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E. Taş1 · Ö. G. Atlıhan2

Published online: 13 November 2017
© Instituto de Matemática e Estatística da Universidade de São Paulo 2017

Abstract In this paper we consider power series method which is also member of
the class of all continuous summability methods. The power series method includes
Abel method as well as Borel method. We investigate, using the power series method,
Korovkin type approximation theorems for the sequence of positive linear operators
defined on C[a, b] and Lq [a, b], 1 ≤ q < ∞, respectively. We also study some
quantitative estimates for Lq approximation and give the rate of convergence of these
operators.
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1 Introduction

The classical Korovkin type theorems provide conditions for whether a given sequence
of positive linear operators converges to the identity operator in the space of continuous
functions on a compact interval [1,9]. If the sequence of positive linear operators does
not converge to the identity operator then it might be usefull to use some summability
methods [14,18]. The main purpose of using summability theory has always been to
make a non-convergent sequence to converge. This was the motivation behind Fejer’s
famous theorem showing Cesàro method being effective in making the Fourier series
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of continuous periodic functions to converge [4]. In this paper we investigate the
approximation properties of positive linear operators bymeans of power series method
which is also member of the class of all continuous summability methods. The method
includes Abel method as well as the Borel method. The results presented in this paper
are motivated by those of [11] and [18].

In Sect. 2, we prove some Korovkin type approximation theorems for a sequence
of positive linear operators defined on C[a, b] via power series method and also give
the rate of convergence of these operators. Section 3 is devoted to a Korovkin type
result for a sequence of positive linear operators acting from Lq [a, b], 1 ≤ q < ∞,
into itself and some quantitative estimates for Lq approximation.

First of all, we recall some basic definitions and notations used in the paper. Let (pk)
be a real sequence with p0 > 0 and pk ≥ 0 (k ∈ N ), and such that the corresponding
power series p(t) := ∑∞

k=0 pkt
k has radius of convergence R with 0 < R ≤ ∞. If

the limit

lim
t→R−

1

p(t)

∞∑

k=0

xk pkt
k = L

exists then we say that x = (xk) is convergent in the sense of power series method
[10,15]. Note that the power series method is regular if and only if

lim
t→R−

pktk

p(t)
= 0, f or each k ∈ N (1)

holds [5]. We assume throughout the paper that the methods fulfill condition (1).

2 Approximation properties on C[a,b] via power series method

Wedenote the space of all bounded and continuous real valued functions on the interval
[a,b] by B[a, b] and C[a, b], respectively. Note that B[a, b] and C[a, b] are Banach
spaces with norm

‖ f ‖ = sup
x∈[a,b]

| f (x)|.

Let T : C[a,b]→ B[a, b] be a linear operator. Then T is called positive if T f ≥ 0
whenever f ≥ 0. If T is a positive linear operator then f ≤ g implies that T f ≤ Tg
and | f | ≤ g implies |T f | ≤ Tg. In this section we assume that (Tk) is a sequence of
positive linear operators from C[a, b] into B[a, b] such that

sup
0<t<R

1

p(t)

∞∑

k=0

‖Tk(1)‖pktk < ∞. (2)
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Also Vt {(.); x} given by

Vt {( f (y); x)} := 1

p(t)

∞∑

k=0

Tk( f (y); x)pktk

is well-defined operator from C[a, b] into B[a, b] as we can see from the following
inequality

‖{Vt (.); x}‖ ≤ sup
0<t<R

1

p(t)

∞∑

k=0

‖Tk(1)‖pktk < ∞. (3)

Observe that Vt {(.); x} is also linear positive operator. Throughout the paper, we
also use the following test functions fi (x) = xi , i = 0, 1, 2.

The next theorem is a particular case of Theorem 1 of [12]. For the completeness,
we give the proof of our theorem by using an alternative way.

