
São Paulo Journal of Mathematical Sciences (2019) 13:320–341
https://doi.org/10.1007/s40863-018-00114-3

Scalar curvature estimates of constant mean curvature
hypersurfaces in locally symmetric spaces

Eudes L. de Lima1 · Henrique F. de Lima2 · Fábio R. dos Santos2 ·
Marco A. L. Velásquez2

Published online: 27 November 2018
© Instituto de Matemática e Estatística da Universidade de São Paulo 2018

Abstract
We derive sharp estimates for the infimum and supremum of the scalar curvature of
a hypersurface immersed with constant mean curvature in a locally symmetric space
obeying standard curvature constraints. Our approach is based on the well known
Omori–Yau maximum principle and on the weak version of it.
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1 Introduction

The problem of characterizing hypersurfaces immersed with constant mean curvature

in a Riemannian space form M
n+1
c of constant sectional curvature c constitutes an

important and fruitful topic in the theory of isometric immersions, which has being
widely approached by many authors. For instance, in a classical paper, Klotz and
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Osserman [7] characterized totally umbilical spheres and circular cylinders as the
only complete surfaces immersed into the Euclidean 3-space R3 with constant mean
curvature H �= 0 and whose Gaussian curvature does not change sign. Later on,
Hoffman [6] and Tribuzy [12] gave an extension of this result to the case of surfaces
with constant mean curvature in the Euclidean 3-sphere S3 and in the hyperbolic space
H

3, respectively.
More recently, Alías and García-Martínez [2] used the weak Omori–Yau maximum

principle due to Pigola et al. [10,11] to study the behavior of the scalar curvature R of a

complete hypersurface immersed with constant mean curvature in M
n+1
c , with n ≥ 3,

deriving a sharp estimate for the infimum of R. Afterwards, these same authors [3]
used the Omori–Yau maximum principle [9,13] to obtain a sharp estimate for the
supremum of R of a constant mean curvature hypersurface with two distinct principal

curvature immersed in M
n+1
c , with n ≥ 3.

An interesting generalization of constant curvature spaces are the so-called locally
symmetric spaces. We recall that a Riemannian manifold is said locally symmetric
when all the covariant derivative components of its curvature tensor vanish identically.
So, it is a natural question to revisit in this ambient space the known results of constant
curvature spaces. In this direction, herewe deal with hypersurfaces with constantmean
curvature immersed into a locally symmetric Riemannian manifold obeying standard
curvature constraints. Our purpose is just to extend the techniques developed in [2,3] in
order to obtain sharp estimates for the infimum and supremum of the scalar curvature
of such a hypersurface, treating even the case n = 2.

This manuscript is organized in the following way: in Sect. 2 we introduce some
basic facts and notations that will appear along the paper and we recall a suitable
Simons type formula which will be essential to prove our main results. Next, in Sect. 3
we establish our curvatures constraints related to a hypersurface immersed in a locally
symmetric space and we quote some auxiliary results. Afterwards, in Sect. 4 we
apply the weak Omori–Yau maximum principle to obtain a sharp estimate for the
infimumof the scalar curvature of a stochastically complete hypersurfacewith constant
mean curvature, proving that it must be either totally umbilical or isometric to an
isoparametric hypersurface having two distinct principal curvatures, one of them being
simple (see Theorems 1 and 2). Finally, in Sect. 5 we use the (strong) Omori–Yau
maximum principle to obtain a sharp estimate to the supremum of the scalar curvature
(see Theorems 3 and 4, for n ≥ 3, and Theorems 5 and 6, for n = 2).

2 Preliminaries

In this work, we will deal with n-dimensional, orientable and connected hypersur-

face ψ : �n → M
n+1

immersed into a (n + 1)-dimensional Riemannian manifold

M
n+1

. We choose a local field of orthonormal frame {e1, . . . , en+1} in M
n+1

with
dual coframe {ω1, . . . , ωn+1} such that, at each point of �n , e1, . . . , en are tangent to
�n and en+1 is normal to �n . We will use the following convention for the indices:

1 ≤ A, B,C, . . . ≤ n + 1 and 1 ≤ i, j, k, . . . ≤ n.
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In this setting, RABCD, RAC and R denote respectively the Riemannian curvature

tensor, the Ricci tensor and the scalar curvature of the Riemannian manifold M
n+1

.
So, we have

RAC =
∑

B

RABCB and R =
∑

A

RAA.

Now, restricting all the tensor to �n , we see that ωn+1 = 0 on �n . Hence, 0 =
dωn+1 = −∑

i ωn+1i ∧ ωi and as it well known we get

ωn+1i =
∑

j

hi jω j , hi j = h ji .

This gives the second fundamental formof�n , B = ∑
i, j hi jωiω j en+1 and its squared

length S = |B|2 = ∑
i, j h

2
i j . Furthermore, the mean curvature H of �n is defined by

H = 1
n

∑
i hii .

