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Abstract In this paper we consider power series method which is also member of
the class of all continuous summability methods. The power series method includes
Abel method as well as Borel method. We investigate, using the power series method,
Korovkin type approximation theorems for the sequence of positive linear operators
defined on Cla, b] and Ly[a,b], 1 < g < oo, respectively. We also study some
quantitative estimates for L, approximation and give the rate of convergence of these
operators.
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1 Introduction

The classical Korovkin type theorems provide conditions for whether a given sequence
of positive linear operators converges to the identity operator in the space of continuous
functions on a compact interval [1,9]. If the sequence of positive linear operators does
not converge to the identity operator then it might be usefull to use some summability
methods [14,18]. The main purpose of using summability theory has always been to
make a non-convergent sequence to converge. This was the motivation behind Fejer’s
famous theorem showing Cesaro method being effective in making the Fourier series
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of continuous periodic functions to converge [4]. In this paper we investigate the
approximation properties of positive linear operators by means of power series method
which is also member of the class of all continuous summability methods. The method
includes Abel method as well as the Borel method. The results presented in this paper
are motivated by those of [11] and [18].

In Sect. 2, we prove some Korovkin type approximation theorems for a sequence
of positive linear operators defined on C[a, b] via power series method and also give
the rate of convergence of these operators. Section 3 is devoted to a Korovkin type
result for a sequence of positive linear operators acting from Lgy[a, b], 1 < g < o0,
into itself and some quantitative estimates for L, approximation.

First of all, we recall some basic definitions and notations used in the paper. Let (py)
be a real sequence with py > 0 and p; > 0 (k € N), and such that the corresponding
power series p(f) := Y peq pit* has radius of convergence R with 0 < R < oo. If
the limit

=
lim — xkpktk =L
t—R~ p(t) k2=:0

exists then we say that x = (xi) is convergent in the sense of power series method
[10,15]. Note that the power series method is regular if and only if

k
t
lim 2L _0, foreachkeN (1

t—R~ p(t)

holds [5]. We assume throughout the paper that the methods fulfill condition (1).

2 Approximation properties on C[a,b] via power series method

We denote the space of all bounded and continuous real valued functions on the interval
[a,b] by Bla, b] and C[a, b], respectively. Note that B[a, b] and C[a, b] are Banach
spaces with norm

IfIl = sup [f(0)].

x€la,b]

Let T: C[a,b]— BlJa, b] be a linear operator. Then T is called positive if Tf > 0
whenever f > 0. If T is a positive linear operator then f < g impliesthat Tf < Tg
and | f| < g implies |Tf| < Tg. In this section we assume that (T}) is a sequence of
positive linear operators from C[a, b] into Bla, b] such that

| &
sup — ¥ [ Tu(D) prt* < oo. 2
0<t<R D(t) 1;
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Also V;{(.); x} given by

1 oo
VAL 0 0} 1= — > Ti(f (3); ) et
p@) =

is well-defined operator from C|[a, b] into Bla, b] as we can see from the following
inequality

1 o0
V,(); — T (1 k . 3
[NASES] < swp. p(t);” (D] prt* < o0 ?3)

Observe that V;{(.); x} is also linear positive operator. Throughout the paper, we
also use the following test functions f;(x) = xi=0,1,2.

The next theorem is a particular case of Theorem 1 of [12]. For the completeness,
we give the proof of our theorem by using an alternative way.

Theorem 1 Let {T}} be a sequence of positive linear operators from Cla, b] into
Bla, b] such that (2) holds. Then for any function f € Cla, b] we have

ZEYI?_ IVi{(f )0} = fll =0 “)
if and only if
tErlrel_ IVA(fi(y); 0} = fitk)ll =0, i =0,1,2. %)

Proof 1Itis obvious that (4) implies (5). In order to show that (5) implies (4), let {7} } be
a sequence of positive linear operators from C[a, b] into B[a, b] and let f € Cla, b].
Since f is continuous on [a, b], for every ¢ > 0 there exists a real number § > 0 such
that | f(y) — f(x)| < e forall y, x € [a, b] satisfying |y — x| < §. Note that

2H )
lfO) = fOI=1fWMI+ 10 < 8_2(y —X)

forall y, x € [a, b] satisfying |y —x| > 6 where H := || f||. Hence, as in the classical
case [9], for any y, x € [a, b] we have

2H 2
If(y)—f(X)|<8+8—2(y—X) . (6)
On the other hand from (6) one can get

WVA(F 0} = Ol = VU D) = FOl 0+ HIVi{(fo(y): X)) = folo)] (7)

@ Springer



Sdo Paulo J. Math. Sci. (2019) 13:696-707 699

forall # € (0, R). Using (6), linearity and positivity of the operators V;{(.); x}, we get

Vil f () = fl 0} < eVi{(fo(y): 0} + 28_12-1‘/}{(()) —x)%x)}
<e(V{(fo(y): x)} = fo(x)) + ¢
T Z(S—I;{(Vz{(fz(y); 0} = ) ®)
= 2x(Vi{(f1(¥); )} — f1(x))
+ (Vi (fo(y); 1)} — fo(x))}.

