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Abstract An interesting problem in geometric control theory arises from robotics and
space science: find a smooth curve, controlled by a bounded acceleration, connecting
in minimum time two prescribed tangent vectors of a Riemannian manifold Q. The
state equation is ∇γ̇ γ̇ = u ∈ T Q, |u| ≤ A. Applying Pontryagin’s principle one gets
a Hamiltonian system in T ∗(T Q). We consider this problem in S2(r). Seemingly, it
has not been addressed before. Via the SO(3) symmetry, we reduce the four degrees of
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freedom system to the five variables (a, v, M1, M2, M3),where v is the scalar velocity,
conjugated to a costate variable a and (M1, M2, M3) are costate variables that satisfy
{Mi , Mj } = εi jkMk . We derive the reduced equations and find special analytical
solutions, that are organizing centers for the dynamics. Reconstruction of the curve
γ (t) is achieved by a time dependent linear system of ODEs for the orthogonal matrix
R whose first column is the unit tangent vector of the curve and whose last column is
the unit normal vector to the sphere.

Keywords Riemannian splines · Geometric control · Reduction · Reconstruction

Mathematics Subject Classification 53D20 · 65D07 · 49J15 · 70H06

1 Introduction

The rendezvous problem from robotics and space science consists of planning a path
with prescribed initial and final position and velocities [1–3]. Achieving, for instance,
a smooth docking of a service spacecraft to the International Space Station or fetching
a satellite.1

Mechanical control problems were first studied via Geometric Mechanics in
Andrew Lewis thesis with Richard Murray at Caltech [5]. The standard reference
is [6], a treatise by Bullo and Lewis. The organism or device is modeled by a config-
uration space Q, together with a metric (kinetic energy) governing its inertia. Acting
external and internal forces produce an acceleration, interpreted as the control u that
produces deviation from geodesic motion.

If ∇ denotes the Levi–Civita connection, the state equation is

∇q̇ q̇ = u. (1)

The aim is to connect two tangent vectors (qo, vo) and (q1, v1) minimizing a cost
functional. Such curves are called variational splines. Via Pontryagin’s principle,
every cost functional associated to (1) yields a Hamiltonian system in T ∗(T Q).

Two cases have received special attention. The first case concerns cubic splines
(also called L2), that were introduced around 1990 [7,8]. They minimize

∫ T

0

β

2
|u|2 dt (2)

with a prescribed time T besides the starting and end tangent vectors. Cubic splines
have been recently used in longitudinal studies in medical imaging. The research area
is called computational anatomy [9–12].

1 Warning: this is a spoiler. A thrilling rendez-vous example is the rescue of astronaut Mark Watney (Matt
Damon) by Melissa Lewis (Jessica Chastain) in the movie ’The Martian’, directed by Ridley Scott, based
on the novel by Weyr [4].
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The second case is the time minimal problem, that has been used frequently for
path planning in robotics and space science.2 In the Markov–Dubins problem, the
acceleration is always normal to the path, so in this case minimal time is equivalent
to minimal length. There is a vast literature on this classical problem. More recently,
some authors allowed a tangential acceleration in addition to a normal component. This
was called dynamic Markov–Dubins in [15]. It consists in connecting two vectors in
minimum time, under the restriction

|u| ≤ A, where A is a prescribed bound. (3)

This paper is a follow up of [16], where we presented a geometric formulation for
variational problems with state space T Q, or more generally with a state space A that
is an anchored vector bundle over Q, so that T ∗A is a double bundle.

A connection in the bundle A → Q allows to rewrite the canonical symplectic
form on T ∗(T Q) (resp. T ∗A) using a convenient splitting of covectors. Among the
examples, we discussed cubic splines on spheres.

Here we continue the study, focusing on the second case: time minimal splines
on S2(r). In Sect. 2 we contextualize the problem. We apply Pontryagin’s method
in its standard formulation, embedding T Sn(r) in �n+1 × �n+1. Then we introduce
modified costate variables allowing to write the equations of motion for the optimal
Hamiltonian in a very geometric fashion.

The core of the paper is Sect. 3. Following [16], in the case n = 2 we make a
special construction, using a diffeomeorphism of T S2(r) − 0 to SO(3) × �+, with
coordinates (R, v). The last column of the orthogonal matrix R is the unit normal
vector to the sphere, and the first is the normalized tangent vector of the spline.

The coordinate v is the scalar velocity, conjugated to a costate variable a, that acts
on the tangential acceleration, and (M1, M2, M3) are costate variables that act on the
frame rotations R−1 Ṙ. These momenta satisfy {Mi , Mj } = εi jkMk .

We derive the reduced hamiltonian and find two families of special analytical solu-
tions, that are organizing centers for the dynamics. One of the families trace the
equators, exhibiting there the bang-bang phenomenon. The other family is formed by
circles with geodesic curvature 1/r , that can be traversed both ways. They were found
by unreduction, and appear in pairs forming figure eights.

In Sect. 4 we compute the equilibria of the reduced system and show that they are
of loxodromic type, as it also happened for cubic splines. Section 5 makes a digression
on the 1-dimensional case of time minimal trajectories along equators. In Sect. 6 we
reconstruct the trajectories of the unreduced system corresponding to the equilibria
of the reduced system in Sect. 4. A benchmark numerical simulation, using the free
software BOCOP, developed at INRIA, is presented in Sect. 7. Section 8 we discuss
some loose ends and present some research directions.

