

On algebras of polynomial codimension growth

Daniela La Mattina1

Published online: 1 September 2016 © Instituto de Matemática e Estatística da Universidade de São Paulo 2016

Abstract Let *A* be an associative algebra over a field *F* of characteristic zero and let $c_n(A)$, $n = 1, 2, \ldots$, be the sequence of codimensions of A. It is well-known that $c_n(A)$, $n = 1, 2, \ldots$, cannot have intermediate growth, i.e., either is polynomially bounded or grows exponentially. Here we present some results on algebras whose sequence of codimensions is polynomially bounded.

Keywords Polynomial identities · Codimensions · Codimension growth

Mathematics Subject Classification 16R10 · 16P90

1 Codimensions and algebras with 1

Let *A* be an associative algebra over a field *F* of characteristic zero, $F(X)$ the free associative algebra on a countable set $X = \{x_1, x_2, \ldots\}$ over *F* and Id(*A*) \subseteq *F* $\langle X \rangle$ the T-ideal of polynomial identities of *A*. Recall that a polynomial $f(x_1, \ldots, x_n) \in F(X)$ is a polynomial identity for *A*, and we write $f \equiv 0$, if $f(a_1, \ldots, a_n) = 0$ for all $a_1, \ldots, a_n \in A$. Then

$$
Id(A) = \{ f \in F\langle X \rangle \mid f \equiv 0 \text{ on } A \}
$$

The author was partially supported by FAPESP Grant 2014/07021-6.

B Daniela La Mattina daniela.lamattina@unipa.it

¹ Dipartimento di Matematica e Informatica, Università di Palermo, Via Archirafi 34, 90123 Palermo, Italy

is a T-ideal of $F(X)$, i.e., an ideal invariant under all endomorphisms of $F(X)$. An effective way of studying such an ideal is that of determining some numerical invariants allowing to give a quantitative description.

A very useful numerical invariant that can be attached to $Id(A)$ is given by the sequence of codimensions $c_n(A)$, $n = 1, 2, \ldots$, of *A*. Recall that such a sequence is defined as follows:

$$
c_n(A) = \dim_F \frac{P_n}{P_n \cap \text{Id}(A)}, n = 1, 2, \ldots,
$$

where P_n denotes the space of multilinear polynomials in x_1, \ldots, x_n , for $n \geq 1$. In general $c_n(A)$ is bounded from above by *n*!, but in case A is a PI-algebra, i.e., satisfies a non-trivial polynomial identity, a celebrated theorem of Regev asserts that $c_n(A)$, $n = 1, 2, \ldots$, is exponentially bounded [\[24](#page-8-0)], i.e., there exist constants α , $a > 0$ such that $c_n(A) \leq \alpha a^n$ for all *n*.

Later in [\[10](#page-8-1)[,11](#page-8-2)] Kemer showed that, given any PI-algebra *A* over a field of characteristic zero, $c_n(A)$, $n = 1, 2, \ldots$, cannot have intermediate growth, i.e., either is polynomially bounded or grows exponentially. Moreover, if $c_n(A)$ is polynomially bounded then it was proved in [\[1\]](#page-7-0) that

$$
c_n(A) = qn^k + O(n^{k-1}) \approx qn^k, n \to \infty, q \in \mathbb{Q}.
$$

For general PI-algebras the exponential rate of growth of the sequence of codimensions was explicitly computed in [\[8](#page-8-3)[,9](#page-8-4)]. The authors proved that for any associative algebra *A*, satisfying an ordinary identity, the limit

$$
\exp(A) = \lim_{n \to \infty} \sqrt[n]{c_n(A)}
$$

exists and is an integer. It is called the PI-exponent of *A*. In case *A* is an algebra with 1, $Id(A)$ is completely determined by its multilinear proper polynomials (see for instance $[2]$ $[2]$).

