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Abstract Let A be an associative algebra over a field F of characteristic zero and
let cn(A), n = 1, 2, . . ., be the sequence of codimensions of A. It is well-known that
cn(A), n = 1, 2, . . ., cannot have intermediate growth, i.e., either is polynomially
bounded or grows exponentially. Here we present some results on algebras whose
sequence of codimensions is polynomially bounded.
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1 Codimensions and algebras with 1

Let A be an associative algebra over a field F of characteristic zero, F〈X〉 the free
associative algebra on a countable set X = {x1, x2, . . .} over F and Id(A) ⊆ F〈X〉 the
T-ideal of polynomial identities of A. Recall that a polynomial f (x1, . . . , xn) ∈ F〈X〉
is a polynomial identity for A, and we write f ≡ 0, if f (a1, . . . , an) = 0 for all
a1, . . . , an ∈ A. Then

Id(A) = { f ∈ F〈X〉 | f ≡ 0 on A}
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is a T-ideal of F〈X〉, i.e., an ideal invariant under all endomorphisms of F〈X〉. An
effectivewayof studying such an ideal is that of determining somenumerical invariants
allowing to give a quantitative description.

A very useful numerical invariant that can be attached to Id(A) is given by the
sequence of codimensions cn(A), n = 1, 2, . . . , of A. Recall that such a sequence is
defined as follows:

cn(A) = dimF
Pn

Pn ∩ Id(A)
, n = 1, 2, . . . ,

where Pn denotes the space of multilinear polynomials in x1, . . . , xn, for n ≥ 1.
In general cn(A) is bounded from above by n!, but in case A is a PI-algebra, i.e.,
satisfies a non-trivial polynomial identity, a celebrated theorem of Regev asserts that
cn(A), n = 1, 2, . . . , is exponentially bounded [24], i.e., there exist constantsα, a > 0
such that cn(A) ≤ αan for all n.

Later in [10,11] Kemer showed that, given any PI-algebra A over a field of char-
acteristic zero, cn(A), n = 1, 2, . . ., cannot have intermediate growth, i.e., either is
polynomially bounded or grows exponentially. Moreover, if cn(A) is polynomially
bounded then it was proved in [1] that

cn(A) = qnk + O(nk−1) ≈ qnk, n → ∞, q ∈ Q.

For general PI-algebras the exponential rate of growth of the sequence of codimensions
was explicitly computed in [8,9]. The authors proved that for any associative algebra
A, satisfying an ordinary identity, the limit

exp(A) = lim
n→∞

n
√
cn(A)

exists and is an integer. It is called the PI-exponent of A. In case A is an algebra with 1,
Id(A) is completely determined by its multilinear proper polynomials (see for instance
[2]).

Recall that f (x1, . . . , xn) ∈ Pn is a proper polynomial if it is a linear combination of
products of (long) Lie commutators [xi1 , . . . , xik ].We denote by�n the subspace of Pn
of proper polynomials in x1, . . . , xn ; we put also �0 = span{1}. Then, the sequence of
proper codimensions is defined as cpn (A) = dim �n

�n∩I d(A)
, n = 0, 1, 2, . . .. For a uni-

tary algebra A, the relation between ordinary codimensions and proper codimensions
(see for instance [3]), is given by the formula

cn(A) =
n∑

i=0

(
n

i

)
cpi (A), n = 1, 2, . . . . (1)

In particular, if A is a unitary algebra whose sequence of codimensions is polyno-
mially bounded, then cn(A) = qnk + · · · is a polynomial with rational coefficients
[1,6]. In [3] it was proved that in case k > 1 the leading coefficient q is a rational
number satisfying the inequality

123



314 São Paulo J. Math. Sci. (2016) 10:312–320
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k! ≤ q ≤
k∑

j=2

(−1) j

j ! → 1

e
, k → ∞,

where e = 2.71 . . .. In the non-unitary case, for any q ∈ Q there exists an algebra A
such that cn(A) ≈ qnk for a suitable k. For k odd the lower bound was improved in
[6]. The authors proved that if cn(A) ≈ qnk, for some odd integer k > 1 and rational
number q, then q ≥ k−1

k! . Moreover, they proved that for any k the upper and the lower
bound of q are actually reached.