Theorem 1 Let {Tk} be a sequence of positive linear operators from C[a, b] into
B[a, b] such that (2) holds. Then for any function f ∈ C[a, b] we have

lim
t→R− ‖Vt {( f (y); x)} − f (x)‖ = 0 (4)

if and only if

lim
t→R− ‖Vt {( fi (y); x)} − fi (x)‖ = 0, i = 0, 1, 2. (5)

Proof It is obvious that (4) implies (5). In order to show that (5) implies (4), let {Tk} be
a sequence of positive linear operators from C[a, b] into B[a, b] and let f ∈ C[a, b].
Since f is continuous on [a, b], for every ε > 0 there exists a real number δ > 0 such
that | f (y) − f (x)| < ε for all y, x ∈ [a, b] satisfying |y − x | < δ. Note that

| f (y) − f (x)| ≤ | f (y)| + | f (x)| <
2H

δ2
(y − x)2

for all y, x ∈ [a, b] satisfying |y− x | ≥ δ where H := ‖ f ‖. Hence, as in the classical
case [9], for any y, x ∈ [a, b] we have

| f (y) − f (x)| < ε + 2H

δ2
(y − x)2. (6)

On the other hand from (6) one can get

|Vt {( f (y); x)} − f (x)| ≤ Vt {(| f (y) − f (x)|; x)} + H |Vt {( f0(y); x)} − f0(x)| (7)
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for all t ∈ (0, R). Using (6), linearity and positivity of the operators Vt {(.); x}, we get

Vt {(| f (y) − f (x)|; x)} ≤ εVt {( f0(y); x)} + 2H

δ2
Vt {((y − x)2; x)}

≤ ε(Vt {( f0(y); x)} − f0(x)) + ε

+ 2H

δ2

{

(Vt {( f2(y); x)} − f2(x))

− 2x(Vt {( f1(y); x)} − f1(x))

+ x2(Vt {( f0(y); x)} − f0(x))

}

.

(8)

It follows from (7) and the last inequality, for all t ∈ (0, R), that

|Vt {( f (y); x)} − f (x)| ≤
(

ε + H + 2H

δ2
σ 2

)

|Vt {( f0(y); x)} − f0(x)|

+ 4σH

δ2
|Vt {( f1(y); x)} − f1(x)| + 2H

δ2
|Vt {( f2(y); x)} − f2(x)| + ε

where σ = max{|a|, |b|}. Then we have

‖Vt {( f (y); x)} − f (x)‖ ≤ K {‖Vt {( f2(y); x)} − f2(x)‖+‖Vt {( f1(y); x)} − f1(x)‖
+ ‖Vt {( f0(y); x)} − f0(x)‖} + ε

(9)
where K = max{ε + H + 2H

δ2
σ 2, 4σH

δ2
, 2H

δ2
}. Hence it follows from (5) and (9) that

lim
t→R− ‖Vt {( f (y); x)} − f (x)‖ < ε

which concludes the proof, since ε is arbitrary. �	
Example 1 We now exhibit an example of a sequence of positive linear operators
satisfying the conditions of Theorem 1 but that does not satisfy the conditions of the
classicalKorovkin theorem.Let pk = 1, in this caseR=1and p(t) = 1

1−t , t ∈ (−1, 1).
Thus, the power series method corresponds to the Abel method. Consider the sequence
(Tk) defined by Tk : C[0, 1] → B[0, 1], Tk( f ; x) = (1 + αk)Bk( f ; x) where (Bk)

is the sequence of Bernstein polynomials. Take (αk) = ((−1)k). Observe that (αk) is
Abel convergent to zero, but it is not convergent. Then one can see that the sequence
(Tk) satisfies our Theorem 1, but it does not satisfy the classical Korovkin theorem.

We now study the rate of convergence of the sequence of positive linear operators
examined in Theorem 1 by means of the modulus of continuity.

