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Abstract Group algebras have been used in the context of Coding Theory since the
beginning of the latter, but not in its full power. The article of Ferraz and PolcinoMilies
entitled Idempotents in group algebras and minimal abelian codes (Finite Fields Appl
13(2):382–393, 2007) gave origin tomany thesis and papers linking these two subjects.
In these works, the techniques of group algebras are mainly brought into play for the
computing of the idempotents that generate the minimal codes and the minimum
weight of such codes. In this paper I present a survey on the main results proceeding
from applications of that seminal work.
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1 Introduction

The origins of InformationTheory andErrorCorrectingCodesTheory are in the papers
by Shannon [64] and Hamming [35], where they settled the theoretical foundations
for such theories.
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For a non empty finite set A, called alphabet, a code C of length n is simply a
proper subset of An and an n-tuple (a0, a1, . . . , an−1) ∈ C is called a word of the
code C .

If A = Fq is a finite field with q elements, then a linear code C of length n is a
proper subspace of F

n
q . If dimC = k (k < n), then the number of words in C is qk .

We shall call “cyclic shift” the linear map π : F
n
q −→ F

n
q such that

π(a0, a1, . . . , an−1) = (an−1, a0, a1, . . . , an−2).
A linear cyclic code is a linear code C that is invariant under the cyclic shift.

This structure gives rise to fast-decoding algorithms, which is a considerable aspect
regarding the conditions on communication.

Consider the quotient ring Rn = Fq [x]
< xn − 1 >

and denote by [ f (x)] the class of the
polynomial f (x) in Rn . There is a natural vector space isomorphism ϕ : F

n
q −→ Rn

given by

ϕ(a0, a1, . . . , an−1) = [a0 + a1x + · · · + an−1x
n−1].

Linear cyclic codes are often realized as ideals in Rn and the cyclic shift is equiva-
lent, via the isomorphism ϕ, to the multiplication by the class of x in Rn .

Group algebras may be defined in a more general setting, that is, for any group and
over any field. However, we restrict the definitions and results below to finite groups
and finite fields because this is the context for coding theory.

Let G be a finite group written multiplicatively and Fq a finite field. The group
algebra of G over Fq is the set of all formal linear combinations

α =
∑

g∈G
αgg, where αg ∈ Fq .

Given α =
∑

g∈G
αgg and β =

∑

g∈G
βgg we have

α = β ⇐⇒ αg = βg, for all g ∈ G.

The support of an elementα ∈ FqG is the set of elements ofG effectively appearing
in α; i.e.,

supp(α) = {g ∈ G | ag �= 0}.

We define
⎛

⎝
∑

g∈G
αgg

⎞

⎠ +
⎛

⎝
∑

g∈G
βgg

⎞

⎠ =
∑

g∈G
(αg + βg)g.

⎛

⎝
∑

g∈G
αgg

⎞

⎠
(

∑

h∈G
βhh

)
=

∑

g,h∈G
(αgβh)gh.
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For λ in Fq , we define

λ

⎛

⎝
∑

g∈G
αgg

⎞

⎠ =
∑

g∈G
(λαg)g.

It is easy to see that, with the operations above, FqG is an algebra over the field Fq .
The weight of an element α = ∑

g∈G agg ∈ FqG is the number of elements in its
support; i.e.

w(α) = |{g | ag �= 0}|.

For an ideal I of FqG, we define the minimum weight of I as:

w(I ) = min{w(α) | α ∈ I, α �= 0}.

Let Cn = 〈a〉 denote a cyclic finite group of order n generated by an element a.
MacWilliams [44] was the first one to consider cyclic codes as ideals of the group ring

FqCn which is easily proved to be isomorphic to Fq [x]
<xn−1>. In FqCn , the cyclic shift is

equivalent to the multiplication of the elements of the code by a.
The following diagram helps us to understand the cyclic shift in these three different

ways of considering a cyclic code.

C ⊂ F
n
q

ϕ−→ Rn = Fq [x]
<xn−1>

∼=−→ FqCn = Fq < a >

cyclic
↓ [x] ↓ a ↓

shift

C ⊂ F
n
q

ϕ−→ Rn = Fq [x]
<xn−1>

∼=−→ FqCn = Fq < a >

Extending these ideas, Berman [9,10] and, independently, MacWilliams [45]
defined abelian codes as ideals in finite abelian group algebras and, more gener-
ally, a group (left) code was defined as an (left) ideal in a finite group algebra. Group
codes were then studied using ring and character-theoretical results.

From now on, for a finite group G and a finite field Fq , we treat ideals in a group
algebra FqG as codes. In this approach, the length of the code is the order of the group
G and the dimension of a code I is its dimension as an Fq -subspace in FqG. Length,
dimension and minimum weight are the three parameters that define a linear code.

A group code is called minimal if the corresponding ideal is minimal in the set
of ideals of the group algebra. Keralev and Solé in [40] showed that many important
codes can be realized as ideals in a group algebra, for example, the generalized Reed–
Muller codes and generalized quadratic residue codes. These results are included in
Section 9.1 of [39]. There is also a good treatment on the subject in [22].

A word of warning is necessary here, because the expression “group code” may
also have some other meanings. For example, in Computer Science, sometimes group
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codes consist of n linear block codes which are subgroups of Gn , where G is a finite
abelian group, as in [12,29].

Usually in the papers that present techniques to compute the idempotents that
generate the codes, character theory is used in the context of polynomials, as it can
be seen in [1,2,4–6,11,50,56,57]. Sometimes the expressions for the idempotents are
not very “reader friendly”. Moreover, the character theory and polynomial approaches
in the computation of idempotents did not fully explore the structure of the group
underneath the group algebra that defines the underlying set for the codes.

Summarizing the work of Ferraz and Polcino Milies [28], in Sect. 2 we define the
idempotents using subgroups of the group and establish the basic theorems that are
used in this work. We emphasize that in [28], they gave simpler proofs for computing
idempotents, dimension and minimum weight for minimal cyclic and abelian codes
of length 2k pn , generalizing and comparing their results with the ones in [1,2]. For
full details of [28], see Luchetta [43].

In Sect. 3 we discuss some topics of non-abelian group codes, including some
equivalence questions. In Sect. 4 we describe some results on codes of length 2n , for
a natural n ≥ 1 and in Sect. 5 we treat some aspects of equivalence of abelian codes.
In Sect. 6 we summarize some results on cyclic and abelian codes of length pnqm , for
p and q distinct primes and n,m ≥ 1 and in Sect. 7 we explore some facts on codes
over rings.

2 Subgroups and idempotents

We recall that an element in the group algebra FqG is called central if it commutes
with every other element of the algebra. A non-zero central idempotent e is called
primitive if it cannot be decomposed in the form e = e′ + e′′, where e′ and e′′ are
both non-zero central idempotents such that e′e′′ = e′′e′ = 0. For gcd(q, |G|) = 1,
the group algebra FqG is semisimple and the primitive central idempotents are the
generators of the minimal two-sided ideals. Two idempotents e′, e′′ are orthogonal if
e′e′′ = e′′e′ = 0.