We start by exhibiting PI-algebras realizing the smallest and the largest value of q
(see for instance [6]). Let

Uk = Uk(F) =
⎧
⎨

⎩
αE +

∑

1≤i< j≤k

αi j ei j | α, αi j ∈ F

⎫
⎬

⎭
,

where E = Ek×k denotes the identity k × k matrix and the ei j ’s are the usual matrix
units.

In what follows Lie commutators are left-normed, i.e., [x1, x2, . . . , xk] =
[[· · · [[x1, x2], x3], . . .], xk]. The next theorem shows that the algebra Uk has the
largest possible polynomial growth of degree k − 1, namely cn(Uk) ≈ qnk−1, where

q = ∑k−1
j=2

(−1) j

j ! .

Theorem 1.1 [6, Theorem 3.1] Let F be an infinite field. Then:

1. A basis of the identities of Uk is given by all products of commutators of total
degree k

[x1, . . . , xa1 ][xa1+1, . . . , xa2 ] · · · [xar−1+1, . . . , xar ] (2)

with ar = k in case k is even, and by the polynomials in (2) plus the polynomial
of degree k + 1

[x1, x2] · · · [xk, xk+1]

in case k is odd.
2.

cn(Uk) =
k−1∑

j=0

n!
(n − j)! θ j ≈ θk−1n

k−1, n → ∞,

where θi = ∑i
j=0

(−1) j

j ! , for i ∈ N.

The importance of Uk is shown in the following.

Theorem 1.2 Let A be a unitary algebra over an infinite field F such that cn(A) ≈
qnk, n → ∞. Then Id(A) ⊇ Id(Uk+1).
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We now turn to the problem of constructing algebras with 1 realizing the minimal
possible value for q.

For k ≥ 2 let

Nk = span{E, E1, E
2
1 , . . . , E

k−2
1 ; e12, e13, . . . , e1k} ⊆ Uk,

where E1 = ∑k−1
i=1 ei,i+1 ∈ Uk denote the diagonal just above the main diagonal of

Uk .
Let also G2k denote the Grassmann algebra with 1 on a 2k-dimensional vector

space over F . Recall that

G2k = 〈1, e1, . . . , e2k | ei e j = −e j ei 〉.

Theorem 1.3 [6, Theorem 3.4] Let k ≥ 3 and let F be an infinite field. Then

1. A basis of the identities of Nk is given by the polynomials

[x1, . . . , xk], [x1, x2][x3, x4].

2.

cn(Nk) = 1 +
k−1∑

j=2

( j − 1)

(
n

j

)
≈ k − 2

(k − 1)! n
k−1, n → ∞.

Theorem 1.4 [6, Theorem 3.5] Let F be an infinite field. Then

1. A basis of the identities of G2k is given by the polynomials

[x1, x2, x3], [x1, x2] · · · [x2k+1, x2k+2].

2.

cn(G2k) =
k∑

j=0

(
n

2 j

)
≈ 1

(2k)! n
2k, n → ∞.

Notice that the smallest value of q is realized by Nk+1 in case k is odd and by Gk

in case k is even.
Recall that if V is a variety of algebras then cn(V) = cn(A), where V = var(A)

and the growth of V is the growth of the codimensions of V . We have the following.

Definition 1.1 A variety V is minimal of polynomial growth nk if cn(V) ≈ qnk for
some k ≥ 1, q > 0, and for any proper subvariety U � V we have that cn(U) ≈ q ′nt
with t < k.