Recall that $f(x_1,...,x_n) \in P_n$ is a proper polynomial if it is a linear combination of products of (long) Lie commutators $[x_{i_1},..., x_{i_k}]$. We denote by Γ_n the subspace of P_n of proper polynomials in x_1, \ldots, x_n ; we put also $\Gamma_0 = \text{span}\{1\}$. Then, the sequence of proper codimensions is defined as $c_n^p(A) = \dim \frac{\Gamma_n}{\Gamma_n \cap Id(A)}, n = 0, 1, 2, \ldots$ For a unitary algebra *A*, the relation between ordinary codimensions and proper codimensions (see for instance [\[3\]](#page-8-6)), is given by the formula

$$
c_n(A) = \sum_{i=0}^n \binom{n}{i} c_i^p(A), \ n = 1, 2, \dots
$$
 (1)

In particular, if *A* is a unitary algebra whose sequence of codimensions is polynomially bounded, then $c_n(A) = qn^k + \cdots$ is a polynomial with rational coefficients [\[1](#page-7-0)[,6](#page-8-7)]. In [\[3](#page-8-6)] it was proved that in case $k > 1$ the leading coefficient *q* is a rational number satisfying the inequality

$$
\frac{1}{k!} \le q \le \sum_{j=2}^k \frac{(-1)^j}{j!} \to \frac{1}{e}, k \to \infty,
$$

where $e = 2.71...$ In the non-unitary case, for any $q \in \mathbb{Q}$ there exists an algebra A such that $c_n(A) \approx qn^k$ for a suitable k. For k odd the lower bound was improved in [\[6](#page-8-7)]. The authors proved that if $c_n(A) \approx qn^k$, for some odd integer $k > 1$ and rational number *q*, then $q \geq \frac{k-1}{k!}$. Moreover, they proved that for any *k* the upper and the lower bound of *q* are actually reached.

We start by exhibiting PI-algebras realizing the smallest and the largest value of *q* (see for instance $[6]$). Let

$$
U_k = U_k(F) = \left\{ \alpha E + \sum_{1 \leq i < j \leq k} \alpha_{ij} e_{ij} \mid \alpha, \alpha_{ij} \in F \right\},\
$$

where $E = E_{k \times k}$ denotes the identity $k \times k$ matrix and the e_{ij} 's are the usual matrix units.

In what follows Lie commutators are left-normed, i.e., $[x_1, x_2, \ldots, x_k] =$ $[[\cdots[[x_1,x_2],x_3],\ldots],x_k]$. The next theorem shows that the algebra U_k has the largest possible polynomial growth of degree $k - 1$, namely $c_n(U_k) \approx qn^{k-1}$, where $q = \sum_{j=2}^{k-1} \frac{(-1)^j}{j!}$.

Theorem 1.1 [\[6,](#page-8-7) Theorem 3.1] *Let F be an infinite field. Then:*

1. *A basis of the identities of Uk is given by all products of commutators of total degree k*

 $[x_1, \ldots, x_{a_1}][x_{a_1+1}, \ldots, x_{a_2}] \cdots [x_{a_{r-1}+1}, \ldots, x_{a_r}]$ (2)

with ar = *k in case k is even, and by the polynomials in* [\(2\)](#page-2-0) *plus the polynomial of degree* $k + 1$

$$
[x_1,x_2]\cdots[x_k,x_{k+1}]
$$

in case k is odd.

2.

$$
c_n(U_k)=\sum_{j=0}^{k-1}\frac{n!}{(n-j)!}\,\theta_j\approx\theta_{k-1}n^{k-1},\quad n\to\infty,
$$

where $\theta_i = \sum_{j=0}^i \frac{(-1)^j}{j!}$, *for* $i \in \mathbb{N}$.

The importance of U_k is shown in the following.

Theorem 1.2 *Let A be a unitary algebra over an infinite field F such that* $c_n(A) \approx$ qn^k , $n \to ∞$ *. Then Id*(*A*) ≥ *Id*(*U_{k+1}*).

We now turn to the problem of constructing algebras with 1 realizing the minimal possible value for *q*.

For $k \geq 2$ let

 $N_k = \text{span}\{E, E_1, E_1^2, \dots, E_1^{k-2}; e_{12}, e_{13}, \dots, e_{1k}\} \subseteq U_k,$

where $E_1 = \sum_{i=1}^{k-1} e_{i,i+1} \in U_k$ denote the diagonal just above the main diagonal of U_k .