It follows from (7) and the last inequality, for all ¢ € (0, R), that

2H
V(S )0} — fo)] < (8 +H+ 8_202> [Ve{(fo(y); x)} — fo(x)]
4

H 2H
+ = V(A0 0} = AW+ 7 VARM: 0} = @) +e
where 0 = max{|a|, |p|}. Then we have

IVI{(f ) 0} = fFOI = KHIVH{(L200: 0} = LOOTHIVA/ D) 0 = A

+ IVi{(fo): 0} = fo() I} + ¢ ©
)

where K = max{e + H + 28—12'162, 4;—2}1, 23—121}. Hence it follows from (5) and (9) that
,Erl?_ VA0l = foll <e

which concludes the proof, since ¢ is arbitrary. O

Example 1 We now exhibit an example of a sequence of positive linear operators
satisfying the conditions of Theorem 1 but that does not satisfy the conditions of the
classical Korovkin theorem. Let py = 1,inthiscaseR=1and p(t) = ﬁ, te(—1,1).
Thus, the power series method corresponds to the Abel method. Consider the sequence
(Tx) defined by Ty : C[0, 1] — B[O, 1], Tx(f; x) = (1 + o) Bx(f; x) where (Bx)
is the sequence of Bernstein polynomials. Take (ox) = ((=1)%). Observe that (o) is
Abel convergent to zero, but it is not convergent. Then one can see that the sequence
(Ty) satisfies our Theorem 1, but it does not satisfy the classical Korovkin theorem.

We now study the rate of convergence of the sequence of positive linear operators
examined in Theorem 1 by means of the modulus of continuity.
The modulus of continuity, denoted by w( f, §), is defined by

o(f.8) = sup [f(y) = f)]

ly—x|<d
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It is known that for any § > 0 and each x, y € [a, b], f € Cla, b]

1fO) = FG)l < (H'y gx']] + 1>w(f, 5)

where [A] denotes the integer part of A.

Theorem 2 Let {Ti} be a sequence of positive linear operators from Cla, b] into
Bla, b] such that (2) holds. If

(i) lim,_, g- [Vi{(fo(¥): 1)} = fo(x)| =0,

(it) lim;, g- (f, a(1)) =0,
then for all f € Cla, b] we have

Jim VA 0); 0) = f)l =0

where a(1) = /| V{((y — x)%; x)}I.

Proof Using the linearity and positivity of V;{(.); x} and also for every x, y € [a, b]

taking into account ba;xl < =0 x) ,forallz € (0, R) and § > 0, we have

WVA(f )0} = fOI = VA S () = FGL 0} + HIV{(fo(n); 0} = fo(x)]
=V {((1 + |[|y — x'ﬂ) w(f, 8); X>} + HIVi{(fo(y): 0)} = fo(x)]

)
v —x?%
82

< o(f, 3)%{( + )}+H|Vz{(fo(y);X)}—fo(X)I

< o (f, Vi fo(y): 1)) + (f %

+ H|Vi{(fo(y): )} — fo(X)I.

V(v — 0% x)}

(10)
By (3), forall t € (0, R), [[Vi{(.); x}ICla.b]— Bla.b) < M. Now letting § = «a(t) =
\/||Vt{((y — x)%; x)}|| and by (10) we get, for all ¢t € (0, R), that

IVA(f (0): 0} = fFNl = Ble(f, a@) + [Vi{(fo(r): 1)} = fo() 1}

where 8 = max{l + M, H}. Then, by (i), (ii) and (10), we have, for all f € C[a, b],
that

Jim VA 0); b = f@)ll = 0.
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3 Approximation properties on L [a, b] via power series method

In this section, using power series method, we study a Korovkin type approximation
theorem for positive linear operators acting on L, spaces. Some results concerning the
Korovkin type theorems for a function in L, (—, 7) may be found in [6,16,17]. We
also study the quantitative estimates for L, approximation. Throughout the section
we assume | < g < oo.