We end this introduction with additional references about variational splines in
medical imaging. In computational anatomy cubic splines have been used for lon-

2 The time minimal-bounded acceleration problem is almost always equivalent to the so called L∞ control
problem considered recently by Noakes and Kaya [13,14], where they ask for a trajectory that minimizes
the sup of the norms of the accelerations, with fixed transition time.
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gitudinal medical studies [10–12] and for interpolation and statistics on manifolds
[17–24]. We observe that a tangent vector gives a minimal model for a short process.
The idea of comparing two short physiological processes using splines is not yet much
explored. This question is important in embryology, where it is called morphokinetics
[25].

2 Simple splines in Sn(r): the minimal time problem

As observed by Chang [26], a dynamic optimization problem whose state space is a
manifold can be conveniently formulated using embeddings on an Euclidian space.
We embed T Sn in R

n+1 × R
n+1 and write the state equations so that it has T Sn as

an invariant submanifold. This allows us to apply Pontryagin’s principle in the usual
way. We fix a sphere Sn(r) of radius r . The state equations are

ẋ = v, v̇ = u − |v|2 x/r2, u ⊥ x (4)

Here u, the tangential component of the acceleration vector, is the control. The second
term in the right hand side of the equation for v̇ is the normal acceleration required
to keep the trajectory in the sphere. Hence these equations have the tangent bundle of
the sphere of radius r as invariant submanifold. We used boldface only for the tangent
vector v because v = |v|.

2.1 Applying Pontryagin Maximum Principle on R
2(n+1)

We now formulate the problem. Let

((x, v), ( p̃x , p̃v)) ∈ T ∗(TRn+1) = R
4(n+1)

with the canonical form

ΩT ∗(TRn+1) = d p̃x ∧ dx + d p̃v ∧ dv. (5)

We have the Hamiltonian family:

Hu = −1 + p̃x · v + p̃v ·
(
u − |v|2

r2
x

)
.

We obtain the optimal control (using u ⊥ x)

u∗ = A
p‖
v

|p‖
v |

(6)

where

p‖
v = p̃v − 〈 p̃v, x〉x/r2 (7)
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is the projection of p̃v on tangent plane of the sphere. The case p‖
v = 0, needs

special attention and is discussed in the conclusion section. Substituting back in the
Hamiltonian family we get

Proposition 1 The optimal Hamiltonian for the time minimal splines in Sn(r)

H∗ = −1 + p̃x · v + A |p‖
v | − p̃v · |v|2

r2
x . (8)

where we use standard symplectic structure (5), with initial conditions such that

|x | = r, v ⊥ x .

2.2 Using split costate variables

The fact that the covectors p̃x , p̃v are arbitrary vectors in �n+1 is a nuisance: each
contains one spurious dimension. Define modified costate variables p, α by

α = p‖
v = p̃v − 〈 p̃v, x〉x/r2 (9)

p = p̃‖
x − 〈 p̃v, x〉

r2
v (10)

Note that if |x | = r and v ⊥ x then p, α are also in Tx Sn(r). In fact, as follows from
the theory in [16], these modified costate variables represent a splitting for a covector
P(x,v) ∈ T ∗

(x,v) T Sn(r)), achieved via the Levi–Civita connection in the tangent bundle
T Sn . The Hamiltonian (8) gets a simpler expression:

H∗ = −1 + p · v + A |α|. (11)

There is a price: the symplectic form in the variables (x, p, v, α) is non-canonical. It
has extra terms, arising from the connection, but they have a geometric content. For
any Hamiltonian H(x, p, v, α), the resulting equations can be conveniently written as
follows:

Proposition 2 Hamiltonian equations with split momenta p, α:

⎡
⎢⎢⎣
ẋ
∇ẋ p
∇ẋv

∇ẋα

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
0 I 0 0
−I 0 0 R(·, v)v

0 0 0 I
0 −R(·, v)v −I 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣
Hx

Hp

Hv
Hα

⎤
⎥⎥⎦ (12)

where R is the curvature tensor of the metric on Q.

Indeed, we showed in [16] that these equations also hold for any metric on a Rie-
mannian manifold, via the splitting p, α of covectors Pvx induced by its Levi–Civita
connection. In the case of the unit sphere (r = 1) the curvature tensor is given by

R(X,Y )Z = (Y · Z)X − (X · Z)Y (13)
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For the time-minimal problem, we use the Hamiltonian (11) so that

Hx = 0, Hp = v, Hv = p, Hα = Aα/|α| (14)

Explicitly

ẋ = v, ∇ẋv = Aα/|α|, ∇ẋα = −p,∇ẋ p = R(Aα/|α|, v)v. (15)

For cubic splines on an arbitraryRiemannianmanifold Q have the optimalHamiltonian
H∗ = −(1/2)β|u|2 + p ·v+α ·u. It follows from (12) that the solution curves satisfy
the Crouch–Leite equations [27],

∇3
ẋ ẋ = −R(∇ẋ ẋ, ẋ)ẋ . (16)

In contradistinction, in the time-minimal case, it seems that it is not possible to write
(15) a single third order equation.