The primitive central idempotents of the rational group algebraQG were computed
in [34, Theorem VII.1.4] in the case G abelian; in [37, Theorem 2.1] when G is
nilpotent; in [53, Theorem 4.4] in a more general context and in [13, Theorem 7] an
algorithm to compute the primitive idempotents is given.

Inwhat follows,we shall establish a correspondence between primitive idempotents
of FqG and certain subgroups of an abelian group G.

Let G be a finite (abelian) group and Fq a field such that gcd(q, |G|) = 1. Given a
subgroup H of G, denote

Ĥ = 1

|H |
∑

h∈H
h (1)

which is an idempotent of FqG and, for an element x ∈ G, set x̂ = 〈̂x〉.
It is known that the idempotent Ĝ is always primitive (see [55, Proposition 3.6.7]).

Definition 2.1 Let G be an abelian group. A subgroup H of G is called a co-cyclic
subgroup if the factor group G/H �= {1} is cyclic.
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We use the notation

Scc(G) = {H | H is a co-cyclic subgroup of G}.

For a finite group G, denote by exp(G) the exponent of G which is the smallest
positive integer t such that gt = 1, for all g ∈ G. A group G is called a p-group if
its exponent is a power of a given prime p. In particular, this means that the order of
every element of G is itself a power of p.

Let G be a finite abelian p-group and Fq a finite field such that gcd(q, |G|) = 1.
For each co-cyclic subgroup H of G, we can construct an idempotent of FqG. In fact,
we remark that, since G/H is a cyclic p-group, there exists a unique subgroup H � of
G containing H such that |H �/H | = p. Then eH = Ĥ − Ĥ � is an idempotent and
we consider the set

{Ĝ} ∪ {eH = Ĥ − Ĥ � | H ∈ Scc(G)}. (2)

We recall the following results that are used throughout this paper.
In the case of a rational abelian group algebra QG, the set (2) is the set of all

primitive central idempotents [34, Theorem 1.4].

Theorem 2.2 [28, Lemma 5] Let p be a prime integer and G a finite abelian group
of exponent pn and Fq a finite field with q elements such that gcd(p, q) = 1. Then (2)
is a set of pairwise orthogonal idempotents of FqG whose sum is equal to 1, i.e.,

1 = Ĝ +
∑

H∈Scc(G)

eH , (3)

where 1 also denotes the identity element in FqG.

In our next statement, we denote by U (Zpn ) the set of invertible elements of the
ring Zpn of integers modulo pn ; q̄ denotes the class of the integer q in Zpn and, when
it is invertible, o(q̄) denotes its multiplicative order; i.e., the least positive integer m
such that q̄m = 1̄.

Theorem 2.3 [28, Theorem 4.1] Under the same hypotheses of Theorem 2.2, the
set (2) is the set of all primitive idempotents of FqG if and only if o(q̄) = φ(pn) in
U (Zpn ), where φ denotes Euler’s totient function.

For positive integers r and m, we shall denote by r̄ ∈ Zm the image of r
in the ring of integers modulo m. Then, for an element g in a group G, define
Gg = {gr | gcd(r, o(g)) = 1} = {gr | r̄ ∈ U (Zo(g))}. The following theorem gives
us conditions on the exponent e of the group G and the size q of the finite field that
satisfy Theorem 2.3.

Corollary 2.4 [46, Teorema 7.10] Let Fq be a finite field with q elements and G a
finite abelian group with exponent e such that gcd (q, |G|) = 1. Then Cg = Gg, for
all g ∈ G, if only if one of following conditions holds, where φ denotes Euler’s totient
function:
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(a) e = 2 and q is odd;
(b) e = 4 and q ≡ 3(mod 4);
(c) e = pn and o(q) = φ(pn) in U

(
Zpn

)
;

(d) e = 2pn and o(q) = φ(pn) in U
(
Z2pn

)
.

Theorem 2.5 [28, Lemma 3] Let G = 〈g〉 be a cyclic group with order pn and Fq a
finite field with q elements such that q generates U

(
Zpn

)
. Consider

G = G0 ⊃ G1 ⊃ · · · ⊃ Gn = {1}

the descending chain of all subgroups of G. Then a complete set of primitive idempo-
tents in FqG is:

e0 = Ĝ = 1

pn
∑

g∈G
g and ei = Ĝi − Ĝi−1, for 1 ≤ i ≤ n, (4)

with Gi =< gpi >, for 1 ≤ i ≤ n.

As the authors comment in [28], a straightforward computation shows that these
are the same idempotents given in [2, Theorem 3.5], though there they are expressed
in terms of cyclotomic cosets.

The idempotent generators of minimal ideals in the case of cyclic groups of order
2pn now follow easily from the previous results.

Theorem 2.6 [2, Theorem 2.6] Let Fq be a finite field with q elements and G a cyclic
group of order 2pn, p an odd prime, such that o(q̄) = φ(pn) in U (Z2pn ). Write
G = C × A, where A is the p-Sylow subgroup of G and C = {1, t} is its 2-Sylow
subgroup. If ei , for 0 ≤ i ≤ n, denote the primitive idempotents of Fq A, then the
primitive idempotents of FqG are

1 + t

2
ei ,

1 − t

2
ei , 0 ≤ i ≤ n. (5)

More generally,

Theorem 2.7 [28, Theorem 4.2] Let p be an odd prime, A be an abelian p-group
of exponent 2pr and Fq be a finite field with q elements such that o(q) = φ(pr ) in
U

(
Z2pr

)
. Write A = E × B, where E is an elementary abelian 2-group and B a

p-group. Then the primitive idempotents of Fq A are products of the form e · f , where
e is a primitive idempotent of Fq E and f a primitive idempotent of Fq B.

Section 5 of [28] is devoted to the computation of dimension and minimum weight
of codes generated by the idempotents presented in previous theorems. For non-cyclic
abelian groups, we may also apply the ideas above to construct idempotents. In [27],
the following results are presented in details.

For a finite abelian group G, we write G = Gp1 × · · · × Gpt , where Gpi denotes
the pi -Sylow subgroup of G, for the distinct prime numbers p1, . . . , pt .

123



352 São Paulo J. Math. Sci. (2016) 10:346–371

Lemma 2.8 [27, Lemma II.5] Let G = Gp1 × · · · × Gpt be a finite abelian group
and H ∈ Scc(G). Write H = Hp1 × · · · × Hpt , where Hpi is the pi -Sylow subgroup
of H. Then each subgroup Hpi is co-cyclic in G pi , 1 ≤ i ≤ t .

With the notation above, for each H ∈ Scc(G), define an idempotent eH ∈ FqG as

follows. For each 1 ≤ i ≤ t , either Hpi = Gpi or there exists a unique subgroup H �
pi

such that [H �
pi : Hpi ] = pi . Thus, let eHpi

= Ĝ pi or eHpi
= Ĥpi −̂

H �
pi , respectively,

and define
eH = eHp1

eHp2
· · · eHpt

. (6)

For any other K ∈ Scc(G), with K �= H , we have Kpi �= Hpi , for some 1 ≤ i ≤ t ,
and, by Theorem 2.2, eHpi

eK pi
= 0, hence eHeK = 0. It is easy to see that ĜeH = 0,

for all H ∈ Scc(G).
Thus, we have the following.