A fact well known is that the Riemannian curvature tensor of the hypersurface �n

can be described in terms of the second fundamental form and of the curvature tensor
of the ambient space M

n+1
by the Gauss equation given by

Ri jkl = Ri jkl + (hikh jl − hilh jk),

where Ri jkl are the components of theRiemannian curvature tensor of�n . In particular,
it follows from Gauss equation that the Ricci curvature and the scalar curvature of �n

are given, respectively, by

Ri j =
∑

k

Rik jk + nHhi j −
∑

k

hikhk j (2.1)

and
R =

∑

i

Rii . (2.2)

From (2.1) and (2.2) we obtain

R =
∑

i, j

Ri ji j + n2H2 − S. (2.3)

We also remember that the Codazzi equation of the hypersurface �n is given by

hi jk − hik j = − Rn+1i jk, (2.4)

where hi jk denote the first covariant derivatives of hi j and satisfies

∑
hi jkωk = dhi j +

∑
hkjωki +

∑
hikωk j . (2.5)
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Observe that
|∇B|2 =

∑

i, j,k

h2i jk, (2.6)

Taking a local orthonormal frame {e1, . . . , en} on �n such that hi j = λiδi j , from
equation (2.8) of [4] (see also equation (2.10) of [5]) we have the following Simons
type formula:

1

2
�S = |∇B|2 +

∑

i

λi (nH)i i + nH
∑

i

λ3i − S2

−
∑

i, j,k

hi j (R(n+1)i jk;k + R(n+1)kik; j ) +
∑

i

R(n+1)i(n+1)i (nHλi − S)

+
∑

i, j

(λi − λ j )
2Ri ji j . (2.7)

3 Locally symmetric spaces and auxiliary results

Proceeding within the context of the previous section, we will assume that there exist

constants c1 and c2 such that the sectional curvature K of the ambient space M
n+1

satisfies the following two constraints

K (η, v) = c1
n

, (3.1)

for vectors η ∈ T⊥� and v ∈ T�, and either

K (u, v) ≥ c2, (3.2)

or
K (u, v) ≤ c2, (3.3)

for vectors u, v ∈ T�.
From now on, we considerM

n+1
a locally symmetric Riemannianmanifold. Recall

that a Riemannian manifold is said locally symmetricwhen all the covariant derivative
components RABCD;E of its curvature tensor vanish identically.

Remark 1 Obviously, when the ambient manifold M
n+1

has constant sectional curva-
ture c, then it is locally symmetric and the curvature conditions (3.1), (3.2) and (3.3) are

satisfied for every hypersurface �n immersed in M
n+1

, with c1/n = c2 = c. There-
fore, in some sense our assumptions are a natural generalization of the case where the
ambient space has constant sectional curvature. Moreover, when the ambient manifold
is a Riemannian product of two Riemannianmanifolds of constant sectional curvature,
say M = M1(κ1) × M2(κ2), then M is locally symmetric and, if κ1 = 0 and κ2 ≥ 0
(resp. k2 ≤ 0), then every hypersurface of type � = �1 × M2(κ2), where �1 is
an orientable and connected hypersurface immersed in M1(κ1), satisfies the curvature
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constraints (3.1) and (3.2) (resp. (3.3)) with c1 = c2 = 0 (for more details, see Remark
3.1 of [4]). Moreover, it is not difficult to see that the equality Rn+1i jk = 0 holds on�.
Then by Codazzi equation we get that the second fundamental form B of hypersurface
� must be a Codazzi tensor, that is, the covariant differential ∇B is symmetric in all
indices. In particular, this justifies the study of geometry of hypersurfaces such that
its second fundamental form is a Codazzi tensor.

Denoting by RAB the components of the Ricci tensor of a locally symmetric Rie-

mannian manifold M
n+1

satisfying condition (3.1), the scalar curvature R of M
n+1

is given by

R =
n+1∑

A=1

RAA =
n∑

i, j=1

Ri ji j + 2
n∑

i=1

R(n+1)i(n+1)i =
n∑

i, j=1

Ri ji j + 2c1. (3.4)

Moreover, it is well known that the scalar curvature of a locally symmetric Riemannian
manifold is constant. Thus,

∑
i, j Ri ji j is a constant naturally attached to a locally

symmetric Riemannian manifold satisfying condition (3.1). So, for sake of simplicity,
in the course of this work we will denote the constant 1

n(n−1)

∑
i, j Ri ji j by R and

c := 2c2 − c1
n
.

Given 
i j = hi j − Hδi j , we will also consider the following symmetric tensor


 =
∑

i, j


i jωi ⊗ ω j .

Let |
|2 = ∑
i, j 


2
i j be the square of the length of 
. It is not difficult to check that


 is traceless and |
|2 = S − nH2 ≥ 0, with equality if and only if �n is totally
umbilical. For that reason, 
 is called the total umbilicity tensor of �n . Moreover,
from (2.3) we get

|
|2 = n(n − 1)
(
H2 + R

)
− R. (3.5)

In order to establish our characterization results, we recall two classic algebraic
lemmas. The first one is the well known Okumura Lemma due to Okumura in [8], and
completed with the equality case proved by Alencar and do Carmo in [1].

Lemma 1 Let κ1, . . . , κn, n ≥ 3, be real numbers such that
∑

i
κi = 0 and

∑
i
κ2
i =

β2, where β ≥ 0. Then

− (n − 2)√
n(n − 1)

β3 ≤
∑

i

κ3
i ≤ (n − 2)√

n(n − 1)
β3,

and equality holds if, and only if, either at least n − 1 of the numbers κi are equal.

The next auxiliary result will give a suitable formula for squared length of the
covariant differential of a symmetric tensor with two distinct eigenvalues (for more
details, see Lemma 10 in [3])
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Lemma 2 Let �n be an n-dimensional Riemannian manifold, n ≥ 3, and let T :
X(�) → X(�) be a Codazzi tensor on �n with two distinct eigenvalues, one of them
being simple, such that tr(T ) = 0. Then,

|∇T |2 = n + 2

n
|∇|T ||2. (3.6)

For the proof of our results, we will also make use of the well known Omori–
Yau maximum principle. Let us recall that, following the terminology introduced by
Pigola et al. in [11], the Omori–Yau maximum principle is said to hold on a (not
necessarily complete) n-dimensional Riemannian manifold �n if, for any smooth
function u ∈ C2(�) with u∗ = sup u < +∞ there exists a sequence of points
(pk) ⊂ �n satisfying

u(pk) > u∗ − 1

k
, |∇u(pk)| <

1

k
and �u(pk) <

1

k
.