The modulus of continuity, denoted by ω( f, δ), is defined by

ω( f, δ) = sup
|y−x |≤δ

| f (y) − f (x)|.
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It is known that for any δ > 0 and each x, y ∈ [a, b], f ∈ C[a, b]

| f (y) − f (x)| ≤
(� |y − x |

δ

�
+ 1

)

ω( f, δ)

where �λ� denotes the integer part of λ.

Theorem 2 Let {Tk} be a sequence of positive linear operators from C[a, b] into
B[a, b] such that (2) holds. If

(i) limt→R− ‖Vt {( f0(y); x)} − f0(x)‖ = 0,

(ii) limt→R− ω( f, α(t)) = 0,

then for all f ∈ C[a, b] we have

lim
t→R− ‖Vt {( f (y); x)} − f (x)‖ = 0

where α(t) = √‖Vt {((y − x)2; x)}‖.
Proof Using the linearity and positivity of Vt {(.); x} and also for every x, y ∈ [a, b]
taking into account

�
|y−x |

δ

�
≤ (y−x)2

δ2
, for all t ∈ (0, R) and δ > 0, we have

|Vt {( f (y); x)} − f (x)| ≤ Vt {(| f (y) − f (x)|; x)} + H |Vt {( f0(y); x)} − f0(x)|
≤ Vt

{((

1 +
� |y − x |

δ

�)

ω( f, δ); x
)}

+ H |Vt {( f0(y); x)} − f0(x)|

≤ ω( f, δ)Vt

{(

1 + (y − x)2

δ2
; x

)}

+ H |Vt {( f0(y); x)} − f0(x)|

≤ ω( f, δ)Vt {( f0(y); x)} + ω( f, δ)

δ2
Vt {((y − x)2; x)}

+ H |Vt {( f0(y); x)} − f0(x)|.
(10)

By (3), for all t ∈ (0, R), ‖Vt {(.); x}‖C[a,b]→B[a,b] ≤ M . Now letting δ = α(t) =√‖Vt {((y − x)2; x)}‖ and by (10) we get, for all t ∈ (0, R), that

‖Vt {( f (y); x)} − f (x)‖ ≤ β{ω( f, α(t)) + ‖Vt {( f0(y); x)} − f0(x)‖}

where β = max{1 + M, H}. Then, by (i), (ii) and (10), we have, for all f ∈ C[a, b],
that

lim
t→R− ‖Vt {( f (y); x)} − f (x)‖ = 0.

�	
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3 Approximation properties on Lq[a, b] via power series method

In this section, using power series method, we study a Korovkin type approximation
theorem for positive linear operators acting on Lq spaces. Some results concerning the
Korovkin type theorems for a function in Lq(−π, π) may be found in [6,16,17]. We
also study the quantitative estimates for Lq approximation. Throughout the section
we assume 1 ≤ q < ∞.

First, we recall some basic definitions and notations used in this section. Let

L2
q [a, b] = { f ∈ Lq [a, b] : f ′is absolutely continuous and f ′′ ∈ Lq [a, b]}

where f ′ and f ′′ are respectively the first and second derivatives of f .
For f ∈ Lq [a, b] and y > 0, the K -functional of Peetre [13] is defined by

K2,q( f ; y) = inf
g∈L2

q [a,b]
{‖ f − g‖q + y(‖g‖q + ‖g′′‖q)}.

Following [2] and [3], we define the second-order modulus of smoothness to be

ω2,q( f, h) = sup
0<y≤ h

‖ f (x + y) − 2 f (x) + f (x − y)‖Lq [a+y,b−y],

where f ∈ Lq [a, b] and [a+ y, b− y] ⊂ [a, b]. By [8] we have the following relation
between modulus of smoothness and K -functional of Peetre:

C−1(min(1, y2)‖ f ‖q + ω2,q( f ; y)) ≤ K2,q( f ; y2)
≤ C(min(1, y2)‖ f ‖q + ω2,q( f ; y)) (11)

where C > 0 is an absolute constant and independent of f and q.
Let {Tk} be a sequence of positive linear operators from Lq [a, b] into Lq [a, b] such

that

H ′ := sup
0<t<R

∞∑

k=0

pk‖Tk‖Lq→Lq t
k < ∞. (12)

A generalization of the next theorem has been given in [19]. For the completeness,
we give the proof of our theorem by using an alternative way for a particular case
Lq [a, b].
Theorem 3 Let {Tk} be a sequence of positive linear operators from Lq [a, b] into
Lq [a, b] such that (12) holds. Then for any function f ∈ Lq [a, b] we have

lim
t→R− ‖Vt {( f (y); x)} − f (x)‖q = 0 (13)

if and only if

lim
t→R− ‖Vt {( fi (y); x)} − fi (x)‖q = 0, i = 0, 1, 2.
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Proof Let f ∈ Lq [a, b]. Given ε > 0, by the Lusin theorem, there exists a continuous
function ϕ on [a, b] such that

‖ f − ϕ‖q < ε.

From the above inequality, we get

‖Vt {( f (y); x)} − f (x)‖q ≤ ‖Vt {( f (y) − ϕ(y); x)}‖q + ‖Vt {(ϕ(y); x)} − ϕ(x)‖q
+ ‖ f (x) − ϕ(x)‖q

< ε

(

1 + 1

p0

∞∑

k=0

pk‖Tk‖Lq→Lq t
k

)

+ ‖Vt {(ϕ(y); x)}

− ϕ(x)‖q .
(14)

Since the function ϕ is continuous on [a, b], we have

|ϕ(y) − ϕ(x)| < ε + 2M

δ2
(y − x)2 (15)

where M := ‖ϕ‖C[a,b]. First of all we consider second term on the right hand of
inequality (14). Using the latter inequality and the monotonicity of the operator Tk ,
we obtain

‖Vt {(ϕ(y); x)} − ϕ(x)‖q ≤ ‖Vt {(|ϕ(y) − ϕ(x)|; x)}‖q
+ M‖Vt {( f0(y); x)} − f0(x)‖q

<

∥
∥
∥
∥Vt

{(

ε + 2M

δ2
(y − x)2; x

)}∥
∥
∥
∥
q

+ M‖Vt {( f0(y); x)} − f0(x)‖q

≤ ε(1 + ‖Vt {( f0(y); x)} − f0(x)‖q) + 2M

δ2
‖Vt {((y − x)2; x)}‖q

+ M‖Vt {( f0(y); x)} − f0(x)‖q
≤ ε +

(

ε + M + 2M

δ2
σ 2

)

‖Vt {( f0(y); x)} − f0(x)‖q

+ 4M

δ2
σ‖Vt {( f1(y); x)} − f1(x)‖q

+ 2M

δ2
‖Vt {( f2(y); x)} − f2(x)‖q

(16)

where σ = max{|a|, |b|}. Hence it follows from (14), (15) and (16) that for all t ∈
(0, R)

‖Vt {( f (y); x)} − f (x)‖q < ε

(

2 + H ′

p0

)

+
(

ε + M + 2M

δ2
σ 2

)

‖Vt {( f0(y); x)} − f0(x)‖q
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+ 4M

δ2
σ‖Vt {( f1(y); x)} − f1(x)‖q

+ 2M

δ2
‖Vt {( f2(y); x)} − f2(x)‖q . (17)

Letting t → R− in both sides of (17) we get

lim
t→R− ‖Vt {( f (y); x)} − f (x)‖q < ε

which proves sufficiency, since ε is arbitrary. Observe that the necessity is trivial. This
completes the proof. �	

In order to obtain quantitative estimate and an approximation theorem we use the
notation

λtq := { max
i=0,1,2

‖Vt { fi (y); x} − fi (x)‖q}
q

2q+1 .

First of all let us give some lemmas.