Proposition 2.9 [27, Proposition II.6] Let G be a finite abelian group and Fq a finite
field such that gcd(q, |G|) = 1. Then

B = {eH | H ∈ Scc(G)} ∪ {Ĝ} (7)

is a set of orthogonal idempotents of FqG, where eH is defined as in (6).

A similar construction of idempotents for rational group algebras of abelian groups
is given in [34, Section VII.1]. For the rational case, these idempotents are primitive
while for finite fields this is usually not true.

Now, we extend Theorem 2.2 to finite abelian groups.

Lemma 2.10 [27, Lemma II.7] Let G be a finite abelian group and Fq a finite field
such that gcd(q, |G|) = 1. Then, in the group algebra FqG, we have

1 = Ĝ +
∑

H∈Scc(G)

eH . (8)

The following lemma starts the discussion about the relation between idempotents and
certain subgroups of the abelian group, which we elaborate in more details in Sect. 5.

Lemma 2.11 [27, Lemma II.8] Let G be a finite abelian group and Fq a finite field
such that gcd(q, |G|) = 1. For each primitive idempotent e ∈ FqG, e �= Ĝ, there
exists a unique H ∈ Scc(G) such that e · eH = e. Also, e · eK = 0, for any other
K ∈ Scc(G).

3 Non abelian codes

3.1 Dihedral and quaternion codes

As a natural way to proceed, Theorem 2.2 is used by Dutra [23,25] to compute idem-
potents for non abelian group codes, particularly, for dihedral and quaternion groups.
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For n ≥ 1, Dutra considered the semisimple group algebras Fq Dn of the dihedral
groups Dn = 〈a, b | an = b2 = 1, bab = a−1〉 over a finite field Fq and gave
conditions under which the number of its simple components is minimum, that is,
the same as for the rational group algebra QDn . These conditions are stated in the
following theorem.

Theorem 3.1 [23, Teorema 2.2] Let Fq be a field with q elements and Dn the dihedral
group with 2n elements such that gcd(q, 2n) = 1. Let p, p1 and p2 be distinct odd
primes and m,m1 and m2 be positive integers. Then Fq Dn and QDn have the same
number of simple components if and only if one of the following conditions occurs:

(i) n = 2 or 4 and q is odd.
(ii) n = 2m, with m ≥ 3 and congruent to 3 or 5 modulo 8.
(iii) n = pm and the class q̄ generates the group of units U (Zpm ).
(iv) n = pm, the class q̄ generates the group U 2(Zpm ) = {x2 | x ∈ U (Zpm )} and

−1 is not a square modulo pm.
(v) n = 2pm and the class q̄ generates the group of units U (Zpm ).
(vi) n = 2pm, q̄ generates the group U 2(Zpm ) = {x2 | x ∈ U (Zpm )} and −1 is not

a square modulo pm.
(vii) n = 4pm, 4 divides φ(pm) and the class q̄ generates the group U (Zpm ).
(viii) n = 4pm, 4 does not divide φ(pm), q ≡ 1(mod 4) and the class q̄ generates the

group U (Zpm ).
(ix) n = 4pm, 4 does not divide φ(pm), q ≡ −1(mod 4) and the class q̄ has order

φ(pm)/2.
(x) n = pm1

1 pm2
2 , with gcd(φ(pm1

1 ), φ(pm2
2 )) = 2 and q or −q has order

φ(pm1
1 pm2

2 )/2 modulo pm1
1 pm2

2 .
(xi) n = 2pm1

1 pm2
2 , with gcd(φ(pm1

1 ), φ(pm2
2 )) = 2 and q or −q has order

φ(pm1
1 pm2

2 )/2 modulo pm1
1 pm2

2 .

Under such conditions, Dutra computed the set of minimal codes of Fq Dn , their
dimensions, minimum weights and bases for these codes as follows.

Theorem 3.2 [23, Proposição 3.1] Let q and n be integers related as in conditions
(i) and (ii) of Theorem 3.1. If C is a dihedral code of length 2n generated by the
idempotent e, then C has dimension and minimum weight described in Table 1.

Table 1 Minimal dihedral codes for n = 2m

e dimFqC w(C)

b̂â 1 2m+1

(1 − b̂)̂a 1 2m+1

b̂(â2 − â) 1 2m+1

(1 − b̂)(â2 − â) 1 2m+1

(â2i − ̂
a2i−1

), for 2 ≤ i ≤ m 2i 2m−i+1
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Table 2 Minimal dihedral codes for n = pm

e dimFqC w(C)

b̂â 1 2pm

(1 − b̂)̂a 1 2pm

(â pi − ̂
a pi−1

), for 1 ≤ i ≤ m 2φ(pi ) 2pm−i

Table 3 Minimal dihedral codes for n = 2pm2
2 or n = 4pm2

2

e1 e2 dimFqC w(C)

b̂Ĉ
p
m1
1

Ĉ
p
m2
2

1 2pm1
1 p

m2
2

(1 − b̂)Ĉ
p
m1
1

Ĉ
p
m2
2

1 2pm1
1 p

m2
2

b̂(Ĉ
p
m1−1
1

− Ĉ
p
m1
1

) Ĉ
p
m2
2

1 2pm1
1 p

m2
2

(1 − b̂)(Ĉ
p
m1−1
1

− Ĉ
p
m1
1

) Ĉ
p
m2
2

1 2pm1
1 p

m2
2

Ĉ
p
m1
1

Ĉ
p
m2− j
2

− ̂C
p
m2− j+1
2

2φ(p j
2 ) 2pm1

1 p
m2− j
2

Ĉ
p
m1−i
1

− ̂C
p
m1−i+1
1

Ĉ
p
m2
2

2φ(p j
1 ) 2pm1−i

1 p
m2
2

Ĉ
p
m1−i
1

− ̂C
p
m1−i+1
1

Ĉ
p
m2− j
2

− ̂C
p
m2− j+1
2

2φ(p j
1 )2φ(p j

2 ) 4pm1−i
1 p

m2− j
2

Theorem 3.3 [23, Proposição 3.2] Let q and n be integers related as in conditions
(iii) and (iv) of Theorem 3.1. If C is a dihedral code of length 2n generated by the
idempotent e, then C has dimension and minimum weight described in Table 2.

Theorem 3.4 [23, Proposição 3.3] Let q and n be integers related as in conditions
(v) to (ix) of Theorem 3.1. For n = pm1

1 pm2
2 with p1 = 2,m1 = 1 or 2 and p2 an

odd prime, if C is a dihedral code of length 2n generated by the idempotent e1e2, then
C has dimension and minimum weight described in Table 3, where 1 ≤ i ≤ m1 and
1 ≤ j ≤ m2.

Theorem 3.5 [23, Proposição 3.4] Let q and n = pm1
1 pm2

2 , with p1 and p2 odd
distinct prime numbers, integers related as in condition (x) of Theorem 3.1. If C is a
dihedral code of length 2n generated by the idempotent e1e2, then C has dimension
and minimum weight described in Table 4, where 1 ≤ i ≤ m1 and 1 ≤ j ≤ m2.