Equivalently, for any smooth function u ∈ C2(�)with u∗ = inf u > −∞ there exists
a sequence of points (pk) ⊂ �n satisfying

u(pk) < u∗ + 1

k
, |∇u(pk)| <

1

k
and �u(pk) > −1

k
.

In this sense, the classical result given by Omori and Yau in [9,13] states that Omori–
Yau maximum principle holds on every complete Riemannian manifold with Ricci
curvature bounded from below.

On the other hand, as observed also by Pigola et al. in [11], the validity of Omori–
Yau maximum principle on �n does not depend on curvatures bounds as much as
one would expect. For instance, the Omori–Yau maximum principle holds on every
Riemannian manifolds which is properly immersed into a Riemannian space form
with controlled mean curvature (see [11], Example 1.14). In particular, it holds for
every constant mean curvature hypersurface properly immersed into a Riemannian
space form.

More generally, and following again the terminology introduced in [11], the weak
Omori–Yau maximum principle is said to hold on a (not necessarily complete) n-
dimensional Riemannian manifold �n if, for any smooth function u ∈ C2(�) with
u∗ < +∞ there exists a sequence of points (pk) ⊂ �n with the properties

u(pk) > u∗ − 1

k
and �u(pk) <

1

k
.

As proved by Pigola et al. [10,11], the fact that the weak Omori–Yau maximum
principle holds on �n is equivalent to the stochastic completeness of the manifold,
that is,

Lemma 3 ARiemannianmanifold�n is stochastically complete if and only if for every
u ∈ C2(�) satisfying sup� u < +∞, there exists a sequence of points (pk) ⊂ �n
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such that
lim u(pk) = sup

�

u and lim sup�u(pk) ≤ 0.

In particular, the weak Omori–Yau maximum principle holds on every parabolic
Riemannian manifold.

4 Estimates for the infimum of scalar curvature

This section is devoted to establish our results concerning to estimates for the infimum
of the scalar curvature of a stochastically complete hypersurface with constant mean
curvature immersed into a locally symmetric Riemannian manifold. So, we state our
first result.

Theorem 1 Let ψ : �n → M
n+1

, n ≥ 2, be a stochastically complete hypersurface

immersed into a locally symmetric Riemannian manifold M
n+1

satisfying curvature
conditions (3.1) and (3.2). Suppose that �n has constant mean curvature H with
H2 + c > 0, where c = 2c2 − c1/n. Then,

(i) either inf� R = n(n − 1)(H2 + R) and �n is a totally umbilical hypersurface,
(ii) or

(a) inf� R ≤ 2(R − c), if n = 2,
(b) and if n ≥ 3,

inf
�

R ≤ n(n − 2)

2(n − 1)

(
2(n − 1)c0 + nH2 + |H |

√
n2H2 + 4(n − 1)c

)
,

where the constant c0 is given by

c0 = R − c1 − 2nc2
n(n − 2)

.

Moreover, if the equality holds and this infimum is attained at some point of �n, then
�n is an isoparametric hypersurface with (in the case c > 0, assume that H �= 0)
two distinct principal curvatures one of which is simple.

Remark 2 We observe that when M
n+1

is, for instance, a space form with constant
curvature c, then the constants R and c0 in Theorem 1 agree with c.

We note that Theorem 1 generalizes Theorems 2 and 3 of [2] for the context of
hypersurfaces immersed with constant mean curvature in a locally symmetric spaces.
On the other hand, it follows from (3.5) that inf� R = n(n−1)(H2+R)−sup� |
|2.
Hence, Theorem 1 can be rewritten equivalently in terms of the total umbilicity tensor
as follows.

Theorem 2 Let ψ : �n → M
n+1

, n ≥ 2, be a stochastically complete hypersurface

immersed into a locally symmetric Riemannian manifold M
n+1

satisfying curvature
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conditions (3.1) and (3.2). Suppose that �n has constant mean curvature H with
H2 + c > 0, where c = 2c2 − c1/n. Then,

(i) either sup� |
| = 0 and �n is a totally umbilical hypersurface,
(ii) or

sup
�

|
| ≥ α|H |,c =
√
n

2
√
n − 1

(√
n2H2 + 4(n − 1)c − (n − 2)|H |

)
> 0.

Moreover, if the equality holds and this supremum is attained at some point of �n,
then�n is an isoparametric hypersurface with (in the case c > 0, assume that H �= 0)
two distinct principal curvatures one of which is simple.

Proof Firstly, taking a local orthonormal frame field {e1, . . . , en} in �n such that

hi j = λiδi j and 
i j = κiδi j ,

we can check that

∑

i

κi = 0,
∑

i

κ2
i = |
|2 and

∑

i

λ3i =
∑

i

κ3
i + 3H |
|2 + nH3.