3 Convex surfaces: reduction and reconstruction equations

We recall the construction that we did in [16] of coordinates (a, v, M1, M2, M3, R)

in T ∗(T S2 − 0), with v > 0, R ∈ SO(3). The zero section must be excluded. For
a closed smooth convex surface Σ ⊂ R

3, the Gauss map induces a diffeomorphism
between TΣ − 0 and R

+ × SO(3):

vq ↔ (v, R), v = ||vq || �= 0 (17)

R ∈ SO(3) is constructed as follows: via the Gauss map, a point q ∈ Σ correspond
uniquely to an external unit normal vector to the surface, which we denote e3.. Now, a
nonzero tangent vector vq corresponds uniquely to a pair (v, e1)with v = |vq |, |e1| =
1. so vq = v e1, v > 0.We use a redundant vector e2 = e3×e1 to construct the matrix
R with columns e1, e2, e3. Now recall the Darboux formulas

e′
1 = κg e2 + κn e3, e′

2 = −κg e1 + τg e3, e′
3 = −κn e1 − τg e2 (′= d/ds)

where κg is the geodesic curvature, κn the normal curvature, and τg the geodesic
torsion of a curve γ in the surface. These formulas can be rewritten as

Ṙ = R X, X = v

⎛
⎝0 −κg −κn

κg 0 −τg
κn τg 0

⎞
⎠ . (18)

The normal curvature κn cannot be a a control variable, since it corresponds to the
constraining force to the surface. In fact, taking derivatives in the ambient space,

γ̈ = v̇ e1 + v2 e′
1 = u1 e1 + v2(κg e2 + κn e3) = ∇γ̇ γ̇ + v2κn e3
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with

κn = (e′
1, e3) = −(e′

3, e1) := B(e1, e1)

where B is the second fundamental form of the surface.

3.1 State equations

We then write the state equation in terms of the Levi–Civita connection,

∇γ̇ γ̇ = u1 e1 + u2e2 (19)

where u1, u2 are the controls. This calculation above also shows that

u1 = v̇, u2 = v2κg. (20)

For the geodesic torsion, Darboux found the interesting formula

τg = τg(e1) = (κ1 − κ2) sin φ cosφ (21)

where φ is the angle between the unit tangent vector e1 to the curve and a principal
direction on the surface. In conclusion, the state equations can be written as

Proposition 3

v̇ = u1, Ṙ = R X (22)

with

X =
⎛
⎝0 −u2/v −v B(e1, e1)
u2/v 0 −v τg(e1)
v B(e1, e1) v τg(e1) 0

⎞
⎠ . (23)

3.2 Hamiltonian for time minimal splines on the sphere

For an arbitrary convex surface, the state equations are coupled, but for the sphere,
the dependence of X on e1 disappears. Darboux formula (21) shows that the geodesic
torsion vanishes identically on any spherical curve.
Thus our convention gives a negative sign for the normal curvature in the sphere.
Consider a spherical curve γ (t), that is γ (t) · γ (t) ≡ r2. Differentiating twice results
(γ̈ , γ ) = −(γ̇ , γ̇ ), i.e., (γ̈ , e3) = −v2/r , so that κn = −1/r . The state equations for
the sphere are therefore (22, 23) with

X =
⎛
⎝0 −u2/v v/r
u2/v 0 0
−v/r 0 0

⎞
⎠ (24)
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The skew-symmetric matrix X ∈ so(3) can be conveniently represented as

Ω = (0, v/r, u2/v). (25)

We introduce costates (a, M), a ↔ v and M = (M1, M2, M3) ↔ Ω =
(Ω1,Ω2,Ω3), with commutation relations

{a, v} = 1, {Mi , Mj } = εi jkMk . (26)

The Hamiltonian family is given by

H = −1 + a · u1 + M2 v/r + M3 · u2/v. (27)

Maximizing (27) taking into account that

u21 + u22 ≤ A2.

results in

Proposition 4 The time minimal problem in the sphere S2(r) in state variables (v, R)

and costates (a, M) has optimal controls

u∗
1 = A a/

√
a2 + M2

3/v2, u∗
2 = A M3/

(
v

√
a2 + M2

3/v2
)

. (28)

The optimal Hamiltonian is given by

H = −1 + A
√
a2 + M2

3/v2 + M2v/r (29)

with commutators {a, v} = 1, {Mi , Mj } = εi jkMk . The reconstruction equations are
Ṙ = R X with

X = X (M3, a, v) =
⎛
⎝0 −u∗

2/v v/r
u∗
2/v 0 0

−v/r 0 0

⎞
⎠ . (30)

The reduced equations of motion are given by

v̇ = u∗
1 = aA/

√
a2 + M2

3/v2

ȧ = −M2/r + AM2
3

v3
√
a2 + M2

3/v2

Ṁ = det

⎛
⎜⎝

i j k
M1 M2 M3

0 v/r AM3

v2
√
a2+M2

3 /v2

⎞
⎟⎠ (31)
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Clearly we have a Casimir

μ2 = M2
1 + M2

2 + M2
3 . (32)

We have shown in [16] that the Poisson map from unreduced variables (x, v, p, α),
where x ∈ S2 (r = 1, v, p, α ⊥ x) to the reduced variables (a, v, M1, M2, M3), is

a = α · v/v, v = |v|
M1 = det(p, v/v, x)

M2 = p · v/v
M3 = det(α, x, v) (33)

4 Relative equilibria: stability analysis

By definition, relative equilibria of the full system in T ∗(T S2) are the equilibria of
the reduced system. Let’s find them. From the (ȧ, v̇) equations we get:

(i) a = 0, M2 = Ar

v2sign(v)
|M3|

From the Ṁ equations we get either M3 = 0 (this case will be discussed below) or, if
M3 �= 0,