Theorem 3.6 [23, Proposição 3.5] Let q and n = 2pm1
1 pm2

2 , with p1 and p2 odd
distinct prime numbers, integers related as in condition (xi) of Theorem 3.1. If C is a
dihedral code of length 2n generated by the idempotent e0e1e2, then C has dimension
and minimum weight described in Table 5, where 1 ≤ i ≤ m1 and 1 ≤ j ≤ m2.

Similar results were obtained by Dutra [23, Capítulos 4 e 5] for group codes over
the quaternion groups.
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Table 4 Minimal dihedral codes for n = p
m1
1 p

m2
2

e1 e2 dimFqC w(C)

b̂Ĉ
p
m1
1

Ĉ
p
m2
2

1 2pm1
1 p

m2
2

(1 − b̂)Ĉ
p
m1
1

Ĉ
p
m2
2

1 2pm1
1 p

m2
2

Ĉ
p
m1
1

Ĉ
p
m2− j
2

− ̂C
p
m2− j+1
2

2φ(p j
2 ) 2pm1

1 p
m2− j
2

Ĉ
p
m1−i
1

− ̂C
p
m1−i+1
1

Ĉ
p
m2
2

2φ(p j
1 ) 2pm1−i

1 p
m2
2

Ĉ
p
m1−i
1

− ̂C
p
m1−i+1
1

Ĉ
p
m2− j
2

− ̂C
p
m2− j+1
2

2φ(p j
1 )2φ(p j

2 ) 4pm1−i
1 p

m2− j
2

Table 5 Minimal dihedral codes for n = 2pm1
1 p

m2
2

e0 e1 e2 dimFqC w(C)

b̂Ĉ2 Ĉ
p
m1
1

Ĉ
p
m2
2

1 4pm1
1 p

m2
2

(1 − b̂)Ĉ2 Ĉ
p
m1
1

Ĉ
p
m2
2

1 4pm1
1 p

m2
2

b̂(1 − Ĉ2) Ĉ
p
m1
1

Ĉ
p
m2
2

1 4pm1
1 p

m2
2

(1 − b̂)(1 − Ĉ2) Ĉ
p
m1
1

Ĉ
p
m2
2

1 4pm1
1 p

m2
2

Ĉ2 Ĉ
p
m1
1

Ĉ
p
m2− j
2

− ̂C
p
m2− j+1
2

2φ(p j
2 ) 4pm1

1 p
m2− j
2

Ĉ2 Ĉ
p
m1−i
1

− ̂C
p
m1−i+1
1

Ĉ
p
m2
2

2φ(p j
1 ) 4pm1−i

1 p
m2
2

(1 − Ĉ2) Ĉ
p
m1
1

Ĉ
p
m2− j
2

− ̂C
p
m2− j+1
2

2φ(p j
2 ) 4pm1

1 p
m2− j
2

(1 − Ĉ2) Ĉ
p
m1−i
1

− ̂C
p
m1−i+1
1

Ĉ
p
m2
2

2φ(p j
1 ) 4pm1−i

1 p
m2
2

Ĉ2 Ĉ
p
m1−i
1

− ̂C
p
m1−i+1
1

Ĉ
p
m2− j
2

− ̂C
p
m2− j+1
2

2φ(p j
1 )2φ(p j

2 ) 8pm1−i
1 p

m2− j
2

(1 − Ĉ2) Ĉ
p
m1−i
1

− ̂C
p
m1−i+1
1

Ĉ
p
m2− j
2

− ̂C
p
m2− j+1
2

2φ(p j
1 )2φ(p j

2 ) 8pm1−i
1 p

m2− j
2

3.2 Metacyclic codes and equivalence questions

A group G is metacyclic if it contains a normal cyclic subgroup H such that G/H
is also cyclic. It is easy to prove that a finite metacyclic group has the following
presentation

G =
〈
a, b | am = 1, bn = as, bab−1 = ai

〉
, (9)

with a and b such that H = 〈a〉 and G/H = 〈bH〉, for m, n ∈ N and 1 ≤ s, i ≤ m
such that s|m, m|s(i − 1), i < m, gcd(i,m) = 1. For s = m, we say that G is a split
metacyclic group and, in this case, G is the semi-direct product G = 〈a〉 � 〈b〉.
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Earlier approaches on non-abelian metacyclic codes include results obtained by
Sabin [61] and Sabin and Lomonaco [62], where we also find the following definition
of equivalence of codes.

Definition 3.7 Let G and H be two finite groups of the same order and Fq a field.
A combinatorial equivalence is a vector space isomorphism ψ : FqG −→ Fq H
induced by a bijection ψ : G −→ H .

Two codes C ⊂ FqG and C̃ ⊂ Fq H are said to be combinatorially equivalent if
there exists a combinatorial equivalence ψ : FqG −→ Fq H such that ψ(C) = C̃ .

For G a metacyclic finite group such that gcd(q, |G|) = 1, Sabin and
Lomonaco [62], by using group representation theory, proved that codes generated
by central idempotents in FqG are combinatorially equivalent to abelian codes. This
motivated the search for left minimal codes in FqG.

Considering the group algebra of a non-abelian split metacyclic group G over a
finite field Fq , Assuena [3] found a necessary condition under which FqG has the
minimum number of simple components.

Theorem 3.8 [3, Teorema 2.1.16] Let G be a metacyclic group and Fq a finite field
with q elements such that gcd(q, |G|) = 1. If the number of simple components of the
group algebra FqG is minimal, then U (Zn) = 〈q̄〉 and U (Zm) = 〈ī〉〈q̄〉.

Assuena [3] used the structure of the group to determine the minimal metacyclic
codes for a non abelian split metacyclic group of order pm
n , with p and 
 odd prime
numbers, under the conditions that FqG is semisimple and the number of simple
components of FqG is minimum.

For Dpm , the dihedral group of order 2pm , and Fq a finite field such that
gcd(q, 2pm) = 1, he constructs left minimal codes that are not combinatorially
equivalent to abelian codes and also exhibits one case where a left minimal code is
more efficient then the abelian ones of the same length, giving a positive answer to a
conjecture of Sabin and Lomonaco [62].

Further studies on group codes are given in [11], where it is defined a (left) G-code
as any linear (left) code of length n over a field Fq which is the image of a (left) ideal
of a group algebra via an isomorphism FqG −→ F

n
q which maps the finite group G of

order n to the standard basis of F
n
q . Their ideas are used in [63] to study two-sided and

abelian group ring codes and in [30], where García Pillado et al. first communicated
an example of a non-abelian S4-code over F5. The full proof of this computacional
construction was given later in [31]. New examples of non-abelian G-codes are given
in [32] and, particularly, using the group SL(2; F3) instead of the symmetric group,
they prove, without using a computer for it, that there is a code over F2 of length 24,
dimension 6 andminimal weight 10. This code has greater minimum distance than any
abelian group code having the same length and dimension over F2, and, moreover, it
has the greatest minimum weight among all binary linear codes with the same length
and dimension.