Now, since M
n+1

is locally symmetric and�n has constant mean curvature, it follows
from (2.7) that

1

2
�|
|2 = 1

2
�S

= |∇B|2 + nH
∑

i

λ3i − S2 +
∑

i

R(n+1)i(n+1)i (nHλi − S)

+
∑

i, j

(λi − λ j )
2Ri ji j . (4.1)

From curvature conditions (3.1) and (3.2), we get

∑

i

R(n+1)i(n+1)i (nHλi − S) = c1(nH
2 − S) = − c1|
|2 (4.2)

and

∑

i, j

Ri ji j (λi − λ j )
2 ≥ c2

∑

i, j

(λi − λ j )
2

= 2nc2(S − nH2) = 2nc2|
|2. (4.3)

Moreover, when n ≥ 3, we can apply Lemma 1 to the real numbers κ1, . . . , κn and
to obtain
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nH
∑

i

λ3i − S2 = n2H4 + 3nH2|
|2 + nH
∑

i

κ3i −
(
|
|2 + nH2

)2

≥ n2H4 + 3nH2|
|2 − n|H |
∣∣∣∣∣∣

∑

i

κ3i

∣∣∣∣∣∣
− |
|4 − 2nH2|
|2 − n2H4

≥ −|
|4 − n(n − 2)√
n(n − 1)

|H ||
|3 + nH2|
|2. (4.4)

In the case that n = 2, a straightforward computation gives

2H
∑

i

λ3i − S2 = 2H(3H |
|2 + 2H3) −
(
|
|2 + 2H2

)2

= −|
|4 + 2H2|
|2. (4.5)

In any case, since c = 2c2 − c1/n, inserting (4.2), (4.3), (4.4) and (4.5) into (4.1) we
obtain that

1

2
�|
|2 ≥ |∇B|2 − |
|4 − n(n − 2)√

n(n − 1)
|H ||
|3 + n(H2 + c)|
|2

≥ −|
|2P|H |,c(|
|), (4.6)

where

P|H |,c(x) = x2 + n(n − 2)√
n(n − 1)

|H |x − n(H2 + c).

Observe that, since H2 + c > 0, the polynomial P|H |,c(x) has an unique positive root
given by

α|H |,c =
√
n

2
√
n − 1

(√
n2H2 + 4(n − 1)c − (n − 2)|H |

)
.

If sup� |
| = +∞, then (ii) holds trivially and there is nothing to prove. If
sup� |
| < +∞, then we can apply Lemma 3 to the function |
|2 to assures that
there exists a sequence (pk) ⊂ �n such that

lim |
|(pk) = sup
�

|
| and lim sup�|
|2(pk) ≤ 0,

which jointly with (4.6) implies

(
sup
�

|
|
)2

P|H |,c
(
sup
�

|
|
)

≥ 0.

It follows from here that either sup� |
| = 0, which means that |
| vanishes
identically and the hypersurface is totally umbilical, or sup� |
| > 0 and then
P|H |,c(sup� |
|) ≥ 0. In the latter case, it must be sup� |
| ≥ α|H |,c, which gives
the inequality in (ii). Moreover, assume that equality sup� |
| = α|H |,c holds. In this
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case, P|H |,c(|
|) ≤ 0 on �n , which jointly with (4.6) implies that function |
|2 is
subharmonic on �n . Therefore, if this supremum is attained at some point of �n , it
follows from stronger maximum principle that |
| = α|H |,c is constant. Thus, (4.6)
becomes trivially an equality,

1

2
�|
|2 = 0 = − |
|2P|H |,c(|
|).

From here we obtain that |∇B|2 = 0 and, consequently, from (2.6) we conclude
that �n is isoparametric hypersurface. Finally, using once more the equality (4.6) we
also obtain the equality in Lemma 1, which implies that the hypersurface has exactly
two distinct principal curvatures one of which is simple. This finishes the proof from
theorem. ��

In the particular casewhere�n is complete,weobtain fromTheorem1 the following
consequence

Corollary 1 Let ψ : �n → M
n+1

, n ≥ 2, be a complete hypersurface immersed into

a locally symmetric Riemannian manifold M
n+1

satisfying curvature conditions (3.1)
and (3.2). Suppose that �n has constant mean curvature H with H2 + c > 0, where
c = 2c2 − c1/n. Then,

(i) either inf� R = n(n − 1)(H2 + R) and �n is a totally umbilical hypersurface,
(ii) or

(a) inf� R ≤ 2(R − c), if n = 2,
(b) and if n ≥ 3,

inf
�

R ≤ n(n − 2)

2(n − 1)

(
2(n − 1)c0 + nH2 + |H |

√
n2H2 + 4(n − 1)c

)
,

where the constant c0 is given by

c0 = R − c1 − 2nc2
n(n − 2)

.

Moreover, if the equality holds and this infimum is attained at some point of �n, then
�n is an isoparametric hypersurface with (in the case c > 0, assume that H �= 0)
two distinct principal curvatures one of which is simple.

Asmentioned before, we can rewritten Corollary 1 equivalently in terms of the total
umbilicity tensor as follows.

Corollary 2 Let ψ : �n → M
n+1

, n ≥ 2, be a complete hypersurface immersed into

a locally symmetric Riemannian manifold M
n+1

satisfying curvature conditions (3.1)
and (3.2). Suppose that �n has constant mean curvature H with H2 + c > 0, where
c = 2c2 − c1/n. Then,
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(i) either sup� |
| = 0 and �n is a totally umbilical hypersurface,
(ii) or

sup
�

|
| ≥ α|H |,c =
√
n

2
√
n − 1

(√
n2H2 + 4(n − 1)c − (n − 2)|H |

)
> 0.

Moreover, if the equality holds and this supremum is attained at some point of �n,
then�n is an isoparametric hypersurface with (in the case c > 0, assume that H �= 0)
two distinct principal curvatures one of which is simple.

Proof Wenote that when sup� |
| = +∞ the result is clearly true. So, we can suppose
that sup� |
| < +∞. In this case, since �n has constant mean curvature, we have
that sup S < +∞. Hence, from the Gauss equation and our hypothesis on sectional

curvature of M
n+1

, we get

Rii ≥ (n − 1)c2 − nH sup
�

√
S − sup

�

S > −∞,

that is, the Ricci curvature of �n is bounded from below. In particular, �n is stochas-
tically complete and the result follows from Theorem 2. ��

Other consequence from Theorem 1 (or Theorem 2) is the following result for
complete parabolic hypersurfaces in locally symmetric spaces.