Let also G_{2k} denote the Grassmann algebra with 1 on a $2k$ -dimensional vector space over *F*. Recall that

$$
G_{2k}=\langle 1,e_1,\ldots,e_{2k} \mid e_ie_j=-e_je_i\rangle.
$$

Theorem 1.3 [\[6,](#page-8-7) Theorem 3.4] *Let* $k \geq 3$ *and let F be an infinite field. Then*

1. *A basis of the identities of Nk is given by the polynomials*

$$
[x_1,\ldots,x_k],\ [x_1,x_2][x_3,x_4].
$$

2.

$$
c_n(N_k) = 1 + \sum_{j=2}^{k-1} (j-1) \binom{n}{j} \approx \frac{k-2}{(k-1)!} n^{k-1}, \quad n \to \infty.
$$

Theorem 1.4 [\[6,](#page-8-7) Theorem 3.5] *Let F be an infinite field. Then*

1. *A basis of the identities of* G_{2k} *is given by the polynomials*

$$
[x_1, x_2, x_3], [x_1, x_2] \cdots [x_{2k+1}, x_{2k+2}].
$$

2.

$$
c_n(G_{2k}) = \sum_{j=0}^k {n \choose 2j} \approx \frac{1}{(2k)!} n^{2k}, \quad n \to \infty.
$$

Notice that the smallest value of *q* is realized by N_{k+1} in case *k* is odd and by G_k in case *k* is even.

Recall that if *V* is a variety of algebras then $c_n(V) = c_n(A)$, where $V = \text{var}(A)$ and the growth of V is the growth of the codimensions of V . We have the following.

Definition 1.1 A variety *V* is minimal of polynomial growth n^k if $c_n(V) \approx qn^k$ for some $k \ge 1$, $q > 0$, and for any proper subvariety $\mathcal{U} \subsetneq \mathcal{V}$ we have that $c_n(\mathcal{U}) \approx q'n^t$ with $t < k$.

Theorem 1.5 [\[14](#page-8-8),[15\]](#page-8-9) *The algebras* N_k *and* G_{2t} *generate minimal varieties of polynomial growth, for any k* \geq 3 *and for any t* \geq 1*.*

2 Characterizing algebras of polynomial codimension growth

Much effort has been put into the study of varieties V of polynomial growth, i.e., such that $c_n(V)$ is polynomially bounded $[5, 12, 17-21]$ $[5, 12, 17-21]$.

A classification of varieties of polynomial growth was started in [\[4](#page-8-14)[,6](#page-8-7)]. More precisely the authors gave a complete list of finite dimensional algebras generating varieties of at most linear growth and, in the unitary case, of at most cubic growth. A celebrated theorem of Kemer [\[11\]](#page-8-2) characterizes the varieties of polynomial growth as follows. Let *G* be the infinite dimensional Grassmann algebra over *F* and *U T*² the algebra of 2 \times 2 upper triangular matrices over *F*. Then $c_n(A)$, $n = 1, 2, \ldots$, is polynomially bounded if and only if *G*, $UT_2 \notin \text{var}(A)$. Hence $\text{var}(G)$ and $\text{var}(UT_2)$ are the only varieties of almost polynomial growth, i.e., they grow exponentially but any proper subvariety grows polynomially. The sequence of codimensions for the algebras *G* and *UT*₂ are well known: in [\[13\]](#page-8-15) it was shown that $c_n(G) = 2^{n-1}$. Also, it follows from [\[22](#page-8-16)] that $c_n(UT_2) = 2^{n-1}(n-2)+2$. Therefore, these algebras generate the only two minimal varieties of exponent 2, in the sense that any of their proper subvarieties has exponent ≤ 1 , that it has polynomial growth.

In [\[14](#page-8-8),[15](#page-8-9)] the author classified all the subvarieties of var(*G*) and var(UT_2), by giving a complete list of finite dimensional algebras generating them.

We start by giving the classification of the subvarieties of var (G) . By [\[13](#page-8-15)], Id (G) = $\langle [x_1, x_2, x_3] \rangle_T$; hence $G_{2k} \in \text{var}(G)$, for any $k \ge 1$ (see Theorem [1.4\)](#page-3-0).

