algebras. Each of these entwining structures consists of an algebraA and a coalgebra
C together with a map ψ : C ⊗A → A⊗C obeying certain axioms. A classical result
by Doi and Takeuchi (1986) states that an H -extension is cleft precisely when it is
Hopf Galois with normal basis. The authors extend this fact to the general context of
lax Galois extensions in a symmetric monoidal category, by introducing lax C-cleft
extensions and proving that the lax C-cleft extensions are exactly the lax C-Galois
extensions with normal basis. Further results on C-Galois extensions, as well as on
various types of entwining structures were obtained in [274].

An important part of the research on partial actions is dedicated to ideals and the
ring theoretic properties of partial crossed products. First of all, one askswhether or not
the partial crossed products are associative. It turned out that it is not always the case.
In [117] a ring A was called strongly associative if for any group G and any partial

11 The preprint [71] was a preliminary version of [72].

123



234 São Paulo J. Math. Sci. (2019) 13:195–247

action α of G onA, the partial skew group ringA�α G is associative. In the language
of multipliers a sufficient condition for the associativity ofA�α G was given in [117],
in particular, semiprime rings are strongly associative. This was extended in [40] to
partial skew groupoid rings. On the other hand, the ring of the upper-triangular n× n-
matrices over a field is strongly associative if and only if n ≤ 2. Another example of
the non-associativity was given by constructing a partial action of the group of order
2 on a four-dimensional algebra, which in the case of characteristic 2 is isomorphic to
the modular group algebra of the Klein-four group. This suggested the problem of the
characterization of strongly associativemodular group algebras of finite groups, which
was solved in [192–194]. In the recent preprint [195] the strongly associative modular
semigroup algebras κS are characterized, where S is a finite inverse semigroupwithout
zero, which is not a group, and κ is an algebraically closed field whose characteristic
p divides the order of the kernel of S. As a consequence, it is pointed out that the
modular partial group algebra κpar G is never strongly associative, provided that G is
a finite group and κ is an algebraically closed field whose characteristic divides |G|.

A systematic ring-theoretic investigation of partial skew group rings, the rings
under partial actions and the rings under their enveloping actions began in [171],
whereas the study of the prime and maximal ideals in [101] initiated the consideration
of partial skew polynomial rings. Subsequent results were obtained in [27,29,30,32,
77,98,99,104,106] and [103]. The treatment of the ring-theoretic properties of the
more general structure of a crossed product by a twisted partial group action began
in [39,253]. In particular, results on the Azumaya property from [253] were important
to define in [133] a homomorphism from the partial cohomology group H2(G, α,A)

to the relative Brauer group B(A/Aα) by sending any arbitrary partial 2-cocycle to the
corresponding crossedproduct. Thismapfits into the seven terms exact sequence [134],
mentioned above, and in the case of a (global) Galois extension of fields results in the
classical isomorphism between the second cohomology group and the relative Brauer
group.

More recent developments on the ring theoretic properties include the study of
the simplicity of the partial crossed products in [44,183,184,245] and [246], and
the chacarterization of the Leavitt path algebras as partial group rings [186], which
permitted one to obtain alternative proofs for the simplicity criterion and for the Cuntz-
Krieger uniqueness theorem for Leavitt path algebras (see [184,186]). Furthermore,
in [35] the relations between the module properties over A, A �α G and Aα were
studied, whereAα denotes the subring of the α-invariants, whereas in [107] the related
structure of the partial skew power series ring was recently considered with respect to
the distributive and Bezout duo properties.

As to more general skew structures, in [190] the Leavitt path algebras were charac-
terized as partial skew groupoid rings, which was applied to study a class of groupoid
graded isomorphisms between Leavitt path algebras. In [54] the simplicity of the
skew group ring by a partial action of an inverse semigroup on a commutative ring
was characterized and used to offer a new proof for the simplicity criterion for a Stein-
berg algebra associated with a Hausdorff and ample groupoid. Furthermore, in [82]
the semiprimitivity and the semiprimality properties for partial smash products were
considered, as well as their prime and Jacobson radicals.
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In a recent preprint [247] a rather general situation of a unital partial (in particular,
global) action of a groupoidG on a non-necessarily associative ring R was considered.
In particular, it was proved that if the partial action is unital and R is alternative, then
R ∗ G is left (or right) artinian if and only if so too is R and Rg = {0} for all but
finitely many g ∈ mor(G). In the global case the assumption on R to be alternative
can be dropped. This extends the well-known result of 1963 by I. G. Connel on group
rings, as well as its more general version for global skew group rings of 1979 by Park.
Applications were given to groupoid rings, partial group rings, generalized matrix
rings and Leavitt path algebras, and, moreover, the noetherian property for partial
skew groupoid rings was also considered.