Theorem 1.5 [14,15] The algebras Nk and G2t generate minimal varieties of poly-
nomial growth, for any k ≥ 3 and for any t ≥ 1.
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2 Characterizing algebras of polynomial codimension growth

Much effort has been put into the study of varieties V of polynomial growth, i.e., such
that cn(V) is polynomially bounded [5,12,17–21].

A classification of varieties of polynomial growth was started in [4,6]. More pre-
cisely the authors gave a complete list of finite dimensional algebras generating
varieties of at most linear growth and, in the unitary case, of at most cubic growth.
A celebrated theorem of Kemer [11] characterizes the varieties of polynomial growth
as follows. Let G be the infinite dimensional Grassmann algebra over F and UT2 the
algebra of 2× 2 upper triangular matrices over F . Then cn(A), n = 1, 2, . . ., is poly-
nomially bounded if and only if G,UT2 /∈ var(A). Hence var(G) and var(UT2) are
the only varieties of almost polynomial growth, i.e., they grow exponentially but any
proper subvariety grows polynomially. The sequence of codimensions for the algebras
G and UT2 are well known: in [13] it was shown that cn(G) = 2n−1. Also, it follows
from [22] that cn(UT2) = 2n−1(n−2)+2.Therefore, these algebras generate the only
two minimal varieties of exponent 2, in the sense that any of their proper subvarieties
has exponent ≤ 1, that it has polynomial growth.

In [14,15] the author classified all the subvarieties of var(G) and var(UT2), by
giving a complete list of finite dimensional algebras generating them.

We start by giving the classification of the subvarieties of var(G). By [13], Id(G) =
〈[x1, x2, x3]〉T ; hence G2k ∈ var(G), for any k ≥ 1 (see Theorem 1.4).

We recall the following definition.

Definition 2.1 Let A and B be algebras. We say that A is PI-equivalent to B and we
write A ∼P I B when A and B satisfy the same identities, that is Id(A) = Id(B).

Theorem 2.1 [14] Let A ∈ var(G). Then either A ∼P I G or A ∼P I G2k ⊕ N or
A ∼P I N or A ∼P I C ⊕ N , where N is a nilpotent algebra, C is a commutative
non-nilpotent algebra and k ≥ 1.

Notice that the previous theorem allows us to classify all codimension sequences
of the algebras lying in the variety generated by G. We can also classify all algebras
generating minimal varieties inside var(G).

Corollary 2.1 Let A ∈ var(G) be such that var(A) � var(G). Then there exists
n0 such that for all n > n0 we must have either cn(A) = 0 or cn(A) = 1 or
cn(A) = ∑k

j=0

( n
2 j

) ≈ 1
(2k)! n

2k, k = 1, 2, . . ..

Corollary 2.2 An algebra A ∈ var(G) generates a minimal variety of polynomial
growth if and only if A ∼P I G2k, for some k ≥ 1.

Before giving the classification of the subvarieties of var(UT2),we need to introduce
a family of algebras without unit inside var(UT2).

Let UTk = UTk(F) be the algebra of k × k upper triangular matrices over F .
For k ≥ 2 let

Ak = span{e11, E1, E
2
1 , . . . , E

k−2
1 ; e12, e13, . . . , e1k} ⊆ UTk,
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where E1 = ∑k−1
i=1 ei,i+1 and let A∗

k be the the subalgebra ofUTk obtained by flipping
Ak along its secondary diagonal.

Lemma 2.1 [14, Lemma 3.1] If k ≥ 3, then

1. Id(Ak) = 〈[x1, x2][x3, x4], [x1, x2]x3 . . . xk+1〉T .

2. cn(Ak) = ∑k−2
l=0

(n
l

)
(n− l−1)+1 ≈ qnk−1, where q ∈ Q is a non-zero constant.

Hence Id(A∗
k) = 〈[x1, x2][x3, x4], x3 . . . xk+1[x1, x2]〉T and cn(A∗

k) = cn(Ak).

By [22], Id(UT2) = 〈[x1, x2][x3, x4]〉T ; hence Nk, Ak, A∗
k ∈ var(UT2).