We recall the following definition.

Definition 2.1 Let *A* and *B* be algebras. We say that *A* is PI-equivalent to *B* and we write $A \sim_{PI} B$ when *A* and *B* satisfy the same identities, that is Id(*A*) = Id(*B*).

Theorem 2.1 [\[14](#page-8-8)] *Let* $A \in \text{var}(G)$. *Then either* $A \sim_{PI} G$ *or* $A \sim_{PI} G_{2k} \oplus N$ *or A* ∼*PI N or A* ∼*PI* $C \oplus N$, *where N is a nilpotent algebra, C is a commutative non-nilpotent algebra and* $k \geq 1$.

Notice that the previous theorem allows us to classify all codimension sequences of the algebras lying in the variety generated by *G*. We can also classify all algebras generating minimal varieties inside var(*G*).

Corollary 2.1 *Let* $A \in \text{var}(G)$ *be such that var*(A) \subsetneq *var*(G). *Then there exists n*₀ *such that for all n* > *n*₀ *we must have either* $c_n(A) = 0$ *or* $c_n(A) = 1$ *or* $c_n(A) = \sum_{j=0}^k {n \choose 2j} \approx \frac{1}{(2k)!} n^{2k}, \ k = 1, 2, \ldots$

Corollary 2.2 An algebra $A \in \text{var}(G)$ generates a minimal variety of polynomial *growth if and only if A* $\sim_{PI} G_{2k}$, *for some k* ≥ 1.

Before giving the classification of the subvarieties of var(*U T*2), we need to introduce a family of algebras without unit inside var (UT_2) .

Let $UT_k = UT_k(F)$ be the algebra of $k \times k$ upper triangular matrices over *F*. For $k > 2$ let

$$
A_k = \text{span}\{e_{11}, E_1, E_1^2, \dots, E_1^{k-2}; e_{12}, e_{13}, \dots, e_{1k}\} \subseteq UT_k,
$$

where $E_1 = \sum_{i=1}^{k-1} e_{i,i+1}$ and let A_k^* be the the subalgebra of UT_k obtained by flipping *Ak* along its secondary diagonal.

Lemma 2.1 [\[14,](#page-8-8) Lemma 3.1] *If k* ≥ 3, *then*

1. $Id(A_k) = \langle [x_1, x_2][x_3, x_4], [x_1, x_2]x_3 \dots x_{k+1} \rangle_T.$ 2. $c_n(A_k) = \sum_{l=0}^{k-2} {n \choose l} (n-l-1) + 1 \approx qn^{k-1}$, where $q \in \mathbb{Q}$ is a non-zero constant. *Hence* $Id(A_k^*) = \langle [x_1, x_2][x_3, x_4], x_3 \dots x_{k+1}[x_1, x_2] \rangle_T$ *and* $c_n(A_k^*) = c_n(A_k)$.

 $\text{By [22], Id}(UT_2) = \langle [x_1, x_2][x_3, x_4] \rangle_T$ $\text{By [22], Id}(UT_2) = \langle [x_1, x_2][x_3, x_4] \rangle_T$ $\text{By [22], Id}(UT_2) = \langle [x_1, x_2][x_3, x_4] \rangle_T$; hence N_k , A_k , $A_k^* \in \text{var}(UT_2)$.

The following theorem allows us to classify all the subvarieties of $var(UT_2)$.

Theorem 2.2 [\[14](#page-8-8), Theorem 5.4] *If* $A \in \text{var}(UT_2)$ *then* A *is PI-equivalent to one of the following algebras:*

 UT_2 , *N*, $N_t \oplus N$, $N_t \oplus A_k \oplus N$, $N_t \oplus A_r^* \oplus N$, $N_t \oplus A_k \oplus A_r^* \oplus N$,

where N is a nilpotent algebra and k, r, t \geq 2.

It is worth noticing that the previous theorem allows us to classify all algebras generating minimal varieties inside var(*U T*2).