Corollary 3 Let ψ : �n → M
n+1

, n ≥ 2, be a complete parabolic hypersurface

immersed into a locally symmetric Riemannian manifold M
n+1

satisfying curvature
conditions (3.1) and (3.2). Suppose that �n has constant mean curvature H with
H2 + c > 0, where c = 2c2 − c1/n. Then,

(i) either inf� R = n(n − 1)(H2 + R) and �n is a totally umbilical hypersurface,
(ii) or

(a) inf� R ≤ 2(R − c), if n = 2,
(b) and if n ≥ 3,

inf
�

R ≤ n(n − 2)

2(n − 1)

(
2(n − 1)c0 + nH2 + |H |

√
n2H2 + 4(n − 1)c

)
,

where the constant c0 is given by

c0 = R − c1 − 2nc2
n(n − 2)

.

Moreover, if the equality holds, then �n is an isoparametric hypersurface with (in the
case c > 0, assume that H �= 0) two distinct principal curvatures one of which is
simple.

Equivalently, we can to proof the following result
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Corollary 4 Let ψ : �n → M
n+1

, n ≥ 2, be a complete parabolic hypersurface

immersed into a locally symmetric Riemannian manifold M
n+1

satisfying curvature
conditions (3.1) and (3.2). Suppose that �n has constant mean curvature H with
H2 + c > 0, where c = 2c2 − c1/n. Then,

(i) either sup� |
| = 0 and �n is a totally umbilical hypersurface,
(ii) or

sup
�

|
| ≥ α|H |,c =
√
n

2
√
n − 1

(√
n2H2 + 4(n − 1)c − (n − 2)|H |

)
> 0.

Moreover, if the equality holds, then �n is an isoparametric hypersurface with (in the
case c > 0, assume that H �= 0) two distinct principal curvatures one of which is
simple.

Proof Firstly, we recall that every parabolic Riemannain manifold is stochastically
complete. Then, by the first part of Theorem 2 we obtain that either sup� |
| = 0
and �n is totally umbilical hypersurface, or sup� |
| ≥ α|H |,c. Moreover, if equality
sup� |
| = α|H |,c holds, then as in the proof above we have P|H |,c(|
|) ≤ 0 and |
|2
is a subharmonic function on�n which is bounded from above. Since�n is parabolic,
it must be constant |
| = α|H |,c. Therefore, at this point we can reason in a similar
way to the proof of Theorem 2. ��

5 Estimates for the supremum of scalar curvature

Proceeding, this section we devoted to present our estimates for the supremum of
scalar curvature of constantmean curvature hypersurfaces having twodistinct principal
curvatures in a locally symmetric space. We point out that our results are natural
generalizations of Theorems 3, 4 and 7 in [3].

In what follows, we will consider constant mean curvature hypersurfaces immersed
into a locally symmetric Riemannian manifold whose its second fundamental form
is a Codazzi tensor. For instance, the hypersurfaces given in Remark 1 satisfy this
additional assumption and, in this sense, it is a mild hypothesis. So, we are in position
to state our next result.

Theorem 3 Let ψ : �n → M
n+1

, n ≥ 3, be a hypersurface immersed into a locally

symmetric Riemannianmanifold M
n+1

satisfying curvature conditions (3.1) and (3.3).
Suppose that �n has constant mean curvature H and its second fundamental form
is a Codazzi tensor with two distinct principal curvatures, one of them being simple.
Assume that the Omori–Yau maximum principle holds on �n.

(i) If H2 + c ≥ 0, where c = 2c2 − c1/n, then

B|H |,c ≤ sup
�

R ≤ n(n − 1)(H2 + R),
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where

B|H |,c = n(n − 2)

2(n − 1)

(
2(n − 1)c0 + nH2 − |H |

√
n2H2 + 4(n − 1)c

)

and the constant c0 is given by

c0 = R − c1 − 2nc2
n(n − 2)

.

(ii) If H2 + c < 0 (with c < 0), where c = 2c2 − c1/n, then either sup� R =
n(n − 1)(H2 + R) or − 4(n−1)

n2
c ≤ H2 < −c and

B|H |,c ≤ sup
�

R ≤ B̂|H |,c ≤ n(n − 1)(H2 + R),

where

B̂|H |,c = n(n − 2)

2(n − 1)

(
2(n − 1)c0 + nH2 + |H |

√
n2H2 + 4(n − 1)c

)

and the constant c0 is given by

c0 = R − c1 − 2nc2
n(n − 2)

.

Moreover, if the equality sup� R = B|H |,c holds and this supremum is attained at
some point of�n, then�n is an isoparametric hypersurface with two distinct principal
curvatures one of which is simple.

Using once more equation (3.5), we proof the following equivalent result for the
infimum of the square length of the total umbilicity tensor 
.

Theorem 4 Let ψ : �n → M
n+1

, n ≥ 3, be a hypersurface immersed into a locally

symmetric Riemannianmanifold M
n+1

satisfying curvature conditions (3.1) and (3.3).
Suppose that �n has constant mean curvature H and its second fundamental form
is a Codazzi tensor with two distinct principal curvatures, one of them being simple.
Assume that the Omori–Yau maximum principle holds on �n.