In [24] Elia and García Pillado give an overview of the properties of ideal group
codes defined as principal ideals in the group algebra of a finite group G over a finite
field Fq and present their encoding and syndrome decoding. They also describe in
detail a correction of a single error, using syndromes.
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4 Cyclic codes of length 2m

Codes are usually considered over the binary field F2. For cyclic codes of length 2m ,
with a natural m ≥ 1, over a field of odd size, the results obtained using a polynomial
approach by Bakshi and Raka [4], Pruthi [59], Sharma et al. [67], Sharma et al. [66]
or using the group algebra approach by Prado [58] are essentially the same. In [58,
Capítulo2] Prado states the general facts:

Theorem 4.1 [58, Lema2.1.1]Let G = 〈a〉be afinite cyclic groupof order2m ,m ≥ 1
and Fq a finite field of odd characteristic. Let

G = G0 ⊃ G1 ⊃ · · · ⊃ Gm = {1}

be the descending chain of all subgroups of G, with Gi = 〈a2i 〉 and |Gi | = 2m−i .
Then the elements e0 = Ĝ and ei = Ĝi − Ĝi−1, with 1 ≤ i ≤ m, form a set of
orthogonal idempotents of FqG such that e0 + e1 + · · · + em = 1.

Theorem 4.2 [58, Lema 2.2.1] Under the same hypothesis of Theorem 4.1, let Ii =
FqGei , with 1 ≤ i ≤ m, be the ideals of FqG generated by the idempotents ei of
Theorem 4.1. Then

dim(I0) = 1, d(I0) = |G| = 2m

dim(Ii ) = 2i−1, d(Ii ) = |G| = 2m−i+1, for 1 ≤ i ≤ m.

The notion of a visible code was given by Ward [74], where he defines a visible
basis for a code as a basis where all its elements have the same weight. Prado also
proved the following for codes of length 2m .

Theorem 4.3 [58, Proposição 2.3.1] Under the same hypothesis of Theorem 4.1, for
1 ≤ i ≤ m, the set

Bi = {ei , aei , a2ei , . . . , a2i−1−1ei }
is a visible basis for the code Ii = FqGei .

In her thesis [58], Prado studied in details the minimal codes generated by primitive
idempotents in FqC2m , with q odd. She considered four cases: q ≡ 1(mod 8), q ≡
3(mod 8), q ≡ 5(mod 8) and q ≡ 7(mod 8). The order of q(mod 2m), the number of
simple components of FqC2m and the computation of idempotents are different for
each one of these cases. For q ≡ 3(mod 8) and q ≡ 5(mod 8) a complete discussion
is presented in the thesis and the other cases are exemplified with particular examples.
Here is the case q ≡ 3(mod 8).

Theorem 4.4 [58, Proposição3.1.1] Let Fq be a field with q elements such that q ≡
3(mod 8) and G = 〈a | a2m = 1〉 be a cyclic group of order 2m. The following elements
of the group algebra FqG

e0 = 1 + a + a2 + · · · + a2
m−1

2m
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e1 = 1 − a + a2 − · · · − a2
m−1

2m

e2 = 1 − a2 + a4 − · · · − a2
m−2

2m−1

e3 = (1 − a4)
(1 + a2

3 + · · · + a2
m−23)(2 + αa + αa3)

2m

e′
3 = (1 − a4)

(1 + a2
3 + · · · + a2

m−23)(2 − αa − αa3)

2m

e4 = (1 − a8)
(1 + a2

4 + · · · + a2
m−24)(2 + αa2 + αa3·2)
2m−1

e′
4 = (1 − a8)

(1 + a2
4 + · · · + a2

m−24)(2 − αa2 − αa3·2)
2m−1

. . . ,

em−1 = (1 − a2
m−2

)
(1 + a2

m−1)(2 + αa2
m−4 + αa3·2m−4

)

24

e′
m−1 = (1 − a2

m−2
)
(1 + a2

m−1)(2 − αa2
m−4 − αa3·2m−4

)

24

em = (1 − a2
m−1

)
(2 + αa2

m−3 + αa3·2m−3
)

23

e′
m = (1 − a2

m−1
)
(2 − αa2

m−3 − αa3·2m−3
)

23

form a complete set of primitive idempotents of FqG, with α2 = −2 in Fq .

In [58, Capítulo 4] Prado simplifies results of Poli [56] in order to obtain a clearer
description of the principal nilpotent ideals of a group algebra of finite abelian groups
in a modular case (i.e., when char(Fq) divides the order of the group G). She also
exemplifies the process of lifting idempotents modulo a nilpotent ideal.

5 More on equivalence of abelian codes

The question of equivalence in Coding Theory has many approaches. In Sect. 3.2, we
have defined combinatorial equivalence. In [50], we found the following for abelian
codes. Here G stands for a finite abelian group and Fq is a finite field with q elements.

Definition 5.1 Two abelian codes I1 and I2 are G-equivalent if there exists an auto-
morphism θ of G whose linear extension to FqG maps I1 on I2.

The following statements also appeared in [50].

Theorem A [50, Theorem 3.6] Let G be a finite abelian group of odd order and
exponent n and denote by τ(n) the number of divisors of n. Then there exist precisely
τ(n) non G-equivalent minimal abelian codes in F2G.
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Table 6 Minimal codes in F2(Cp2 × Cp)

Code Primitive idempotent Dimension Minimum weight

I0 e0 = âb̂ = Ĝ 1 p3

I1 e1 = b̂ − ̂〈a p〉 × 〈b〉 p2 − p 2p

I1 j e1 j = ̂a jpb − ̂〈a p〉 × 〈b〉 j = 1, . . . , p − 1 p2 − p 2p

I2 e2 = â − Ĝ p − 1 2p2

I2i e2i = âbi − Ĝ i = 1, . . . , p − 1 p − 1 2p2

I3 e3 = ̂〈a p〉 × 〈b〉 − Ĝ p − 1 2p2

Theorem B [50, Theorem 3.9] Let G be a finite abelian group of odd order. Then
two minimal abelian codes in F2G are G-equivalent if and only if they have the same
weight distribution.

Unfortunately both statements are not fully correct. The errors arise from the
assumption, implicit in the last paragraph of [50, p. 167], that if e and f are primitive
idempotents of F2Cm and F2Cn , respectively, then e f is a primitive idempotent of
F2[Cm × Cn]. To the best of our knowledge, these results have not been used in a
wrong way in the literature.

We first communicated the following counterexamples to both Theorems A and B
in [26].

Proposition 5.2 [26, Proposition 3.1] Let p be an odd prime such that 2̄ generates
U (Zp2) andG = 〈a〉×〈b〉 an abelian group, with o(a) = p2 and o(b) = p. ThenF2G
has four inequivalent minimal codes, namely, the ones generated by the idempotents
e0 = Ĝ, e1 = b̂ − ̂〈a p〉 × 〈b〉, e2 = â − Ĝ and e3 = ̂〈a p〉 × 〈b〉 − Ĝ.

Also all minimal codes of F2G are described in Table 6 with their dimension and
weight.

Moreover, the minimal inequivalent codes I2 and I3 have the same weight distrib-
ution.

In [26, Proposition 4.2] we showed that Theorem A holds in the special case of
minimal codes in F2(Cpn ×Cpn ) and, in [27, TheoremV.3], we generalize these result
for G a direct product of m ≥ 2 copies of a cyclic group Cpn , as follows.