Corollary 2.3 Let $A \in \text{var}(UT_2)$. Then A generates a minimal variety of polynomial *growth if and only if either* $A \sim_{PI} N_t$ *or* $A \sim_{PI} A_k$ *or* $A \sim_{PI} A_k^*$, *for some* $k > 2, t > 2.$

The previous theorem allows to classify all codimension sequences of the algebras belonging to the variety generated by *U T*2.

Next we show that the algebras N_k , A_k and A_k^* play a prominent role in the classification of the varieties of at most linear growth and, in the unitary case, of at most cubic growth.

Theorem 2.3 [\[6,](#page-8-7) Theorem 3.6] *Let A be an F-algebra with* 1. *If* $c_n(A) \approx qn^k$, *for some* $q \geq 1, k \leq 3$, *then either* $A \sim_{PI} F$ *or* $A \sim_{PI} N_3$ *or* $A \sim_{PI} N_4$.

Remark If *A* satisfies the hypotheses of the above theorem then $A \in \text{var}(UT_2)$.

The following corollary follows easily.

Corollary 2.4 *Let A be an F-algebra with* 1. *If* $c_n(A) \approx q_n^k$, *for some* $q \ge 1$, $k \le 3$, *then either c_n*(*A*) = 1 *or c_n*(*A*) = $\frac{n(n-1)}{2} + 1$ *or c_n*(*A*) = $\frac{n(n-1)(n-2)}{3} + \frac{n(n-1)}{2} + 1$. *Hence either q* = 1 *or q* = $\frac{1}{2}$ *or q* = $\frac{1}{3}$.

Notice that if *A* is an algebra with 1 then *A* cannot have linear growth of the codimensions.

The following theorem characterizes the varieties of at most linear growth.

Theorem 2.4 [\[4,](#page-8-14) Theorem 22] *Let A be an F-algebra. Then* $c_n(A) \leq kn$ *if and only if A is PI-equivalent to either N or C* \oplus *N or A*₂ \oplus *N or A*₂ \oplus *N or A*₂ \oplus *A*₂^{*} \oplus *N where N is a nilpotent algebra and C is a commutative non-nilpotent algebra.*

Notice that the previous theorem allows us to classify all possible linearly bounded codimension sequences.

Corollary 2.5 Let A be an F-algebra such that $c_n(A) \leq kn$ for all $n \geq 0$. Then there *exists* n_0 *such that for all* $n > n_0$ *we must have either* $c_n(A) = 0$ *or* $c_n(A) = 1$ *or* $c_n(A) = n$ or $c_n(A) = 2n - 1$.

3 About minimal varieties

In the previous section we have presented the classification of all minimal subvarieties of var (G) and var (UT_2) and it turned out that there are only a finite number of them. For each such variety, we have exhibited a finite dimensional generating algebra. The relevance of such classification relies in the fact that these were the building blocks that allowed us to give a complete classification of the subvarieties of var (G) and var (UT_2) . In what follows we shall restrict ourselves to varieties generated by algebras with 1.

We shall give the classification, up to PI-equivalence, of the algebras with 1 generating minimal varieties of polynomial growth $\leq n^4$. We start with the following

Theorem 3.1 [\[7\]](#page-8-17) *Let A be an algebra with 1 such that* $c_n(A) \leq qn^3$. *Then A generates a* minimal variety of polynomial growth if and only if either $A \sim_{PI} N_3$ or $A \sim_{PI} N_4$.

Let

$$
M = \left\{ \begin{pmatrix} a & b & d & e & f \\ 0 & a & c & g & h \\ 0 & 0 & a & c & i \\ 0 & 0 & 0 & a & b \\ 0 & 0 & 0 & 0 & a \end{pmatrix} \mid a, b, c, d, e, f, g, h, i \in F \right\}.
$$

In [\[7](#page-8-17)] it was proved that *M* generates a minimal variety of growth n^4 .

Now we are in a position to classify all minimal varieties generated by algebras with 1 of growth n^4 .