Lemma 1 Let f ∈ L(2)
q [a, b] and fix δ > 0. For x, y ∈ [a, b], we have

∣
∣
∣
∣

∫ y

x
(y − u) f ′′(u)du

∣
∣
∣
∣ ≤ δ

∫ δ

0
| f ′′(x + u)|du + (y − x)2

δ
1
q

‖ f ′′‖q

(see, e.g. [16]).

Lemma 2 Let {Tk} be a sequence of positive linear operators from Lq [a, b] into

Lq [a, b] such that (12) holds. Then for x, y ∈ [a, b], for any function f ∈ L(2)
q [a, b]

and for all t sufficiently close to R from left side, we have

∥
∥
∥
∥Vt

{ ∫ y

x
(y − u) f ′′(u)du; x

}∥
∥
∥
∥
q

≤ C‖ f ′′‖qλ2tq

where C is a positive constant.

Proof Let f ∈ L(2)
q [a, b] and assume f has been extended outside of [a, b] so that

f ′′(x) = 0 if x /∈ [a, b]. From Lemma 1 and monotonicity of the operator Tk , we
have

∥
∥
∥
∥Vt

{ ∫ y

x
(y − u) f ′′(u)du; x

}∥
∥
∥
∥
q

≤
∥
∥
∥
∥δ

(∫ δ

0
| f ′′(x + u)|du

)

Vt { f0(y); x}
∥
∥
∥
∥
q

+‖ f ′′‖q
δ

1
q

‖Vt {(y − x)2; x}‖q (18)
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Using the Hölder’s inequality and the generalised Minkowski inequality, we get

∥
∥
∥
∥δ

(∫ δ

0
f ′′(x + u)du

)

Vt { f0(y); x}
∥
∥
∥
∥
q

=
∥
∥
∥
∥δ

(∫ δ

0
| f ′′(x + u)|du

)

{Vt { f0(y); x} − f0(x)} + δ

∫ δ

0
| f ′′(x + u)|du

∥
∥
∥
∥
q

≤ δ

∥
∥
∥
∥

∫ δ

0
| f ′′(x + u)|du{Vt { f0(y); x} − f0(x)}

∥
∥
∥
∥
q

+ δ

∥
∥
∥
∥

∫ δ

0
| f ′′(x + u)|du

∥
∥
∥
∥
q

≤ δ
2− 1

q ‖ f ′′‖q‖Vt { f0(y); x} − f0(x)‖q + δ

∫ δ

0
‖ f ′′(x + u)‖qdu

≤ ‖ f ′′‖q{δ2−
1
q ‖{Vt { f0(y); x} − f0(x)}‖q + δ2}. (19)

Considering (18), (19) and σ = max{|a|, |b|}, one can get

∥
∥
∥
∥Vt

{∫ y

x
(y − u) f ′′(u)du; x

}∥
∥
∥
∥
q

≤ ‖ f ′′‖q
[

δ2 + 1

δ
1
q

{‖Vt { f2(y); x} − f2(x)‖q

+ 2σ‖Vt { f1(y); x} − f1(x)‖q + (δ2 + σ 2)‖Vt { f0(y); x} − f0(x)‖q
}
]

.

(20)
If we choose

δ = λtq ,

then we obtain

∥
∥
∥
∥Vt

{ ∫ y

x
(y − u) f ′′(u)du; x

}∥
∥
∥
∥
q

≤ ‖ f ′′‖q
{
(σ 2 + 2σ + 2)λ2tq + λ4tq

} ≤ C‖ f ′′‖qλ2tq .

�	
Lemma 3 Let {Tk} be a sequence of positive linear operators from Lq [a, b] into

Lq [a, b] such that (12) holds. Then for any function f ∈ L(2)
q [a, b] and for all t

sufficiently close to R from left side,

‖Vt { f (y); x} − f (x)‖q ≤ C ′
q(‖ f ‖q + ‖ f ′′‖q){λ2tq}

is satisfied, where C ′
q is a positive constant independent of f and t.