Proposition 5.3 [27, Proposition V.3] Let m and r be positive integers and p a prime
number. If G = (Cpr )

m is a finite abelian p-group and Fq is a field of char(Fq) �= p.
Then a primitive idempotent of FqG, different from Ĝ, is of the form K̂ · eh, where K
is a subgroup of G isomorphic to (Cpr )

m−1 and eh is a primitive idempotent of Fq〈h〉,
where h ∈ G is such that G = 〈h〉 × K and 〈h〉 ∼= Cpr .

This result can be applied as follows.

Corollary 5.4 [27, Corollary V.4] Let m and r be positive integers, p a prime number,
a finite abelian p-group G = (Cpr )

m and Fq a finite field with q elements such that
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Table 7 Minimal codes in Fq (Cpr )
m

Primitive idempotent Dimension Weight

Ĝ 1 prm

K̂ (ĥ p − ĥ) p − 1 2pr(m−1)+(r−1)

K̂ (
̂
h p2 − ĥ p) p(p − 1) 2pr(m−1)+(r−2)

K̂ (
̂
h p3 −̂

h p2 ) p2(p − 1) 2pr(m−1)−(r−3)

· · · · · ·
K̂ (ĥ pi − ̂

h pi−1
) pi−1(p − 1) 2pr(m−1)−(r−i)

· · · · · ·
K̂ (1 − ̂

h pr−1
) pr−1(p − 1) 2pr(m−1)

o(q̄) = φ(pr ) in U (Zpr ). Then the minimal abelian codes in FqG are as Table 7,
where h and K are as in Proposition 5.3.

Consequently, the number of non G-equivalent minimal abelian codes is r + 1 =
τ(pr ).

Corollary 5.5 [27, Corollary V.5] Let n,m ≥ 2 be integers, G = (Cn)
m an abelian

group and Fq a finite field such that gcd(q, n) = 1. Then the primitive idempotents
of FqG are of the form K̂ · eh, where K is a subgroup of G isomorphic to (Cn)

m−1,
h ∈ G is such that G = K × 〈h〉 and eh is a primitive idempotent of Fq〈h〉.

Theorem 5.6 [27, Theorem V.6] Let m be a positive integer and G = Cm a direct
product of cyclic groups isomorphic to one another, of exponent n, and Fq a finite field
such that gcd(q, |G|) = 1. Then, the number of non G-equivalent minimal abelian
codes is precisely τ(n).

We fully discussed the G-equivalence of abelian codes and established in [27,
Section III] a relation between the classes of equivalence of G-equivalent codes and
some classes of isomorphisms of subgroups of G, as follows.

We say that two subgroups H and K of a group G are G-isomorphic if there exists
an automorphism ψ ∈ Aut(G) such that ψ(H) = K .

Notice that isomorphic subgroups are not necessarily G-isomorphic. For example,
for a prime p, if G = 〈a〉 × 〈b〉 with o(a) = p2 and o(b) = p, then 〈a p〉 and 〈b〉
are isomorphic, as they are both cyclic groups of order p. However, they are not G-
isomorphic, since 〈b〉 is contained, as a subgroup of index p, only in 〈a p〉× 〈b〉 while
〈a p〉 is contained in 〈a〉 and in 〈aib〉, for all 1 ≤ i ≤ p − 1. An automorphism of G
carrying one to the other would preserve also inclusions.

We shall denote by P(FqG) the set of all primitive idempotents of FqG. Recall
the notion of co-cyclic subgroup (Definition 2.1). Then, under the same hypotheses
of Lemma 2.11, the following map is well-defined
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 : P(FqG) −→ Scc(G) ∪ {G}
e �= Ĝ �−→ (e) = He,

Ĝ �−→ G
(10)

where He is the unique co-cyclic subgroup of G such that e · eHe = e.

Theorem 5.7 [27, Theorem II.9] Let G be a finite abelian group, Fq a finite field such
that gcd(q, |G|) = 1 and H ∈ Scc(G). Then eH is the sum of all primitive idempotents
e ∈ P(FqG) such that (e) = H.

The study of the G-equivalence of ideals involves to know how the group of
automorphisms Aut(G) acts on the lattice of the subgroups of G and hence on the
idempotents in the group algebra which arise from these subgroups. From now on, we
use the same notation for an automorphism of the group G and its linear extension
to the group algebra FqG. The following results from [27] relate subgroups in G and
idempotents in FqG.

Lemma 5.8 [27, Lemma III.1] Let G be a finite abelian group, H ∈ Scc(G) and eH
its corresponding idempotent defined as in (6). Then, for any ψ ∈ Aut(G), we have
ψ(eH ) = eψ(H) and ψ(Ĝ) = Ĝ.

For finite abelian groups, Propositions 5.9, 5.10 and 5.11 below establish a corre-
spondence betweenG-equivalentminimal ideals inFqG andG-isomorphic subgroups
of G.

Proposition 5.9 [27, Proposition III.2] Let G be a finite abelian group and Fq a finite
field such that gcd(q, |G|) = 1. If e, e′ ∈ P(FqG) are such that ψ(e) = e′, for some
automorphism ψ ∈ Aut(G) linearly extended to FqG, then

ψ(He) = Hψ(e) = He′,

i.e., He and He′ are G-isomorphic.

We set LAut(G) = {ψ ∈ Aut(G) | ψ(H) = H, for all H ≤ G}.
Proposition 5.10 [27, Proposition III.7] Let G be a finite field abelian group and Fq

a finite field such that gcd(q, |G|) = 1. If e′, e′′ ∈ P(FqG) are both different from
Ĝ and He′ = He′′ , then there exists an automorphism ψ ∈ LAut(G) whose linear
extension to FqG maps e′ to e′′.

The following is the converse of Proposition 5.9.

Proposition 5.11 [27, Proposition III.8] Let G be a finite abelian group and Fq a
finite field such that gcd(q, |G|) = 1. If e′, e′′ ∈ P(FqG), both different from Ĝ, are
such that ψ(He′) = He′′ , for some ψ ∈ Aut(G), then there exists an automorphism
θ ∈ Aut(G) whose linear extension to FqG maps e′ to e′′, i.e., the ideals of FqG
generated by e′ and e′′ are G-equivalent.
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Table 8 Minimal codes in F2(Cpn × Cp)

Code Dimension Weight

I0 = 〈̂ab̂〉 = 〈Ĝ〉 1 pn+1

I1 = 〈 ̂〈a p〉 × 〈b〉 − Ĝ〉 p − 1 2pn

I1i = 〈âbi − Ĝ〉 i = 0, . . . , p − 1 p − 1 2pn

I2 = 〈 ̂〈a p2 〉 × 〈b〉 − ̂〈a p〉 × 〈b〉〉 p(p − 1) 2pn−1

I2i = 〈̂a pbi − ̂〈a p〉 × 〈b〉〉 i = 1, . . . , p − 1 p(p − 1) 2pn−1

. . . . . .

Ik = 〈 ̂〈a pk 〉 × 〈b〉 − ̂〈a pk−1 〉 × 〈b〉〉 pk−1(p − 1) 2pn−k+1

Iki = 〈 ̂
a pk−1bi − ̂〈a pk−1 〉 × 〈b〉〉 i = 1, . . . , p − 1 pk−1(p − 1) 2pn−k+1

. . . . . .