Theorem 3.2 *Let A be a unitary algebra such that* $c_n(A) \approx qn^4$, for some $q > 0$. *Then A generates a minimal variety if and only if Id*(*A*) *coincides with one of the following T-ideals*

1. $\langle [x_1, x_2][x_3, x_4], [x_1, x_2, x_3, x_4, x_5] \rangle_T$,

- 2. $\langle [x_1, x_2, x_3], [x_1, x_2][x_3, x_4][x_5, x_6] \rangle_T$,
- 3. $\langle [x_2, x_1, x_1, x_1], [x_1, x_3, [x_1, x_2]], St_4 \rangle_T$,
- 4. $\langle [x_2, x_1, x_1, x_1], St_4, [x_1, x_2]^2 \rangle_T$.

In the first three cases we have that A ∼*PI N*₅ *or A* ∼*PI G*₄*, or A* ∼*PI M, respectively.*

For $k \geq 5$, the number of minimal varieties of growth n^k is at least $|F|$, the cardinality of the base field and a classification of all minimal varieties of polynomial growth n^5 is given in [\[7](#page-8-17)]. There it is also given a recipe for classifying all minimal varieties of polynomial growth n^k , $k > 5$.

4 Polynomial codimension growth and colengths

An equivalent formulation of Kemers result can be given as follows. The symmetric group S_n acts on the left on the space P_n by permuting the variables: if $\sigma \in S_n$ and $f(x_1,...,x_n) \in P_n$, $\sigma f(x_1,...,x_n) = f(x_{\sigma(1)},...,x_{\sigma(n)})$. Since T-ideals are invariant under renaming of the variables, the space $\frac{P_n}{P_n \cap Id(A)}$ becomes an S_n -module. The S_n -character of $P_n(A) = \frac{P_n}{P_n \cap Id(A)}$, denoted by $\chi_n(A)$, is called the n-th cocharacter of *A*.

By complete reducibility we can write

$$
\chi_n(A)=\sum_{\lambda\vdash n}m_\lambda\chi_\lambda,
$$

where χ_{λ} is the irreducible S_n -character associated to the partition λ and m_{λ} is the corresponding multiplicity. Also

$$
l_n(A) = \sum_{\lambda \vdash n} m_\lambda
$$

is called the *n*-th colength of *A*.

Now Kemer's result can be stated as follows $[23]$ $[23]$: $c_n(A)$ is polynomially bounded if and only if the sequence of colengths is bounded by a constant i.e., $l_n(A) \leq k$, for some $k \geq 0$ and for all $n \geq 1$. A finer classification depending on the value of the constant k was started in $[4,16]$ $[4,16]$ $[4,16]$ $[4,16]$. There the authors completely classified, up to PI-equivalence, the algebras *A* such that $l_n(A) \leq 4$ for *n* large enough. We state such a result in the following.

Theorem 4.1 [\[16](#page-8-19)] *Let A be an F-algebra. Then* $l_n(A) = k, k \leq 4$, *for n large enough if and only if A is PI-equivalent to one of the following algebras:*

N, *C* ⊕ *N*, *A*₂ ⊕ *N*, *A*₂^{^{*}</sub> ⊕ *N*, *A*₂ ⊕ *A*₂^{*} ⊕ *N*, *N*₃ ⊕ *N*, *N*₃ ⊕ *A*₂ ⊕ *N*, *N*₃ ⊕ *A*₂^{*} ⊕ *N*,} *where N is a nilpotent algebra and C is a commutative non-nilpotent algebra.*

In conclusion we have the following classification: for any algebra *A* and *n* large enough

1. $l_n(A) = 0$ if and only if $A \sim_{PI} N$.

- 2. $l_n(A) = 1$ if and only if $A \sim_{PI} C \oplus N$.
- 3. *l_n*(*A*) = 2 if and only if either *A* ∼*PI A*₂ ⊕ *N* or *A* ∼*PI A*₂^{*} ⊕ *N*.
- 4. *l_n*(*A*) = 3 if and only if either *A* ∼*PI A*₂ ⊕ *A*₂^{*} ⊕ *N* or *A* ∼*PI N*₃ ⊕ *N*.
- 5. $l_n(A) = 4$ if and only if either $A \sim_{PI} N_3 \oplus A_2 \oplus N$ or $A \sim_{PI} N_3 \oplus A_2^* \oplus N$,

where *N* denotes a nilpotent algebra and *C* a commutative non-nilpotent algebra.