(i) If H2 + c ≥ 0, where c = 2c2 − c1/n, then

0 ≤ inf
�

|
| ≤ β|H |,c,

where

β|H |,c =
√
n

2
√
n − 1

(
(n − 2)|H | +

√
n2H2 + 4(n − 1)c

)
.
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(ii) If H2 + c < 0 (with c < 0), where c = 2c2 − c1/n, then either inf� |
| = 0 or
− 4(n−1)

n2
c ≤ H2 < −c and

0 < β̂|H |,c ≤ inf
�

|
| ≤ β|H |,c,

where

β̂|H |,c =
√
n

2
√
n − 1

(
(n − 2)|H | −

√
n2H2 + 4(n − 1)c

)
.

Moreover, if the equality inf� |
| = β|H |,c holds and this infimum is attained at some
point of �n, then �n is an isoparametric hypersurface with two distinct principal
curvatures one of which is simple.

Proof In what follows, we keep the notation established on the proof of Theorem 2.
So, since tr(
) = 0 and �n has two distinct principal curvatures with multiplicities
n − 1 and 1, it follows that |
| is a positive smooth function on �n and, by Lemma 1,

∑

i

κ3
i = ± (n − 2)√

n(n − 1)
|
|3.

Thus, Eqs. (4.2), (4.3) and (4.4) can be rewritten, respectively, as

∑

i

R(n+1)i(n+1)i (nHλi − S) = c1(nH
2 − S) = − c1|
|2,

∑

i, j

Ri ji j (λi − λ j )
2 ≤ c2

∑

i, j

(λi − λ j )
2

= 2nc2(S − nH2) = 2nc2|
|2.

and

nH
∑

i

λ3i − S2 = n2H4 + 3nH2|
|2 + nH
∑

i

κ3
i −

(
|
|2 + nH2

)2

= −|
|4 ± n(n − 2)√
n(n − 1)

H |
|3 + nH2|
|2.

Hence, from (4.1) we get

1

2
�|
|2 ≤ |∇B|2 − |
|4 ± n(n − 2)√

n(n − 1)
H |
|3 + n(H2 + c)|
|2

≤ |∇B|2 − |
|4 + n(n − 2)√
n(n − 1)

|H ||
|3 + n(H2 + c)|
|2. (5.1)

On the other hand, since ∇
 = ∇B is symmetric we have from Lemma 2 that

|∇
|2 = n + 2

n
|∇|
||2.
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Therefore, from (5.1) we obtain

|
|�|
| = 1

2
�|
|2 − |∇|
||2

≤ 2

n
|∇|
||2 − |
|4 + n(n − 2)√

n(n − 1)
|H ||
|3 + n(H2 + c)|
|2

= 2

n
|∇|
||2 − |
|2Q|H |,c(|
|),

where

Q|H |,c(x) = x2 − n(n − 2)√
n(n − 1)

|H |x − n(H2 + c). (5.2)

That is,

|
|�|
| ≤ 2

n
|∇|
||2 − |
|2Q|H |,c(|
|). (5.3)

Now, we can to apply the Omori–Yau maximum principle to the positive function |
|
and assures that there exists a sequence of points (qk) ⊂ �n such that

lim |
|(qk) = inf
�

|
|, |∇|
|(qk)| <
1

k
and �|
|(qk) > −1

k
,

which jointly with (5.3) implies

− 1

k
|
|(qk) < |
|(qk)�|
|(qk)

≤ 2

n
|∇|
|(qk)| − |
|2(qk)Q|H |,c(|
|(qk)). (5.4)

Letting k → +∞ here, we conclude that

(
inf
�

|
|
)2

Q|H |,c
(
inf
�

|
|
)

≤ 0. (5.5)

It follows from here that either inf� |
| = 0 or inf� |
| > 0 and then
Q|H |,c(inf� |
|) ≤ 0.

Observe that when H2 + c > 0 o polynomial Q|H |,c has an unique positive root
given by

β|H |,c =
√
n

2
√
n − 1

(
(n − 2)|H | +

√
n2H2 + 4(n − 1)c

)
.

In this case, Q|H |,c(inf� |
|) ≤ 0 means that inf� |
| ≤ β|H |,c.
For the case H2 + c = 0 we have two possibilities for c. First, c = 0 and then

H = 0. Consequently, from (5.5) must be inf� |
| = 0 = β0,0. Second, c < 0 and
then |H | = √−c. In this case, the polynomial Q√−c,c has a unique positive root given
by

β√−c,c = n(n − 2)√
n(n − 1)

√−c.
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Therefore, in this case Q√−c,c(inf� |
|) ≤ 0 means also that inf� |
| ≤ β√−c,c.
In the case H2 + c < 0 (with c < 0 necessarily) the polynomial Q|H |,c(x) > 0

for every x ∈ R if H2 < − 4(n−1)
n2

c. Hence, if inf� |
| > 0 it must necessarily be

− 4(n−1)
n2

c ≤ H2 < −c. In this case, the polynomial Q|H |,c(x) has two positive roots
given by

β|H |,c =
√
n

2
√
n − 1

(
(n − 2)|H | +

√
n2H2 + 4(n − 1)c

)

and

β̂|H |,c =
√
n

2
√
n − 1

(
(n − 2)|H | −

√
n2H2 + 4(n − 1)c

)
.

Therefore, in this case Q|H |,c(inf� |
|) ≤ 0 means that β̂|H |,c ≤ inf� |
| ≤ β|H |,c.
Now, let us assume that the equality inf� |
| = β|H |,c holds. In this case, |
| ≥

β|H |,c and, therefore, Q|H |,c(|
|) ≥ 0 on �n . Observe that

� log |
| = 1

|
|�|
| − 1

|
|2 |∇|
||2. (5.6)

From (5.3) we have

1

|
|�|
| ≤ 2

n

1

|
|2 |∇|
||2 − Q|H |,c(|
|),

which jointly with (5.6) gives

� log |
| ≤ −n − 2

n

1

|
|2 |∇|
||2 − Q|H |,c(|
|) ≤ 0.