First, we recall some basic definitions and notations used in this section. Let

L;[a, bl ={f € Lyla,b]: f'is absolutely continuous and f" € Lyla, b]}

where f" and f” are respectively the first and second derivatives of f.
For f € Lyla,b] and y > 0, the K-functional of Peetre [13] is defined by

Kog(fiy) = inf

geLq[a

b]{llf —gllg + y(liglly + 118" llg)}-

Following [2] and [3], we define the second-order modulus of smoothness to be

w2,4(f, h) = . Suph I f(x+y) =2f) + fx =Wl la+y,b-y1,
<y<

where f € Lyla, b]and [a+y, b—y] C [a, b]. By [8] we have the following relation
between modulus of smoothness and K -functional of Peetre:
C ' (min(1L, Y1 fllg + w2.4(f1 ) < Kag(f: 9
< Cmin(L, Y| fllg + @2.4(f3 ) (11)
where C > 0 is an absolute constant and independent of f and g.

Let {7} } be a sequence of positive linear operators from L [a, b] into L, [a, b] such
that

00
H' := sup ZPk||Tk||Lq_>quk < 0. (12)
O<t<R k=0

A generalization of the next theorem has been given in [19]. For the completeness,
we give the proof of our theorem by using an alternative way for a particular case
L,la,b].

q ’

Theorem 3 Let {T}} be a sequence of positive linear operators from Lyla, b] into
Lgla, b] such that (12) holds. Then for any function f € Ly(a, b] we have

lli)r;elf IVA(f () 0} = f)llg =0 13)

if and only if

;EIE— IVi{(fi )i 0} = fik)llg =0, i=0,1,2.
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Proof Let f € Lyla, b]. Given ¢ > 0, by the Lusin theorem, there exists a continuous
function ¢ on [a, b] such that

If —elly <e.
From the above inequality, we get

IVA(f ()0} = f)llg = VAU ) =) 0Hlg + 11Vil(@(y): 1)) = o)l
+ 1/ ) —e@)lg

1 oo
<e (1 o ZpknTknLﬁLqu> + Vil (3); 1))

k=0
= o()llg-
(14)
Since the function ¢ is continuous on [a, b], we have
2M 5
P =) <&+ —7(y—x) (15)
where M := ||¢llc|a,p)- First of all we consider second term on the right hand of

inequality (14). Using the latter inequality and the monotonicity of the operator Ty,
we obtain

IVi{e(y); )} — o @)llg = [Vi{(le(y) — @(0)l; x)}lg
+ M|[Vi{(fo(y): )} = fo(x)llg

2M )
Vi {<8+8—2(y—x) ;x>}
< e+ [IVi{(So(y); )} = fo(x)llg) + S—ZIIVz{((y — X)) }lg

+ MIVAfo(): ) — fo()llg (16)
oM,
<&+ (s +M+ 5o ) IV(fo(): 0} — o)l

<

+ MIVi{(fo(»): )} — fo(®)llg
q

4M

+ 8_20||Vt{(f1()’)§x)} — [i)lg
2M

+ 8_2||Vt{(f2(y)§ 0} = L(0)llg

where o = max({|a|, |b|}. Hence it follows from (14), (15) and (16) that for all 1 €
0, R)

H/
WVAF G 0} — FOllg <& <2 N %)

oM
+ (8 + M + 2 ° ) IV (fo(): )} — fo() g
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M
+ _O'”Vt{(fl (0} = fi®)llg

52 IIVz{(fz(y) 0} = f2(0)lg- a7

Letting t — R~ in both sides of (17) we get

Jim VA O 0F = fF)llg < e

which proves sufficiency, since ¢ is arbitrary. Observe that the necessity is trivial. This
completes the proof. O

In order to obtain quantitative estimate and an approximation theorem we use the
notation

q
hag = max Vel fi(v); ) = fi(0)llg} 77T
First of all let us give some lemmas.

Lemmal Let f € L[(IQ) [a, b] and fix § > 0. For x, y € [a, b], we have

v IIf/’IIq

/ (v —w) f"wydu

<8/ If"(x +w)ldu + ——
54

(see, e.g. [16]).

Lemma 2 Let {Ti} be a sequence of positive linear operators from Lgyla, b] into

Lgla, b] such that (12) holds. Then for x,y € [a, b, for any function f € L,(Iz) [a, b]
and for all t sufficiently close to R from left side, we have

K

where C is a positive constant.