(ii) M2 = v3

Ar

√
a2 + M2

3/v2

Using these two informations we get, if M3 �= 0

M2/|M3| = Ar

v2sign(v)
= v2sign(v)

Ar

Therefore

v = ±√
r A, M2/|M3| = sign(v), signM2 = sign(v) (34)

where we allow the variable v to have a negative sign as well. Note that the dimensions
are correct:

A ∼ L/T 2, r ∼ L ⇒ |v| = √
Ar ∼ L/T
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Proposition 5 The equilibria of reduced system are

a = 0, v = ±√
r A

M = μ
(
0,

√
2/2,±√

2/2
)

if v > 0

M = μ
(
0,−√

2/2,∓√
2/2

)
if v < 0 (35)

that live in the Casimir sphere

μ2 = 2A/r. (36)

The relation (36) follows from (30). The reconstructed R(t) is therefore the product
of R(0) (to the left) followed by rotation around the unit vector

(
0, sign(v)/

√
2, sign(M3)/

√
2
)

. (37)

with angular velocity

ω = √
2A/r . (38)

In order to proceed to the stability analysis, it is useful to give a symplectic version of
the Poisson system (31). We introduce spherical coordinates in the momentum sphere
|M | = μ:

M = μ (cosφ cos θ, sin φ, cosφ sin θ)

(−π ≤ θ ≤ π, −π/2 ≤ φ ≤ π/2) (39)

so that the optimal Hamiltonian becomes

H = μ sin φ v/r + A
√
a2 + μ2(cosφ)2 (sin θ)2/v2 (40)

Setting z = sin φ we get

Proposition 6 Symplectic description of the reduced system

H = μ zv/r + A
√
a2 + μ2(1 − z2) (sin θ)2/v2 (41)

Ω = da ∧ dv + μdz ∧ dθ, dz = cosφ dφ (42)

with −1 ≤ z ≤ 1, θ ∈ �mod 2π .

There are three discrete symmetries [16], that can be explored in future work: velocity
reversal (changing signs in all variables), time reversal, and left–right.3 The equilibria

3 In the unreduced problem it means that any trajectory can be flipped about a tangent vector at any time.
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are

a = 0, v = ±√
Ar

v > 0 : θ = ±π/2, φ = π/4 (z = √
2/2)

v < 0 : θ = ±π/2, φ = −π/4 (z = −√
2/2) (43)

The equations of motion in variables (a, v, z, θ) are given by

ȧ = −Hv = −μz/r + μ2A(1 − z2)(sin θ)2

v3
√
P

v̇ = Ha = Aa/
√
P

μż = −Hθ = −μ2 A (1 − z2) sin θ cos θ /
(
v2

√
P

)

μθ̇ = Hz = μv/r − μ2 A z (sin θ)2/(v2
√
P) (44)

where

P = a2 + μ2(1 − z2) (sin θ)2/v2.

We computed the linearization matrix of the system at the four equiilibria (35) [equiv-
alently (43)] with μ = √

2A/r (36). These four matrices are all equal; the calculation
is summarized in the “Appendix A”. We get, in the order (a, v, z, θ):

L =

⎡
⎢⎢⎣
0 2/r2 2

√
2Ar 0

−Ar 0 0 0
0 0 0 −√

A/(2r)
0 −2/r 2

√
2
√
A/r 0

⎤
⎥⎥⎦ (45)

The characteristic polynomial is

p(λ) = λ4 + 4
A

r
λ2 + 8

A2

r2
(46)

Proposition 7 The eigenvalues at the four equilibria all equal, of loxodromic type,
and are given by

λ = μ

(
±

√
(
√
2 − 1)/2 ± i

√
(
√
2 + 1)/2

)
with μ = √

2A/r (47)

5 The problem in S1

We now discuss the case M1 = M3 ≡ 0, M2 = const �= 0. Equations (31) yield

ȧ = −M2/r, v̇ = A sign(a) (48)
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This shows that a(t) is a linear function, and v̇ = ±A according to the sign of a, that
changes sign just once since we assumed M2 �= 0. In turn, (30) gives Ṙ = R X with

X = X (M3, a, v) =
⎛
⎝0 0 v

r
0 0 0
− v

r 0 0

⎞
⎠ . (49)

Thus the reconstruction of R(t) is given by an initial R(0) multiplied on the right by a
rotation around the second axis. If R(0) = I then the tracing point traverses a circle in
the x-z plane starting in the north pole of the sphere. Since R(0) is arbitrary, all great
circles are covered.

Thismakes sense. Solutions of the timeminimal problem in S1 are embedded among
the solutions of the S2 problem. The problem in S1 can be thought as a collection of
time minimal problems in �, its universal cover, where the initial and final positions
are separated by integer multiples of 2π . The problem in � is a paradigmatic example
for bang-bang solutions (eg. [28], chapter 14.5).

Examining equations (44) is also instructive. This case corresponds to z = ±1. We
have

ȧ = −μ sign(z)/r, v̇ = Asign(a)

which coincides with the above equations, since M2 = μ sign(z). The other equations
are ż = 0 and

θ̇ = v/r − μAsign(z)

v2|a|
Although this equation is irrelevant for z ≡ ±1, since the ‘latitude’ θ is void of
meaning at φ = ±π/2, it carries some information. It is discontinuous and tends to
infinite as v → 0. Nearby solutions, although smooth, should be highly complex.
Finally, there is the case μ = 0. In this case there is no bang-bang: the physical path
is uniformly accelerated along an equator.