Therefore, if there exists at some point in �n such that the minimum of log |
| is
attained, then by the stronger minimum principle we conclude that log |
| is constant
on�n , and hence |
| = β|H |,c is also constant. Since themean curvature H is constant
and �n has two distinct principal curvatures, then they are necessarily constant and
�n is an isoparametric hypersurface with exactly two constant principal curvatures
one of which is simple. ��

In particular, if we assume that the equality in (3.3) holds, we can reason as in the
proof of Corollary 2 and to obtain the following result.

Corollary 5 Let ψ : �n → M
n+1

, n ≥ 3, be a complete hypersurface immersed into

a locally symmetric Riemannian manifold M
n+1

satisfying curvature conditions (3.1)
and occurring the equality in (3.3). Suppose that �n has constant mean curvature
H and its second fundamental form is a Codazzi tensor with two distinct principal
curvatures, one of them being simple.

(i) If H2 + c ≥ 0, where c = 2c2 − c1/n, then

B|H |,c ≤ sup
�

R ≤ n(n − 1)(H2 + R),
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where

B|H |,c = n(n − 2)

2(n − 1)

(
2(n − 1)c0 + nH2 − |H |

√
n2H2 + 4(n − 1)c

)

and the constant c0 is given by

c0 = R − c1 − 2nc2
n(n − 2)

.

(ii) If H2 + c < 0 (with c < 0), where c = 2c2 − c1/n, then either sup� R =
n(n − 1)(H2 + R) or − 4(n−1)

n2
c ≤ H2 < −c and

B|H |,c ≤ sup
�

R ≤ B̂|H |,c ≤ n(n − 1)(H2 + R),

where

B̂|H |,c = n(n − 2)

2(n − 1)

(
2(n − 1)c0 + nH2 + |H |

√
n2H2 + 4(n − 1)c

)

and the constant c0 is given by

c0 = R − c1 − 2nc2
n(n − 2)

.

Moreover, if the equality sup� R = B|H |,c holds and this supremum is attained at
some point of�n, then�n is an isoparametric hypersurface with two distinct principal
curvatures one of which is simple.

Equivalently,

Corollary 6 Let ψ : �n → M
n+1

, n ≥ 3, be a complete hypersurface immersed into

a locally symmetric Riemannian manifold M
n+1

satisfying curvature conditions (3.1)
and occurring the equality in (3.3). Suppose that �n has constant mean curvature
H and its second fundamental form is a Codazzi tensor with two distinct principal
curvatures, one of them being simple.

(i) If H2 + c ≥ 0, where c = 2c2 − c1/n, then

0 ≤ inf
�

|
| ≤ β|H |,c,

where

β|H |,c =
√
n

2
√
n − 1

(
(n − 2)|H | +

√
n2H2 + 4(n − 1)c

)
.
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(ii) If H2 + c < 0 (with c < 0), where c = 2c2 − c1/n, then either inf� |
| = 0 or
− 4(n−1)

n2
c ≤ H2 < −c and

0 < β̂|H |,c ≤ inf
�

|
| ≤ β|H |,c,

where

β̂|H |,c =
√
n

2
√
n − 1

(
(n − 2)|H | −

√
n2H2 + 4(n − 1)c

)
.

Moreover, if the equality inf� |
| = β|H |,c holds and this infimum is attained at some
point of �n, then �n is an isoparametric hypersurface with two distinct principal
curvatures one of which is simple.

As another consequence of Theorem 3 (or Theorem 4), we have the following result
for complete parabolic hypersurfaces in locally symmetric spaces:

Corollary 7 Let ψ : �n → M
n+1

, n ≥ 3, be a complete parabolic hypersurface

immersed into a locally symmetric Riemannian manifold M
n+1

satisfying curvature
conditions (3.1) and (3.3). Suppose that �n has constant mean curvature H and its
second fundamental form is a Codazzi tensor with two distinct principal curvatures,
one of them being simple.

(i) If H2 + c ≥ 0, where c = 2c2 − c1/n, then

B|H |,c ≤ sup
�

R ≤ n(n − 1)(H2 + R),

where

B|H |,c = n(n − 2)

2(n − 1)

(
2(n − 1)c0 + nH2 − |H |

√
n2H2 + 4(n − 1)c

)

and the constant c0 is given by

c0 = R − c1 − 2nc2
n(n − 2)

.

(ii) If H2 + c < 0 (with c < 0), where c = 2c2 − c1/n, then either sup� R =
n(n − 1)(H2 + R) or − 4(n−1)

n2
c ≤ H2 < −c and

B|H |,c ≤ sup
�

R ≤ B̂|H |,c ≤ n(n − 1)(H2 + R),

where

B̂|H |,c = n(n − 2)

2(n − 1)

(
2(n − 1)c0 + nH2 + |H |

√
n2H2 + 4(n − 1)c

)
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and the constant c0 is given by

c0 = R − c1 − 2nc2
n(n − 2)

.

Moreover, if the equality sup� R = B|H |,c holds, then �n is an isoparametric hyper-
surface with two distinct principal curvatures one of which is simple.

Equivalently, we have the following

Corollary 8 Let ψ : �n → M
n+1

, n ≥ 3, be a complete parabolic hypersurface

immersed into a locally symmetric Riemannian manifold M
n+1

satisfying curvature
conditions (3.1) and (3.3). Suppose that �n has constant mean curvature H and its
second fundamental form is a Codazzi tensor with two distinct principal curvatures,
one of them being simple.