The following theorem allows us to classify all the subvarieties of var(UT2).

Theorem 2.2 [14, Theorem 5.4] If A ∈ var(UT2) then A is PI-equivalent to one of
the following algebras:

UT2, N , Nt ⊕ N , Nt ⊕ Ak ⊕ N , Nt ⊕ A∗
r ⊕ N , Nt ⊕ Ak ⊕ A∗

r ⊕ N ,

where N is a nilpotent algebra and k, r, t ≥ 2.

It is worth noticing that the previous theorem allows us to classify all algebras
generating minimal varieties inside var(UT2).

Corollary 2.3 Let A ∈ var(UT2). Then A generates a minimal variety of polynomial
growth if and only if either A ∼P I Nt or A ∼P I Ak or A ∼P I A∗

k , for some
k ≥ 2, t > 2.

The previous theorem allows to classify all codimension sequences of the algebras
belonging to the variety generated by UT2.

Next we show that the algebras Nk, Ak and A∗
k play a prominent role in the clas-

sification of the varieties of at most linear growth and, in the unitary case, of at most
cubic growth.

Theorem 2.3 [6, Theorem 3.6] Let A be an F-algebra with 1. If cn(A) ≈ qnk, for
some q ≥ 1, k ≤ 3, then either A ∼P I F or A ∼P I N3 or A ∼P I N4.

Remark If A satisfies the hypotheses of the above theorem then A ∈ var(UT2).

The following corollary follows easily.

Corollary 2.4 Let A be an F-algebra with 1. If cn(A) ≈ qnk, for some q ≥ 1, k ≤ 3,
then either cn(A) = 1 or cn(A) = n(n−1)

2 + 1 or cn(A) = n(n−1)(n−2)
3 + n(n−1)

2 + 1.
Hence either q = 1 or q = 1

2 or q = 1
3 .

Notice that if A is an algebra with 1 then A cannot have linear growth of the
codimensions.

The following theorem characterizes the varieties of at most linear growth.

Theorem 2.4 [4, Theorem 22] Let A be an F-algebra. Then cn(A) ≤ kn if and only
if A is PI-equivalent to either N or C ⊕ N or A2 ⊕ N or A∗

2 ⊕ N or A2 ⊕ A∗
2 ⊕ N

where N is a nilpotent algebra and C is a commutative non-nilpotent algebra.
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Notice that the previous theorem allows us to classify all possible linearly bounded
codimension sequences.

Corollary 2.5 Let A be an F-algebra such that cn(A) ≤ kn for all n ≥ 0. Then there
exists n0 such that for all n > n0 we must have either cn(A) = 0 or cn(A) = 1 or
cn(A) = n or cn(A) = 2n − 1.

3 About minimal varieties

In the previous section we have presented the classification of all minimal subvarieties
of var(G) and var(UT2) and it turned out that there are only a finite number of them.
For each such variety, we have exhibited a finite dimensional generating algebra. The
relevance of such classification relies in the fact that thesewere the building blocks that
allowed us to give a complete classification of the subvarieties of var(G) and var(UT2).
In what follows we shall restrict ourselves to varieties generated by algebras with 1.

We shall give the classification, up to PI-equivalence, of the algebras with 1 gener-
ating minimal varieties of polynomial growth ≤ n4. We start with the following

Theorem 3.1 [7]Let A be an algebrawith 1 such that cn(A) ≤ qn3.Then A generates
a minimal variety of polynomial growth if and only if either A ∼P I N3 or A ∼P I N4.

Let

M =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎛

⎜
⎜
⎜
⎜
⎝

a b d e f
0 a c g h
0 0 a c i
0 0 0 a b
0 0 0 0 a

⎞

⎟
⎟
⎟
⎟
⎠

| a, b, c, d, e, f, g, h, i ∈ F

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

.

In [7] it was proved that M generates a minimal variety of growth n4.
Now we are in a position to classify all minimal varieties generated by algebras

with 1 of growth n4.