6 Reconstructed trajectories corresponding to relative equilibria

We obtain exactly the same “figure eight ” paths in the sphere S2(r) as in the case of
cubic splines analysed in [16]. For completeness, we summarize the calculation here,
making some simple adaptations. First we observe that relation (28) for u∗

2 = v2κg
implies that the reconstructed trajectories satisfy

|κg| = 1

r
. (50)

Now we recall that on a sphere of radius r , the parallel of latitude α has geodesic
curvature κg = tan α/r. Thus in our case α = π/4.
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Proposition 8 Figure eights. The reconstructed curves in S2, corresponding to the
two equilibria, with R(0) = I , are two orthogonal (touching) circles making a 45◦
angle with the equatorial plane. They are given by

γ (t) = r

(√
2

2
sin θ,±1

2
(1 − cos θ),

1

2
(1 + cos θ)

)
(51)

with

θ = √
2

v

r
t, |v| = √

Ar (52)

Proof As in [16] we have steady rotations about the unit vectors

(ux , uy, uz) =
(
0,

√
2

2
,±

√
2

2

)

with angular velocity ω = ±√
2 v/r . The result is the same, but the calculations

is slightly different here. Recall that X (M3, a, v) is given by (30), the infinitesimal
rotations

(0,−v/r, A M3/(v
2
√
a2 + M2

3/v2)

We substitute a = 0, A = v2/r , so that the third entry is

(v2/r) sign(M3)/|v| = sign(M3)|v|/r.

Now we recall from [16] that for an unit vector (ux , uy, uz) the rotation matrix
R(θ) with R(0) = I is given by

⎡
⎣ cos θ + u2x (1 − cos θ) uxuy(1 − cos θ) − uz sin θ uxuz(1 − cos θ) + uy sin θ

uxuy(1 − cos θ) − uz sin θ cos θ + u2y(1 − cos θ) uzuy(1 − cos θ) − ux sin θ

uzux (1 − cos θ) − uy sin θ uzuy(1 − cos θ) + ux sin θ cos θ + u2z (1 − cos θ)

⎤
⎦

Equations (51) come from the third column of R(θ). ��
In hindsight, we could allow v < 0 in (51), so we can describe both twin circles in
both directions. We have therefore four solutions, each twin pair passing starting at
the north pole (0, 0, r) with velocity vector (v, 0, 0).

7 Numerical simulations

We are presently implementing two independent approaches, to validate each other.
The first approach applies Pontryagin’s method directly, with spherical coordinates
(θ, φ, vθ , vφ) inT S2(r) for the state equations.Weuse the freewareBOCOPdeveloped
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by F. Bonnan’s group at INRIA, that has a built-in implicit equation solver to adjust the
initial momenta. This freeware can be implemented also with euclidian coordinates
constrained to the sphere. The second approach, uses a numerical ODE solver on our
system (30,31). In future work, we will need to add an implicit equation solver, to find
the initial momenta a, M1, M2, M3 in order to reach the final position and velocities
and the minimal time.

In order to mutually validate the two approaches. In (30, 31) we could add to the
initial positions and velocities (known), the initial momenta M1, M2, M3, a corre-
sponding to the initial values of pθ , pφ, pvθ , pvφ provided by the simulation with
BOCOP. In “Appendix B” we derive the translating formulas between the two sets of
momenta. We are planning for future work an in depth study, aiming a comparison
between time minimal and cubic splines, using a set of representative initial and final
positions and velocities.4

7.1 Using BOCOP (www.bocop.org)

Let’s now summarize the first approach.We use letters θ, φ to parametrize the physical
sphere S2(r) in the usual way

q = r (cosφ cos θ, cosφ sin θ, sin φ) (53)

After straightforward calculations we get

∇q̇ q̇ = (
r cosφ θ̈ − 2r sin φ θ̇ φ̇

)
eθ +

(
r φ̈ + r cosφ sin φ θ̇2

)
eφ

= ū1 eθ + ū2 eφ (54)

with

eθ = (− sin θ, cos θ, 0) , eφ = (− sin φ cos θ,− sin φ sin θ, cosφ)

and this gives us the state equations in (θ, φ, vθ , vφ)

θ̇ = vθ , φ̇ = vφ

v̇θ = 2 tan φ vθ vφ + ū1/(r cosφ),

v̇φ = − cosφ sin φ v2θ + ū2/r. (55)

It is nice to write the acceleration control in terms of the tangent and surface normal,

ū1 eθ + ū2 eφ = u1 t + u2 n

4 We would like to lure a scientific initiation student for that.
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where

t = vθ cosφ√
v2θ cos

2 φ + v2φ

eθ + vφ√
v2θ cos

2 φ + v2φ

eφ

n = − vφ√
v2θ cos

2 φ + v2φ

eθ + vθ cosφ√
v2θ cos

2 φ + v2φ

eφ

so that we just replace in (55) the controls ū1, ū2 by

ū1 = u1
vθ cosφ√

v2θ cos
2 φ + v2φ

− u2
vφ√

v2θ cos
2 φ + v2φ

ū2 = u1
vθ cosφ√

v2θ cos
2 φ + v2φ

+ u2
vθ cosφ√

v2θ cos
2 φ + v2φ

(56)

A nice feature of BOCOP is its built-in implicit equation solver. For the time
minimal problem it adjusts (by a shooting method) the four unknown momenta
(pθ , pφ, pvθ , pvφ ) at the initial time position and velocity, and finds the time interval
T leading to the prescribed end position and end velocity vector.5

Due to the SO(3) symmetry, in the simulations the initial and final positions can
be taken at the equator (φ = 0), and the initial longitude also set at θo = 0. Thus the
data to be chosen are θ f and the initial and final values of the velocities vθ , vφ . The

implicit solver is a shooting method to reach θ f , v
f
θ , v

f
φ in an unknown time T from

the initial values θo = φo = 0, voθ , v
o
φ .