Proof Let f ∈ L(2)
q [a, b] and assume f has been extended outside of [a, b] so that

f ′′(x) = 0 if x /∈ [a, b]. For x, y ∈ [a, b] the following equality
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f (y) − f (x) = f ′(x)(y − x) +
∫ y

x
(y − u) f ′′(u)du (21)

is well known. Considering (21), Lemma 2 and linearity of operator Tk for all t
sufficiently close to R from left side we have

‖Vt { f (y); x} − f (x)‖q ≤ ‖Vt { f (y) − f (x); x}‖q
+ ‖ f ‖∞‖Vt { f0(y); x} − f0(x)‖q

≤ ‖ f ′‖∞‖Vt {y − x; x}‖q +
∥
∥
∥
∥Vt

{∫ y

x
(y − u) f ′′(u)du; x

}∥
∥
∥
∥
q

+ ‖ f ‖∞‖Vt { f0(y); x} − f0(x)‖q
≤ ‖ f ′‖∞{‖Vt { f1(y); x} − f1(x)‖q + σ‖Vt { f0(y); x} − f0(x)‖q}

+ C‖ f ′′‖q{λ2tq}
+ ‖ f ‖∞‖Vt { f0(y); x} − f0(x)‖q

where σ = max{|a|, |b|} and ‖.‖∞ denotes essential sup norm on L∞.
On the other hand if we take n = 2, k = 1 and n = 2, k = 0 in Theorem 3.1 of [7],

we get for any ε > 0 that

‖ f ′‖∞ ≤ ε
1
q {16ε−2‖ f ‖q + ‖ f ′′‖q}

and

‖ f ‖∞ ≤ ε
1
q {16ε−1‖ f ‖q + ε‖ f ′′‖q}.

From the above inequalities, we have

‖Vt { f (y); x} − f (x)‖q ≤ C ′
q(‖ f ‖q + ‖ f ′′‖q)λ2tq .

This completes the proof. �	

Theorem 4 Let {Tk} be a sequence of positive linear operators from Lq [a, b] into
Lq [a, b] such that (12) holds. Then for all t sufficiently close to R from left side and
for any function f ∈ Lq [a, b] the inequality

‖Vt { f (y); x} − f (x)‖q ≤ Cq{min(1, λ2tq)‖ f ‖q + ω2,q( f ; λtq)}

holds, where Cq is a positive constant independent of f and t.
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Proof Let f ∈ Lq [a, b] and g ∈ L(2)
q [a, b]. Then for all t sufficiently close to R from

left side

‖Vt { f (y); x} − f (x)‖q ≤ ‖ f − g‖q 1

p(t)

∞∑

k=0

pk‖Tk‖Lq→Lq t
k

+ ‖Vt {g(y); x} − g(x)‖q + ‖ f − g‖q
≤ (1 + M)‖ f − g‖q + C ′

q

(‖g‖q + ‖g′′‖q
)
λ2tq

(22)

is satisfied , where M := 1
p0

sup
0<t<R

∑∞
k=0 pk‖Tk‖Lq→Lq t

k . In inequality (22) taking

infimum over g ∈ L(2)
q [a, b], from the definition of K -functional of Peetre of order

two and inequality (11) we get

‖Vt { f (y); x} − f (x)‖q ≤ Cq{min(1, λ2tq)‖ f ‖q + ω2,q( f ; λtq)}

which completes the proof. �	
Using the above rate of convergence, we can give the following.

Corollary 1 Let {Tk} be a sequence of positive linear operators from Lq [a, b] into
Lq [a, b] such that (12) holds and limt→R− λtq = 0. Then for any function f ∈
Lq [a, b] we have

lim
t→R− ‖V {( f (y); x); t} − f (x)‖q = 0.
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