Theorem 3.2 Let A be a unitary algebra such that cn(A) ≈ qn4, for some q > 0.
Then A generates a minimal variety if and only if Id(A) coincides with one of the
following T-ideals

1. 〈[x1, x2][x3, x4], [x1, x2, x3, x4, x5]〉T ,
2. 〈[x1, x2, x3], [x1, x2][x3, x4][x5, x6]〉T ,
3. 〈[x2, x1, x1, x1], [x1, x3, [x1, x2]], St4〉T ,
4. 〈[x2, x1, x1, x1], St4, [x1, x2]2〉T .

In the first three cases we have that A ∼P I N5 or A ∼P I G4, or A ∼P I M,
respectively.

For k ≥ 5, the number of minimal varieties of growth nk is at least |F |, the car-
dinality of the base field and a classification of all minimal varieties of polynomial
growth n5 is given in [7]. There it is also given a recipe for classifying all minimal
varieties of polynomial growth nk, k > 5.
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4 Polynomial codimension growth and colengths

An equivalent formulation of Kemers result can be given as follows. The symmet-
ric group Sn acts on the left on the space Pn by permuting the variables: if σ ∈ Sn
and f (x1, . . . , xn) ∈ Pn, σ f (x1, . . . , xn) = f (xσ(1), . . . , xσ(n)). Since T-ideals are
invariant under renaming of the variables, the space Pn

Pn∩I d(A)
becomes an Sn-module.

The Sn-character of Pn(A) = Pn
Pn∩I d(A)

, denoted by χn(A), is called the n-th cochar-
acter of A.

By complete reducibility we can write

χn(A) =
∑

λ�n
mλχλ,

where χλ is the irreducible Sn-character associated to the partition λ and mλ is the
corresponding multiplicity. Also

ln(A) =
∑

λ�n
mλ

is called the n-th colength of A.

Now Kemer’s result can be stated as follows [23]: cn(A) is polynomially bounded
if and only if the sequence of colengths is bounded by a constant i.e., ln(A) ≤ k,
for some k ≥ 0 and for all n ≥ 1. A finer classification depending on the value of
the constant k was started in [4,16]. There the authors completely classified, up to
PI-equivalence, the algebras A such that ln(A) ≤ 4 for n large enough. We state such
a result in the following.

Theorem 4.1 [16] Let A be an F-algebra. Then ln(A) = k, k ≤ 4, for n large enough
if and only if A is PI-equivalent to one of the following algebras:

N ,C ⊕ N , A2 ⊕ N , A∗
2 ⊕ N , A2 ⊕ A∗

2 ⊕ N , N3 ⊕ N , N3 ⊕ A2 ⊕ N , N3 ⊕ A∗
2 ⊕ N ,

where N is a nilpotent algebra and C is a commutative non-nilpotent algebra.

In conclusion we have the following classification: for any algebra A and n large
enough

1. ln(A) = 0 if and only if A ∼P I N .
2. ln(A) = 1 if and only if A ∼P I C ⊕ N .
3. ln(A) = 2 if and only if either A ∼P I A2 ⊕ N or A ∼P I A∗

2 ⊕ N .

4. ln(A) = 3 if and only if either A ∼P I A2 ⊕ A∗
2 ⊕ N or A ∼P I N3 ⊕ N .

5. ln(A) = 4 if and only if either A ∼P I N3 ⊕ A2 ⊕ N or A ∼P I N3 ⊕ A∗
2 ⊕ N ,

where N denotes a nilpotent algebra and C a commutative non-nilpotent algebra.