Figure 1 shows the result of a benchmark simulation, with initial and final condi-
tions in a circle with kg = 1. A further interesting check is to compare the numerical
results for the costates pθ (t), pφ(t), pvθ (t), pvφ (t) provided by BOCOP with the the-
oretical prediction that can be computed using (69). We can provide a zipped file with
the implementation for the interested reader. When all is debugged, and the ‘build’
command in the GUI is working, one just clicks the green arrow, and BOCOP does
the job automatically.

EXIT: Optimal Solution Found.

Objective value

f(x*) = 2.221489e+00

Time taken : 10.50s

Optimization SUCCEEDED!

5 At first sight there are 5 unknowns for the four implicit equations, but the momenta pvθ , pvφ act with a
scale invariance and they behave as one unknown.
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Fig. 1 Benchmark example. x1 = θ, x2 = φ, v1 = θ̇ , v2 = φ̇; u1, u2 are respectively the tangential and
normal accelerations; the boundary conditions are at half of a circle with kg = 1: θo = φo = 0, θ̇o =
0, φ̇o = 1, θ f = π/2, φ f = 0, θ̇ f = 0, φ̇ f = −1. The control variables seem to oscillate, but note the
scale: up to very small numerical error, u1 ≡ 0, u2 ≡ 1, as expected

Let us check if the time T = 2.221489 found by BOCOP is coherent with the
theory. From (52) the difference

√
2× T −π must be equal to zero. Indeed, the result

is 0.000067, a reasonable numerical error.

7.2 Using an ODE solver

The figures below depict numerical solutions for the Hamiltonian (41, 42) in variables
a, v, z, θ , for a solution emanating from the unstable equilibrium with loxodromic
eigenvalues. In Figs. 2, 3, 4 and, 5 the equilibrium is inserted as initial condition.
As the program runs, the very small numerical error in the initial condition amplifies
exponentially, and the solutions run away. Seemingly it approaches a neighborhood
of the other organizing center corresponding to |z| = 1. Figures 6 and 7 hints on
how intricate is phase portrait . Further numerical work will be needed to clarify the
transition from the linear regime for very small t to the nonlinear regime, and the
asymptotic behavior as t → ∞, and if v reaches zero on such solutions.

8 Discussion

This paper is a follow up of [16]. The focus there was on a splitting of cotangent
vectors P(v,q) ∈ T ∗(T Q) and then rewriting the canonical symplectic form in these
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Fig. 2 a − t plot for a solution
emanating from the equilibrium.
Parameters r = A = 1. Note the
near linear evolution of a(t) for
larger values of t . The predicted
slope, when z ∼ − 1 is ȧ ∼ √

2

Fig. 3 z − t plot. Note the
dramatic change in sign of z
around t ∼ 33. For larger t it
seems to stabilize far from
z = − 1

Fig. 4 θ − t plot. θ(t) controls
the oscillations in the variables
M1, M3 according to (39).
Oscillations around the initial
value θo = π/2 are not visible
due the large scales chosen
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Fig. 5 a − z and a − v plots of
the same solution of the previous
figures

split coordinates. The main example was cubic splines on spheres: one fixes the time
T , and minimizes the cost function 1/(2β)

∫ T
O |∇γ̇ γ̇ |2dt. We gave a Hamiltonian

formulation for the Crouch–Leite equations that generate the cubic splines on Sn (16).
For n = 2, we used the coordinates (v, R) ∈ T S2 − 0, and covectors (a, M) ∈
T ∗

(v,R)(T S2 − 0) in order to study the reduced dynamics in (a, v, M) coordinates. We
showed that the reduced cubic spline system is governed by the Hamiltonian

H∗ = 1

2β

(
a2 + (M3/v)2

)
+ M2 v/r.

In this paperwemake a study about the timeminimal splineswith bounded acceleration
on S2(r). As far as we know, this problem has not been addressed before. The same
coordinates (v, R, a, M) are used here, leading to the reduced Hamiltonian

H∗ = A
(
a2 + (M3/v)2

)1/2 + M2 v/r.
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Fig. 6 Initial conditions appear
in the top. Lagrangian projection
a − z and symplectic a − v

plane projection of the solution.
The phase portrait becomes
intricate as one leaves a small
neighborhood of the unstable
fixed point

The reduced equations are more involved with added subtleties. To start, here the
costate a does not represent the tangential acceleration, as it was in the cubic spline
case. We present in this discussion some loose ends and research directions.

8.1 Comparisons with cubic splines

It is curious that both reduced problems have the same loxodromic type of relative
equilibria, and that the reconstructed paths are the same figure eights. Is there a reason
beyond a mere mathematical coincidence? As regards to paths along the equators, the
behavior is very different. For cubic splines the path obeys a third degree polynomial
in time. For time minimal the path is a concatenation of two quadratic polynomials
with a sudden jump on the second derivative, ± A.