In−1 = 〈〈̂b〉 − ̂〈a pn−2 〉 × 〈b〉〉 p(n−1)(p − 1) 2p

In−1,i = 〈 ̂
a pn−1bi − ̂〈a pn−2 〉 × 〈b〉〉 i = 1, . . . , p − 1 p(n−1)(p − 1) 2p

As an application of Propositions 5.9 and 5.11, in [27, Section IV] we consider
the minimal codes in F2(Cpn × Cp), for an odd prime p and n ≥ 3. Its proof is
similar to the proof of Proposition 5.2. This gives a whole family of counterexamples
to Theorem A.

Proposition 5.12 [27, Theorem IV.3] Let n ≥ 3 be a positive integer and p an odd
prime such that 2̄ generates U (Zpn ) and G = 〈a〉 × 〈b〉 be an abelian group, with
o(a) = pn and o(b) = p. Then the minimal codes of F2G are described in Table 8.
Moreover, there are 2n inequivalent minimal codes in F2(Cpn × Cp).

In the first column of Table 9 we give a complete list of representatives of classes
of G-isomorphisms of subgroups of Cpn × Cp and, in the second column, we list the
corresponding representatives of G-equivalent classes of minimal codes in the group
algebra F2(Cpn × Cp).

6 Cyclic and abelian codes of length pnqm

6.1 Binary abelian codes

In [15], we considered finite abelian groups of type G = Gp ×Gq , for distinct primes
p and q such thatGp is a p-group,Gq is a q-group satisfying the following conditions
which will allow us to use the results in [28]:

(i) gcd(p − 1, q − 1) = 2,

(i i) 2̄ generates the groups of units U (Zp2) and U (Zq2)

(i i i) gcd(p − 1, q) = gcd(p, q − 1) = 1. (11)
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Table 9 Subgroups and codes
Subgroups Codes

G I0 = 〈Ĝ〉
〈a〉 I11 = 〈̂a − Ĝ〉
〈a p〉 × 〈b〉 I1 = 〈 ̂〈a p〉 × 〈b〉 − Ĝ〉
〈a pb〉 I21 = 〈̂a pb − ̂〈a p〉 × 〈b〉〉
〈a p2 〉 × 〈b〉 I2 = 〈 ̂〈a p2 〉 × 〈b〉 − ̂〈a p〉 × 〈b〉〉
. . . . . .

〈a pk b〉 Ik+1,1 = 〈̂a pk b − ̂〈a pk 〉 × 〈b〉〉
〈a pk+1 〉 × 〈b〉 Ik+1 = 〈 ̂〈a pk+1〉 × 〈b〉 − ̂〈a pk 〉 × 〈b〉〉
. . . . . .

〈b〉 In−1 = 〈̂b − ̂〈a pn−1〉 × 〈b〉〉

The hypothesis (i) above implies that at least one of the primes p and q is congruent
to 3 (mod 4). In this section, to fix notations, we shall always assume that q ≡ 3 (mod
4). As a code (ideal) generated by a primitive idempotent is isomorphic to a field,
condition (i) also helps us to have some control on the number of simple components
that appear in the group algebra Fq(Gp × Gq), because of the following elementary
facts of Number Theory.

Lemma 6.1 Let 
 be a positive prime number and r, s ∈ N
∗. Then

F
r ⊗F

F
s

∼= gcd(r, s) · F
lcm(r,s) .

Lemma 6.2 Let r, s ∈ N be non-zero elements such that gcd(r, s) = 2. Let u ∈ F2r

and v ∈ F2s be elements satisfying the equation x2 + x + 1 = 0. Then

F2r ⊗F2 F2s ∼= F
2
rs
2

⊕ F
2
rs
2

(12)

and e1 = (u ⊗ v) + (u2 ⊗ v2) and e2 = (u ⊗ v2) + (u2 ⊗ v) are the primitive
idempotents generating to the simple components of (12).

Methods to determine idempotent generators for minimal cyclic codes were given
in [5,6,70] using representation theory. We develop our results without appealing to
representation theory, working inside the group algebra.

For two co-cyclic subgroups H ofGp and K ofGq , consider the respective idempo-

tents eH = Ĥ− Ĥ∗ inF2Gp and eK = K̂− K̂ ∗ inF2Gq . Clearly Ĝ p ·Ĝq = ̂Gp × Gq

is a primitive idempotent of F2G = F2(Gp × Gq).
It is ease to prove that idempotents of the form Ĝ p · eK and eH · Ĝq are primitive

in F2G. We proved that each idempotent of the form eH · eK decomposes as the sum
of two primitive idempotents in F2G, by the following argument. For eH = Ĥ − Ĥ∗,
set a ∈ H∗\H (hence aH is a generator of H∗/H ). Set
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u =
{
a2

0 + a2
2 + · · · + a2

p−3
, if p ≡ 1(mod 4) or

1 + a2
0 + a2

2 + · · · + a2
p−3

, if p ≡ 3(mod 4)
(13)

and

u′ =
{
a2 + a2

3 + · · · + a2
p−2

, if p ≡ 1(mod 4) or

1 + a2 + a2
3 + · · · + a2

p−2
, if p ≡ 3(mod 4)

(14)

For eK = K̂ − K̂ ∗, set b ∈ K ∗\K and define v and v′ as in (13) and (14) replacing
a by b. As gcd(pr−1(p − 1), qs−1(q − 1)) = 2 we can apply Lemma 6.2 to see that

e1(H, K ) = uĤ · v K̂ + u′ Ĥ · v′ K̂ and

e2(H, K ) = uĤ · v′ K̂ + u′ Ĥ · v K̂

are primitive orthogonal idempotents such that e1 + e2 = eHeK .
Hence, we have shown the following.

Theorem 6.3 [15, Theorem III.1] Let G p and Gq be abelian p and q-groups, respec-
tively satisfying the conditions in (11). For a group G, denote by S(G) the set of
subgroups N of G such that G/N �= 1 is cyclic. Then the set of primitive idempotents
in F2[Gp × Gq ] is:

Ĝ p · Ĝq ,

Ĝ p · eK , K ∈ S(Gq),

eH · Ĝq , H ∈ S(Gp),

e1(H, K ), e2(H, K ), H ∈ S(Gp), K ∈ S(Gq).

Particularly, in [15, Section IV]we compute, for eachminimal code of F2(Cp×Cq),
the generating primitive idempotent, its dimension and give explicitly a basis for it
over F2. In [15, Theorem IV.7] we presented the results on minimum weight for these
codes. In [15, Theorem V.1] we deal with the case F2(Cpm × Cqn ), for m ≥ 2, n ≥ 2
and extend this technique for three primes as follows.