References

1. Drensky, V.: Relations for the cocharacter sequences of T-ideals. In: Proceedings of the International
Conference on Algebra, Part 2 (Novosibirsk, 1989), Contemp. Math., Part 2, Am. Math. Soc., Provi-
dence, RI, vol. 131, pp. 285–300 (1992)

123



320 São Paulo J. Math. Sci. (2016) 10:312–320

2. Drensky, V.: Free Algebras and PI-Algebras, Graduate Course in Algebra. Springer, Singapore (2000)
3. Drensky, V., Regev, A.: Exact asymptotic behaviour of the codimensions of some PI algebras. Israel

J. Math. 96, 231–242 (1996)
4. Giambruno, A., La Mattina, D.: PI-algebras with slow codimension growth. J. Algebra 284, 371–391

(2005)
5. Giambruno, A., La Mattina, D., Misso, P.: Polynomial identities on superalgebras: classifying linear

growth. J. Pure Appl. Algebra 207(1), 215–240 (2006)
6. Giambruno, A., La Mattina, D., Petrogradsky, V.M.: Matrix algebras of polynomial codimension

growth. Israel J. Math. 158, 367–378 (2007)
7. Giambruno, A., La Mattina, D., Zaicev, M.: Classifying the minimal varieties of polynomial growth.

Can. J. Math. 66(3), 625–640 (2014)
8. Giambruno, A., Zaicev, M.: On codimension growth of finitely generated associative algebras. Adv.

Math. 140, 145–155 (1998)
9. Giambruno, A., Zaicev, M.: Exponential codimension growth of PI algebras: an exact estimate. Adv.

Math. 142, 221–243 (1999)
10. Kemer, A.R.: T-ideals with power growth of the codimensions are Specht, Sibirsk. Math. Zh. 19, 54–69

(1978) (in Russian; English translation: Sib. Math. J. 19(1978), 37–48 (1978))
11. Kemer, A.R.: Varieties of finite rank. In: Proceedings of the 15-th All the Union Algebraic Conference,

Krasnoyarsk, vol. 2, p. 73 (1979) (in Russian)
12. Koshlukov, P., La Mattina, D.: Graded algebras with polynomial growth of their codimensions. J.

Algebra 434, 115–137 (2015)
13. Krakowski, D., Regev, A.: The polynomial identities of the Grassmann algebra. Trans. Am.Math. Soc.

181, 429–438 (1973)
14. La Mattina, D.: Varieties of almost polynomial growth: classifying their subvarieties. Manuscr. Math.

123, 185–203 (2007)
15. La Mattina, D.: Varieties of algebras of polynomial growth. Boll. Unione Matematica Ital. 1(3), 525–

538 (2008)
16. La Mattina, D.: Characterizing varieties of colength ≤ 4. Commun. Algebra 37(5), 1793–1807 (2009)
17. La Mattina, D.: Varieties of superalgebras of almost polynomial growth. J. Algebra 336, 209–226

(2011)
18. La Mattina, D.: Almost polynomial growth: classifying varieties of graded algebras. Israel J. Math

207(1), 53–75 (2015)
19. La Mattina, D., Martino, F.: Polynomial growth and star-varieties. J. Pure Appl. Algebra 220(1),

246–262 (2016)
20. La Mattina, D., Mauceri, S., Misso, P.: Polynomial growth and identities of superalgebras and star-

algebras. J. Pure Appl. Algebra 213(11), 2087–2094 (2009)
21. La Mattina, D., Misso, P.: Algebras with involution with linear codimension growth. J. Algebra 305,

270–291 (2006)
22. Maltsev, Y.N.: A basis for the identities of the algebra of upper triangular matrices. Algebra Logika

10, 242–247 (1971). (in Russian)
23. Mishchenko, S., Regev, A., Zaicev, M.: A characterization of PI algebras with bounded multiplicities

of the cocharacters. J. Algebra 219, 356–368 (1999)
24. Regev, A.: Existence of identities in A ⊗ B. Israel J. Math. 11, 131–152 (1972)

123


	On algebras of polynomial codimension growth
	Abstract
	1 Codimensions and algebras with 1
	2 Characterizing algebras of polynomial codimension growth
	3 About minimal varieties
	4 Polynomial codimension growth and colengths
	References