One problem that comes up for comparisons, is to study timeminimal splines on the
hyperbolic disk. It is known that on manifolds having regions of negative (sectional)
curvature, cubic splines suffer a strange syndrome: the scalar velocity may reach
infinity in finite time [29]. Time minimal splines offer an alternative if one needs to
avoid this threat. Comparing trajectories, balancing the time spent vs. the energetic
cost could be a topic for further research.
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Fig. 7 Initial conditions on top
on the figures. Lagrangian
projection a − z and symplectic
a − v plane projection of the
solution

8.2 Invariant manifolds emanating from the equilibria

Recall from [16] that for cubic splines the union of relative equilibria solutions (all
circles with κg = 1/r ) forms a center manifold C of dimension 4. Each unreduced
relative equilibrium trajectory can be associated to its initial position and velocity
vector. This center manifold is parametrized by the base �+ × SO(3) ≡ T S2 − 0.
This is because the reduced equilibria have the scalar velocity v as a free parameter.
In this case all nonzero momentum spheres have these relative equilibria trajectories.
M2

1 + M2
2 + M − 32 = μ2, with μ = √

2(β/r) v3. In the reduced space we have
local unstable and stable (spiralling) manifolds of dimension two. They lift to 6-
dimensional manifolds Wu

C ,Ws
C inside T ∗(T S2). This dimension count is coherent:

dimC = 6 + 6 − 8 = 4. There is a scale invariance, given by

(v(t), R(t)) → (γ v(γ t), R(γ t)), (57)

which for the conjugate momenta entails

a → γ 2a(γ t), M → γ 3M(γ t). (58)
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For time minimal splines, there is a striking difference. The above scaling is lost, due
to the interplay between the radius r and the acceleration A. In consequence, in the
reduced system, only onemomentum sphereμ = √

2A/r has an equilibrium. Fix that
momentum sphere, together with the total energy. Then the phase space has effective
dimension 7. The center manifold is parametrized by SO(3) since the velocity must be√
Ar . The dimension count is dimC = 5+ 5− 7 = 3 which is also coherent. Global

dynamical question can be posed for both cases: on the reduced system, take initial
conditions near the loxodromic equilibrium. What happens with the corresponding
reconstructed solutions? To start, it is in order understanding the global behavior of
the 2-dimensional stable and unstable manifolds of the reduced systemWu

red andW
s
red.

Do they intersect transversally?

8.3 Undefined situations for the controls

The time minimal spline problem in euclidian spaces has been addressed in [15,30–
32]. Even in the plane, although the setting is quite simple, the analysis is subtle at
special situations where the controls are undefined. Take x, v, px , pv in �n (n = 2,
and n = 3 suffice). The state equations are in this case ẋ = v, v̇ = u so that the
Hamiltonian family is

H = −1 + px · v + pv · u, |u| ≤ A,

Hence u∗ = Apv/|pv|, provided pv �= 0. How the solutions behave when pv = 0?
This was discussed in the above references, but we fear that not completely settled.

The analysis in the sphere should be similar. Troublesome values of the reduced
coordinates are i) a = M3 = 0 with v �= 0. and of course ii) v = 0. The value
v = 0 is even more troublesome due to an artifact of the coordinates (v, R) in T S2:
R is not well defined at the zero section. Probably it will be useful in both cases to go
back to the unreduced formulation (8, 9) at α = 0.
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Appendix A: Linearization at the equilbria

We take entries in the order v, a, θ, z. We have at the equilibria: L = J Hess(H)

where

J =

⎛
⎜⎜⎝

0 1 0 0
−1 0 0 0
0 0 0 1/μ
0 0 −1/μ 0

⎞
⎟⎟⎠ , Hess(H) =

⎛
⎜⎜⎝

Hvv Hva Hvθ Hvz

Hav Haa Haθ Haz

Hθv Hθa Hθθ Hθ z

Hzc Hza Hzθ Hzz

⎞
⎟⎟⎠
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so that

L =

⎛
⎜⎜⎝

Hav Haa Haθ Haz

−Hvv −Hva −Hvθ −Hvz

Hzv/μ Hza/μ Hzθ /μ Hzz/μ

− Hθv/μ − Hθa/μ − Hθθ /μ −Hθ z/μ

⎞
⎟⎟⎠ . (59)

We get the four linearization matrices by substituting μ = √
2A/r and

a = 0, v = ±√
Ar

v > 0 : θ = ±π/2, φ = π/4 (z = √
2/2)

v < 0 : θ = ±π/2, φ = −π/4 (z = −√
2/2)

on the bank of derivatives below. They all give the same matrix L in (45).

Bank of derivatives. Denoting for short P = a2 + μ2
(
1−z2

)
(sin(θ))2

v2
we have:

Haa = −Aa2P−3/2 + A P−1/2

Hvv = − Aμ4
(
1 − z2

)2
(sin (θ))4

v6
P−3/2

+ 3
Aμ2

(
1 − z2

)
(sin (θ))2

v4
P−1/2

Hzz = − Aμ4z2 (sin (θ))4

v4
P−3/2 − Aμ2 (sin (θ))2

v2
P−1/2

Hθθ = − Aμ4
(
1 − z2

)2
(sin (θ))2 (cos (θ))2

v4
P−3/2

+ Aμ2
(
1 − z2

)
(cos (2 θ))2

v2
P−1/2

Hav = Aaμ2
(
1 − z2

)
(sin (θ))2

v3
P−3/2

Haθ = − Aaμ2
(
1 − z2

)
sin (θ) cos (θ)

v2
P−3/2

Hθ z = Aμ4z (sin (θ))3
(
1 − z2

)
cos (θ)

v4
P−3/2 − 2

Aμ2z sin (θ) cos (θ)

v2
P−1/2

Hvθ = Aμ4
(
1 − z2

)2
(sin (θ))3 cos (θ)

v5
P−3/2

−2
Aμ2

(
1 − z2

)
sin (θ) cos (θ)

v3
P−1/2

Haz = Aaμ2z (sin (θ))2

v2
P−3/2

Hvz = − Aaμ2
(
1 − z2

)
sin (θ) cos (θ)

v2
P−3/2
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Appendix B: Dictionary between the momenta in T∗(T S2) associated to
the coordinate systems on T S2