< Cllf"lIght
q

y
{ (y —u) f" (w)du; x}

Proof Let f € LEIZ) [a, b] and assume f has been extended outside of [a, b] so that
f"(x) = 0if x ¢ [a, b]. From Lemma 1 and monotonicity of the operator T}, we

have
¥
Vt{ / (v —u) f"(w)du; x}
x q

=

)
5 ( / G+ u>|du) Vilfo(y): x)
q
NI

5q

=L IVAy — )% x}lg (18)
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Using the Holder’s inequality and the generalised Minkowski inequality, we get

)
H5 (/O [+ u)du> Vilfo(y); x}

q

k) b
- Hs (/0 e u>|du) Vil fow): x) — fol0)) + 8/0 7Gx+ w)ldu

q

)
=< 8‘ /0 |f"(x + w)ldu{Vi{ fo(y)s x} = fo(x)}

)
+8H / 7Gx+ w)ldu
q O

q

| 5
A gVl fo()s x} = fo(x)llg + 5/0 If"(x +wllgdu

<&
< ||f”||q{52_é HVi{ fo(y); x} — fo()}Hlg + 8%). (19)

Considering (18), (19) and o = max{|a|, |b|}, one can get

y
‘ Vt{ f (v — ) £ w)dus x}

+20 | Vil £1(0); x} = fi)llg + 82+ o) Vil fo(y); x} = fo0) g} |-

1
< 1f"llq [52 + ;{II Vil 2(y); x} = f2(0)llg
q q

(20)
If we choose
3= )‘lq,

then we obtain

Lemma 3 Let {T;} be a sequence of positive linear operators from Lgyla, b] into

Lgla, b] such that (12) holds. Then for any function f € Léz) [a, b] and for all t
sufficiently close to R from left side,

,
v,{ / (y—u)f”(u)du;x}

<" lg{(@* +20 + 2047, + Ay} < ClLf A7,
q

m}

IV f )i x} = F@ g < CoAlfllg + 1L 1) A7)
is satisfied, where C ; is a positive constant independent of f and t.

Proof Let f € L((Iz) [a, b] and assume f has been extended outside of [a, b] so that
f"(x) =0ifx ¢ [a, b]. For x, y € [a, b] the following equality
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)7
FO) = F0) = £/ —x) + / (v — ) f"(w)du @)

is well known. Considering (21), Lemma 2 and linearity of operator Ty for all ¢
sufficiently close to R from left side we have

IVl F ()i x} = fOllg = IVl F () = f )5 x}lg
+ 1 oo Vil fo(y)s x} — fo(x)ll

y
v,{ / (v — ) f )du; x}

+ 1 oo Vi fo(3); X} = fox) g

< 1 Mool IV A1 ); X} = Fr0) g + oIV fo(3); X} = o))
+ ClLf " llg{rg,)
+ 1 oo Vi fo(3); X} = fox) g

< I Mool Vely = x5 x}lg +
q

where o = max{|a|, |b|} and ||.||oc denotes essential sup norm on L.
On the other hand if we take n = 2,k = 1 andn = 2, k = 0 in Theorem 3.1 of [7],
we get for any ¢ > 0 that

I1f Moo < 85{168_2”f||q + 1 g}
and
[ flloe = 3%{168_1||f||q +ellf7llg)-
From the above inequalities, we have
VA f s x} = F@ g < Colfllg + 1L 1Ay
This completes the proof. O

Theorem 4 Let {T}} be a sequence of positive linear operators from Ly|a, b] into
Lgla, b] such that (12) holds. Then for all t sufficiently close to R from left side and
Sor any function f € Ly|a, b] the inequality

IVAf )5 x} = F@)llg < Calmin(1L, A7) fllg + @24 (f5 heg))

holds, where Cy is a positive constant independent of f and t.
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Proof Let f € Lyla,bland g € ng) [a, b]. Then for all ¢ sufficiently close to R from
left side

1 o0
IV F )i xh = F@lg < I = glg— > prllTkllL, 1,1
p@) =

(22)
+11Vifg(»): x} —g()llg +11f —gllg

<L+ Mf —glg +Cl (Igly +118"1l4) 22,

is satisfied , where M := % sup Z,fio PellTillL,—L, . In inequality (22) taking
O<t<R

infimum over g € ng) [a, b], from the definition of K-functional of Peetre of order
two and inequality (11) we get

IVA S 3); x} = F@)llg < Cafmin(1L, AL f llg + @24 (f3 Aeg)}
which completes the proof. O
Using the above rate of convergence, we can give the following.

Corollary 1 Let {T}} be a sequence of positive linear operators from Lg|a, b] into
Lgyla, b] such that (12) holds and lim,_, g- A;qy = 0. Then for any function f €
Lgla, b] we have

m [[V{(f(y):x); 1} = f(0)llg =0.

li
t—R
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