For the twisted case in [50] the authors use the above discussed weak globalization
for a twisted partial action α of a group G on a semiprime ring to give several results
with necessary and sufficient conditions for a partial crossed product A ∗α G to be a
semiprime left Goldie ring, imposing reasonable restrictions, such as G being finite
and A having no |G|-torsion, or G being an infinite polycyclic group and α being of
finite type etc. In order to obtain these results the authors establish a series of facts
relating the properties and ideals of A ∗α G to those of Qm(A) ∗α G. In particular, if
A ∗α G is semiprime left Goldie ring, then so too is A, without any restriction on G
and α.

More recently, in [49] partial crossed product by twisted partial actions were con-
sidered with respect to the artinian, noetherian, semilocal, perfect and semiprimary
properties, under some assumptions on the twisted partial actions, such as to be of
finite type. If the twisted partial action is globalizable, then the above ring theoretic
properties for the partial crossed products were related to those for the corresponding
global crossed product. Moreover, the Krull dimension of partial crossed products was
also studied in [49], as well as the global dimension and the weak global dimension.
Furthermore, triangular matrix representations of partial skew group rings were also
considered, and, in addition, it was shown with certain assumptions that the ring under
the twisted partial action is Frobenius or symmetric, then so too is the crossed product.

In another preprint [109] twisted partial skew power series rings and twisted partial
skew Laurent series rings are introduced and studied with respect to the properties of
being a prime ring, a semi-prime ring, a semiprime Goldie ring or a Goldie ring with
semiprime base subring. Prime ideals are considered as well as the prime radical (the
latter for the twisted partial skew power series case).

In relation to the twisted case in [248] the authors introduce the concept of a unital
ring S which is epsilon strongly graded by a groupG, as a simultaneous generalization
of the strongly graded rings and crossed products by unital twisted partial actions. They
define a trace map and using it give a criterion of the separability of the extension
S1 ⊆ S. This generalizes a known result for strongly graded rings, as well as the
corresponding result from the above mentioned paper [39]. Amongst other facts, the
hereditary and Frobenius properties, and the simplicity for epsilon-strongly graded
rings are also discussed, and the so-called epsilon-crossed products are introduced,
which are proved to be isomorphic with the unital partial crossed products. A series
of examples are worked out, including those giving separable epsilon-strongly graded
rings, which are neither strongly graded, nor partial crossed products in some natural
way.
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As to the Hopf case, in [83] a general theory of partial H -radicals is developed
for partial H -module algebras based on the Amitsur-Kurosh general radical theory.
Using the monoidal category of left partial H -modules from [22] and its subcategory
of algebra objects, a definition of a partial smash product A#H is elaborated, where
H is a Hopf algebra with a bijective antipode and A is a non-necessarily unital H -
module algebra (in the above mentioned subcategory). Several examples of partial
H -radicals of Jacobson type are worked out and studied. The obtained results extend
facts established in the global case in [172] and [270]. Some questions posed in [172]
are also discussed.

In [282] for a finite dimensionalHopf algebra H over a field, imposing a condition of
a lazy 1-cocycle [55], the concept of a strong partial H -module algebra is defined. For
strong partial H -module algebras the partial trace map is considered and a Maschke-
type theorem is proved. Separability of the partial smash product over the base ring is
also discussed.

The partial trace map naturally occurred in earlier papers, and it is related to both
Galois theory andMorita theory. Amongst the abovementionedMorita theoretic facts,
two type of Morita equivalence results are used in the algebraic investigations of ring
theoretic properties. The first one has its origin in [4], where it was proved that if
α is a globalizable partial action of a locally compact Hausdorff group G on a C∗-
algebra A and (B, β) is its enveloping action, then the reduced C∗-crossed products
A �

red
α G and A �

red
β G are strongly Morita equivalent. We already referred to the

recentC∗-theoretic extensions of this fact in [7] and [10]. Algebraic versions appeared
in [15,18,41,42,78,117,121,136]. The other type of results is inspired by the global
case and for partial group actions appeared in [32]: given a unital partial action of a
groupG on a ringA, there is a naturalMorita context linking the subring of the α-fixed
pointsAα and the skew group ringA�α G; the context is strict if and only ifAα ⊆ A
is an α-Galois extension. Its analogue for partial Hopf actions was established in [17],
and Hopf theoretic considerations about the corresponding Morita context is the topic
of a recent survey by Paques [250]. The discussion in [250] involves the partial trace
map, the strictness of the context, Galois extensions, separability, and is accompanied
by a series of illustrative examples.

Considerations on ideals in partial crossed products naturally apper when dealing
with ring-theoretic properties, however, they are of great interest on their own. Thus
in one of the latest papers [100] the author investigate the prime Goldie ideals in the
related structure of the partial skew polynomial rings, whereas in [52] the ideals are
studied in skew group rings by partial actions on algebras of functions on an abstract
set X .