We derive the correspondence pθ , pφ, pvθ , pvφ to (a, M1, M2, M3) that may be useful
in future work. Let Z(α) denote the rotation about the z axis of and angle α and
Y (β) about the y axis of angle β. We introduce Euler angles ξ1, ξ2, ξ3, for matrices
R ∈ SO(3) so that

R = Z(ξ1) Y (π/2 − ξ2) Z(ξ3)

=
⎛
⎝ c1s2c3 − s1s3 −c3s1 − c1s2s3 c1c2
c1s3 + s2c3s1 c1c3 − s2s1s3 s1c2

−c3c2 c2s3 s2

⎞
⎠ (60)

with −π ≤ ξ1, ξ3 ≤ π,−π/2 ≤ ξ2 ≤ π/2. This is one among many pos-
sible parametrizations. We interchanged in Y the cosines with sines in order to
the third column of R to have the same entries as the with θ, φ of the spherical
coordinates, identifying them with Euler angles 1,2 respectively. Recall the map
SO(3) × �+ → T S2 − 0. Since the normalized velocity vector is the first column
R1, we have vθ (r cosφ) = v eθ · R1, vφ r = v eφ · R1. It results that the mapping
(v, ξ1, ξ2, ξ3) �→ (θ, φ, vθ , vφ) is given by

θ = ξ1, φ = ξ2 , vθ = v sin ξ3

r cos ξ2
, vφ = −v cos(ξ3)

r
. (61)

and can be easily inverted:

ξ3 = −arctan(cos(φ)vθ/vφ), v = r
√
cos2(φ)v2θ + v2φ . (62)

The conjugate momenta can be related by the pullback of the canonical 1-form in
T ∗(T S2):

a dv + pξ1 dξ1 + pξ2 dξ2 + pξ3 dξ3 = pθ dθ + pφ dφ + pvθ dvθ + pvφ dvφ (63)

Computing the differentials dθ, dφ, dvθ , dvφ from (61) and inserting in the RHS of
the above identity, and collecting terms, one gets for a, pξ1 , pξ2 , pξ2 linear functions
of pθ , pφ, pvθ , pvφ with coefficients depending on θ = ξ1, φ = ξ2, ξ3, v. The result
is

⎡
⎢⎢⎢⎣

pξ1

pξ2

pξ3

a

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0

0 1 − v s3 s2
r c22

0

0 0 v c3
r c2

v s3
r

0 0 s3
r c2

− c3
r

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

pθ

pφ

pvθ

pvφ

⎤
⎥⎥⎥⎦ (64)
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A second step consists on relating (M1, M2, M3)with (pξ1 , pξ2 , pξ3). We start with
the identity in T ∗SO(3)

pξ1dξ1 + pξ2dξ2 + pξ3dξ3 = M1 Ω1 + M2 Ω2 + M2 Ω3 (65)

where theΩi are differential forms that can be expressed in terms of the dξ1, dξ2, dξ3,
via the very classical expressions (going back to Euler) that come from

R−1dR = [Ω] =
⎛
⎝ 0 −Ω3 Ω2

. . . 0 −Ω1

. . . . . . 0

⎞
⎠ .

A long but straightforward computation, or a fast computer algebra (we did it on
Maple), gives well known formulae for the infinitesimal rotations in the body frame:

Ω1 = − cos(ξ3) cos(ξ2) dξ1 − sin(ξ3) dξ2

Ω2 = cos(ξ2) sin(ξ3) dξ1 − cos(ξ3) dξ2

Ω3 = sin(ξ2) dξ1 + dξ3 (66)

which gives

pξ1 = −M1 cos(ξ3) cos(ξ2) + M2 cos(ξ2) sin(ξ3) + M3 sin(ξ2)

pξ2 = − sin(ξ3) M1 − cos(ξ3) M2

pξ3 = M3 (67)

Inverting these linear relations we get

⎡
⎢⎢⎣
M1
M2
M3
a

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−c3/c2 −s3 s2c3/c2 0

s3/c2 −c3 −s2s3/c2 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣
pξ1

pξ2

pξ3

a

⎤
⎥⎥⎦ (68)

Multiplying the matrices in (64, 68) one obtains the desired correspondence

⎡
⎢⎢⎣
M1
M2
M3
a

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− c3
c2

−s3
vs2
r c22

vs2s3c3
r c2

s3
c2

−c3 0 − vs2s23
r c2

0 0 v c3
r c2

vs3
r

0 0 s3
r c2

− c3
r

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

pθ

pφ

pvθ

pvφ

⎤
⎥⎥⎦ (69)
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The reader may further wish to change to the split momenta coordinates, in this case
just changing to, according to [16] [with vθ from (61)]

p̂θ = pθ − cos(φ) sin(φ)vθ pvφ , p̂φ = pφ + 2 tan(φ)vθ pvθ . (70)
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