(i) If H2 + c ≥ 0, where c = 2c2 − c1/n, then

0 ≤ inf
�

|
| ≤ β|H |,c,

where

β|H |,c =
√
n

2
√
n − 1

(
(n − 2)|H | +

√
n2H2 + 4(n − 1)c

)
.

(ii) If H2 + c < 0 (with c < 0), where c = 2c2 − c1/n, then either inf� |
| = 0 or
− 4(n−1)

n2
c ≤ H2 < −c and

0 < β̂|H |,c ≤ inf
�

|
| ≤ β|H |,c,

where

β̂|H |,c =
√
n

2
√
n − 1

(
(n − 2)|H | −

√
n2H2 + 4(n − 1)c

)
.

Moreover, if the equality inf� |
| = β|H |,c holds, then �n is an isoparametric hyper-
surface with two distinct principal curvatures one of which is simple.

Now, we treat the case n = 2, where it is not necessary to assume to existence
of two distinct principal curvatures. We also note that, in this case, we cannot use
Lemma 2. However, a direct computation allows us to establish the same result. More
precisely, we have the following result

Theorem 5 Let ψ : �2 → M
3
be a surface immersed into a locally symmetric

Riemannian manifold M
3
satisfying curvature conditions (3.1) and (3.3). Suppose

that�2 has constant mean curvature H and its second fundamental form is a Codazzi
tensor. Assume that the Omori–Yau maximum principle holds on �2. Then,

(i) either sup� R = 2(H2 + R),
(ii) or 2(R − c) ≤ sup� R < 2(H2 + R).
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Moreover, if the equality sup� R = 2(R − c) holds and this supremum is attained
at some point of �2, then �2 is an isoparametric surface with two distinct principal
curvatures.

Equivalently, in terms of the total umbilicity tensor, we have

Theorem 6 Let ψ : �2 → M
3
be a surface immersed into a locally symmetric

Riemannian manifold M
3
satisfying curvature conditions (3.1) and (3.3). Suppose

that�2 has constant mean curvature H and its second fundamental form is a Codazzi
tensor. Assume that the Omori–Yau maximum principle holds on �2. Then,

(i) either inf� |
| = 0,
(ii) or 0 < inf� |
| ≤ √

2(H2 + c).

Moreover, if the equality inf� |
| = √
2(H2 + c) holds and this infimum is attained at

some point of�2, then�2 is an isoparametric hypersurface with two distinct principal
curvatures.

Proof Let {e1, e2} be a local orthonormal frame in �n such that

hi j = λiδi j , 
i j = κiδi j and ki = λi − H .

Since H is constant we have

|∇
|2 = |∇B|2 =
2∑

i jk

h2i jk . (5.7)

From (2.5) and our symmetric hypothesis, it follows from a straightforward compu-
tation that

h111 = dh11(e1) = dλ1(e1) = dk1(e1)

h112 = h121 = h211 = dh11(e2) = dλ1(e2) = dk1(e2)

h221 = h122 = h212 = dh22(e1) = dλ2(e1) = dk2(e1)

h222 = dh22(e2) = dλ2(e2) = dk2(e2).

Since k1 = − k2 we get from (5.7) and the last equations that

|∇
|2 = 4(dk1(e1)
2 + dk1(e2)

2) = 4|∇k1|2.

But, we recall that |
|2 = 2k21. Consequently,

|∇
|2 = 2|∇|
||2

Thus, from proof of Theorem 4 we have

|
|�|
| ≤ |∇|
||2 − |
|2Q|H |,c,2(|
|), (5.8)
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where
Q|H |,c,2(x) = x2 − 2(H2 + c).

Then, applying the Omori–Yau maximum principle to the positive function |
| we
have that there exists a sequence of points (qk) ⊂ �n such that

lim |
|(qk) = inf
�

|
|, |∇|
|(qk)| <
1

k
and �|
|(qk) > −1

k
,

and, from (5.8), we get

− 1

k
|
|(qk) < |
|(qk)�|
|(qk)

≤ |∇|
|(qk)| − |
|2(qk)Q|H |,c,2(|
|(qk)). (5.9)

Consequently, when k → +∞ we conclude that

(
inf
�

|
|
)2

Q|H |,c,2
(
inf
�

|
|
)

≤ 0.

It follows from the last inequality that either inf� |
| = 0 or inf� |
| > 0 and then
Q|H |,c,2(inf� |
|) ≤ 0.

Observe that when H2 + c > 0 o polynomial Q|H |,c,2 has an unique positive root
given by

√
2(H2 + c). In this case, Q|H |,c,2(inf� |
|) ≤ 0 means that inf� |
| ≤√

2(H2 + c). If H2 + c = 0, it follows from (5.9) that inf� |
| = 0. In the case
that H2 + c < 0, the polynomial Q|H |,c,2(x) > 0 and then it must necessarily be
inf� |
| = 0.

Finally, if the equality inf� |
| = √
2(H2 + c) holds, then in particular |
| ≥√

2(H2 + c) and, therefore, Q|H |,c,2(|
|) ≥ 0 on �2. On the other hand, from (5.8)
we have

1

|
|�|
| ≤ 1

|
|2 |∇|
||2 − Q|H |,c,2(|
|),

which implies
� log |
| ≤ −Q|H |,c,2(|
|) ≤ 0.

Therefore, if there exists some point in�2 such that theminimumof log |
| is attained,
then by the stronger minimum principle we conclude that log |
| is constant on �2,
and hence |
| = √

2(H2 + c) is also constant. Since themean curvature H is constant,
then �2 is an isoparametric hypersurface with exactly two distinct constant principal
curvatures. ��

Remark 3 It is not difficult to see that Corollaries 5, 6, 7 and 8 also hold for n = 2.
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