More precisely, let κ be a field and denote by F0(X) the algebra of all functions
X → κ with finite support, endowed with the pointwise operations. Then there is a
bijection between the non-zero ideals of F0(X) and the non-empty subsets of X, and,
moreover, there is a one-to-one correspondence between the partial actions of a group
G on X and the partial actions of G onF0(X). If the partial action α of G on the set X
is free, then the skew group ring F0(X) �α G is shown to be isomorphic to a certain
equivalence relation algebra, and this is used to describe the ideals of F0(X) �α G as
function rings on appropriate subsets of X. The results are analogues of known facts
on partial actions on the C∗-algebra C0(X), where X is a locally compact Hausdorff
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space. As a motivation, the authors include a proof of a simplified version of the above
mentioned F. Abadie’s characterization of C∗-partial crossed products as groupoid
C∗-algebras, for the case of free partial actions of countable groups acting on unital
commutative C∗-algebras.

There is a rich history of the study of ideals in C∗-algebraic crossed products,
with a special role played by the so-called Effros–Hahn conjecture [145], which in its
original form states that every primitive ideal in the crossed product of a commutative
C∗-algebra by a locally compact group should be induced from a primitive ideal in
the C∗-algebra of some isotropy group. It was proved in [269] in the case of discrete
amenable groups and later extended to various contexts.

In [119] the Effros–Hahn conjecture is studied in the algebraic setting, more specif-
ically, for the skew group rings Lc(X) � G, where G is an arbitrary discrete group
acting partially on a locally compact Hausdorff, totally disconnected topological space
X, andLc(X) stands for the algebra of all locally constant, compactly supported func-
tions X with values in an arbitrary field κ. It is also assumed that each domain Xg in
the partial action is closed and open (clopen) in X. One of the main results in [119]
says that every ideal inLc(X) � G is an intersection of ideals induced from isotropy
groups.

Tools are developed in order to understand the induction process, one of them
being the notion of an admissible ideal of the group algebra κHx0 , where Hx0 is the
isotropy group of a point x0 ∈ X. In particular, denoting by Indx0(I ) the ideal of
Lc(X) � G induced from an ideal of I of κHx0 , the map I �→ Indx0(I ) is proved
to be an injection of the set of the admissible ideals of κHx0 into the set of the ideals
of Lc(X) � G. In order to compare ideals induced from distinct isotropy groups the
notion of a transposition of ideals is introduced, which takes any ideal of κHx0 to an
admissible ideal of κHx̂0 , x0, x̂0 ∈ X. It is proved in [119] that given admissible ideals
I �κHx0 and Î �κHx̂0 , the equality Indx0(I ) = Indx̂0( Î ) occurs if and only if Î is the
transposition of I. A concrete description of a transposed ideal is given, and it is also
shown that the induction preserves some important properties of the ideals, namely,
being primitive, or prime, or meet-irreducible.

Notice that the abovementioned assumption on Xg to be closed (besides being open
by definition) naturally appears in [156]: the enveloping space of a topological partial
action of a countable discrete group on a compact Hausdorff space is Hausdorff if and
only if each domain Xg is closed (note that we already mentioned that this condition
was also used in [53]).

The ideas of [119] were further developed in the most recent preprint [114] to the
study of the ideals in the Steinberg algebra Aκ(G) of an ample Hausdorff groupoid
G over a field κ , by considering Aκ(G) as as an inverse semigroup crossed product
algebra. As in [119], it is proved that every ideal in Aκ(G) may be obtained as the
intersection of ideals induced from isotropy group algebras. Since the partial skew
group ring Lc(X) � G from [119] can be viewed as the Steinberg algebra [277] for
the transformation groupoid associated to the partial action of G on X , the algebraic
version of theEffros–Hahn conjecture proved in [119] is extended now to the generality
of Steinberg algebras.
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Recent works around partial actions include also the study of the category of the
partial Doi-Hopf modules in [86], of partial actions on power sets in [34], of the
category of partialG-sets for a fixed groupG in [28], of partial orbits and n-transitivity
in [31], of partial group entwining structures and partial group (co)actions of a Hopf
group coalgebra on a family of algebras in [87], of generalized partial smash products
in [143], and of twisted partial Hopf coactions and corresponding partial crossed
coproducts in [88], as well as a note on sums of ideals [33]. More information around
partial actions may be found in the surveys [45,115,116,170,250,251,260]. Notice
also that partial actions and/or related structures have been mentioned in [12,13,24,
46,62,67,90,92,142,154,161,166,167].

Acknowledgements The author thanks Fernando Abadie andMykola Khrypchenko for many useful com-
ments.
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