References

1. Drensky, V.: Relations for the cocharacter sequences of T-ideals. In: Proceedings of the International Conference on Algebra, Part 2 (Novosibirsk, 1989), Contemp. Math., Part 2, Am. Math. Soc., Providence, RI, vol. 131, pp. 285–300 (1992)

- 2. Drensky, V.: Free Algebras and PI-Algebras, Graduate Course in Algebra. Springer, Singapore (2000)
- 3. Drensky, V., Regev, A.: Exact asymptotic behaviour of the codimensions of some PI algebras. Israel J. Math. **96**, 231–242 (1996)
- 4. Giambruno, A., La Mattina, D.: PI-algebras with slow codimension growth. J. Algebra **284**, 371–391 (2005)
- 5. Giambruno, A., La Mattina, D., Misso, P.: Polynomial identities on superalgebras: classifying linear growth. J. Pure Appl. Algebra **207**(1), 215–240 (2006)
- 6. Giambruno, A., La Mattina, D., Petrogradsky, V.M.: Matrix algebras of polynomial codimension growth. Israel J. Math. **158**, 367–378 (2007)
- 7. Giambruno, A., La Mattina, D., Zaicev, M.: Classifying the minimal varieties of polynomial growth. Can. J. Math. **66**(3), 625–640 (2014)
- 8. Giambruno, A., Zaicev, M.: On codimension growth of finitely generated associative algebras. Adv. Math. **140**, 145–155 (1998)
- 9. Giambruno, A., Zaicev, M.: Exponential codimension growth of PI algebras: an exact estimate. Adv. Math. **142**, 221–243 (1999)
- 10. Kemer, A.R.: T-ideals with power growth of the codimensions are Specht, Sibirsk. Math. Zh. **19**, 54–69 (1978) (**in Russian; English translation: Sib. Math. J. 19(1978), 37–48 (1978)**)
- 11. Kemer, A.R.: Varieties of finite rank. In: Proceedings of the 15-th All the Union Algebraic Conference, Krasnoyarsk, vol. 2, p. 73 (1979) (**in Russian**)
- 12. Koshlukov, P., La Mattina, D.: Graded algebras with polynomial growth of their codimensions. J. Algebra **434**, 115–137 (2015)
- 13. Krakowski, D., Regev, A.: The polynomial identities of the Grassmann algebra. Trans. Am. Math. Soc. **181**, 429–438 (1973)
- 14. La Mattina, D.: Varieties of almost polynomial growth: classifying their subvarieties. Manuscr. Math. **123**, 185–203 (2007)
- 15. La Mattina, D.: Varieties of algebras of polynomial growth. Boll. Unione Matematica Ital. **1**(3), 525– 538 (2008)
- 16. La Mattina, D.: Characterizing varieties of colength ≤ 4. Commun. Algebra **37**(5), 1793–1807 (2009)
- 17. La Mattina, D.: Varieties of superalgebras of almost polynomial growth. J. Algebra **336**, 209–226 (2011)
- 18. La Mattina, D.: Almost polynomial growth: classifying varieties of graded algebras. Israel J. Math **207**(1), 53–75 (2015)
- 19. La Mattina, D., Martino, F.: Polynomial growth and star-varieties. J. Pure Appl. Algebra **220**(1), 246–262 (2016)
- 20. La Mattina, D., Mauceri, S., Misso, P.: Polynomial growth and identities of superalgebras and staralgebras. J. Pure Appl. Algebra **213**(11), 2087–2094 (2009)
- 21. La Mattina, D., Misso, P.: Algebras with involution with linear codimension growth. J. Algebra **305**, 270–291 (2006)
- 22. Maltsev, Y.N.: A basis for the identities of the algebra of upper triangular matrices. Algebra Logika **10**, 242–247 (1971). (**in Russian**)
- 23. Mishchenko, S., Regev, A., Zaicev, M.: A characterization of PI algebras with bounded multiplicities of the cocharacters. J. Algebra **219**, 356–368 (1999)
- 24. Regev, A.: Existence of identities in *A* ⊗ *B*. Israel J. Math. **11**, 131–152 (1972)