Theorem 6.4 [15, Theorem IV.10] Let p1, p2 and p3 be three distinct positive odd
prime numbers such that gcd(pi − 1, p j − 1) = 2, for 1 ≤ i �= j ≤ 3, and 2̄
generates the groups of units U (Zpi ). Then the primitive idempotents of the group
algebra F2G for the finite abelian group G = Cp1 × Cp2 × Cp3 , with Cp1 =< a >,
Cp2 =< b > and Cp2 =< c >, are

e0 = âb̂ĉ, e1 = âb̂(1 − ĉ), e2 = â(1 − b̂)ĉ, e3 = (1 − â)b̂ĉ,

e4 = (uv + u2v2)ĉ, e5 = (u2v + uv2)ĉe6 = (uw + u2w2)b̂,

e7 = (u2w + uw2)b̂e8 = (vw + v2w2)â, e9 = (v2w + vw2)â

e10 = (1 − â)(1 − b̂)(1 − ĉ) + u2v2w + uvw2

e11 = (1 − â)(1 − b̂)(1 − ĉ) + u2v2w2 + uvw

e12 = (1 − â)(1 − b̂)(1 − ĉ) + u2vw + uv2w2and

e13 = (1 − â)(1 − b̂)(1 − ĉ) + uv2w + u2vw2,
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where u = u(a), v = v(b), w = w(c) are defined as in (13).

Comparing and using both the group algebra techniques of [15,28] with the poly-
nomial techniques of [5], Bastos and Guerreiro [7,8] improved the presentation of
minimal idempotents of length pnq given in [41], correcting some coefficients in their
expressions.

6.2 Codes of length pn also for non-cyclic abelian groups

Let Fq be a finite field with q elements and G a cyclic group of order pn generated
by a such that gcd(q, p) = 1. Then the group algebra FqG is semisimple and each
of its ideals is a direct sum of minimal ones. Under the conditions (b) and (c) of
Corollary 2.4, the minimal ideals (codes) are generated by the primitive idempotents
given by Theorem 2.5.

In [48] Melo first considered all cyclic codes of FqG, that is, not only the minimals
and computed dimension and minimum weights of these codes, using the following
result.

Lemma 6.5 [25, Proposição 2.1] Under the hypothesis above and considering Ii the
minimal ideal ofFqG generated by the primitive idempotent ei , as in (4), for 1 ≤ i ≤ n,
we have

d(Ii ) = 2|Gi | = 2pn−i and dimFq Ii = φ(pi ) = pi − pi−1,

and a basis for Ii is

Bi = {a(1 − b)Ĝi | a ∈ A, 1 �= b ∈ B},

with A a transversal of Gi in Gi−1 and B a transversal of Gi in G. For the minimal
code I0 = (FqG)e0, we have

w(I0) = pn and dimFq I0 = 1.

Considering that the dimension of a direct sum of ideals is the sum of their dimen-
sions, Melo [48,49] focused her attention on computing minimumweight of the direct
sum of minimal ideals as follows.

Theorem 6.6 Under the hypothesis of this section and of Lemma 6.5, we have:

(i) [48, Lema 2.3] if 0 < i < j , then w(Ii ⊕ I j ) = 2|G j | = 2pn− j .
(ii) [48, Lema 2.4] If 1 < j , then w(I0 ⊕ I j ) = 2|G j | = 2pn− j .
(iii) [48, Lema 2.5] If I = I0 ⊕ I1, then w(I ) = |G1| = pn−1.
(iv) [48, Lema 2.6] If I = ⊕t

i=0(FqG)ei , then I = (FqG)Ĝt and w(I ) = |Gt | =
pn−t .

(v) [48, Lema 2.7] If I = ⊕t
k=0(FqG)eik , with 0 ≤ i1 < i2 < · · · < it and

ei1 + ei2 + · · · + eit �= e0 + e1 + · · · + et , then w(I ) = 2|Git | = 2pn−it .
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Melo [48, Seção 2.3] also considered the distribution of weights for these cyclic
codes. Furthermore, in [48, Capítulo 3], she briefly compared cyclic and non-cyclic
abelian codes of length p2, fully exploring some examples using GAP Wedderga
package (www.gap-system.org/Packages/wedderga.html).

For the group G = Cp × Cp = 〈a〉 × 〈b〉 and Fq a finite field of q elements such
that q̄ generates U (Zp), the idempotents of FqG are

e0 = Ĝ, e1 = â − Ĝ, e2 = b̂ − Ĝ, fi = âbi − Ĝ, with 1 ≤ i ≤ p − 1.

Note that if H and K are any among the subgroups 〈a〉, 〈b〉,〈abi 〉, with 1 ≤ i ≤
p− 1, then G = H × K . For the idempotents e = Ĥ − Ĝ and e = K̂ − Ĝ associated
to H and K , respectively, and considering the ideal I = (FqG)e ⊕ (FqG) f , Melo
proved:

Theorem 6.7 [48, Teorema 3.2.1]Theminimumweight of the ideal I is d(I ) = 2p−2
and its dimension is dimFq I = 2p − 2.

6.3 Essential idempotents and one-weight cyclic codes

In [16], a special type of idempotent elements in the semisimple group algebra of a
finite abelian group is considered, the so called essential idempotents. These idem-
potents were previously considered by Bakshi et al. in [6], where they were called
non-degenerate, in the special case of group algebras of cyclic groups over finite
fields.

Definition 6.8 In a semisimple group algebra FqG of a finite group G, a primitive
idempotent e is an essential idempotent if eĤ = 0, for every subgroup H �= {1} in
G. A minimal ideal of FqG is called an essential ideal if it is generated by an essential
idempotent.

The following is a characterization of essential idempotents.

Proposition 6.9 [16, Proposition 2.3] Let e ∈ FqG be a primitive central idempotent.
Then e is essential if and only if the map π : G −→ Ge is a group isomorphism.

Corollary 6.10 [16, Corollary 2.4] If G is an abelian group and FqG contains an
essential idempotent, then G is cyclic.

For cyclic groups, Chalom et al. [16] proved the existence of a non-zero central
idempotent which is the sum of all essential idempotents. They also give a criteria to
determine essential idempotents using the well-known Galois descent method and, as
a consequence, compute the number of these idempotents in FqCn , for Cn a cyclic
group of order n.

In [16, Section 3] they proved that the coefficients of the primitive idempotents of a
semisimple group algebra Fq A, for A a finite abelian group, can be easily computed as
a concatenation of the coefficients of an essential idempotent in the group algebras of a
cyclic factor of A. In terms of coding theory, this will imply that every minimal abelian
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code generated by a non essential idempotent is a repetition code: their elements can
be written as repetitions of the coefficients of elements in a cyclic code generated by an
essential idempotent. In particular, one application of this is to determine the weight
distribution of all codes when the weight distributions of codes generated by essential
idempotents are known.

Nascimento, in her Ph.D. Thesis [51], uses this notion of essential idempotents
to state conditions for a cyclic code in FqCn to be a one-weight code. Besides, she
describes precisely the form of the elements on such a code and determines the number
of one-weight codes in FqCn . She also constructs examples of two weight codes in
Fq(Cn ×Cn) and gives conditions to ensure that a code is of constant weight in Fq A,
for A an abelian group. Her work simplifies many of the proofs given by Vega [72]
for the same facts. In the literature there is also an interesting paper by Wood [78] on
linear codes of constant weight.

7 Codes over rings

In the 1990’s many papers on cyclic codes over rings started to appear, motivated by
the fact that good non linear binary codes were related to linear codes over Z4 (see,
for example, [17,38,54]). In 1996, the paper [36] by Hammons et al. won the best
paper award for Information Theory of the IEEE-IT Society in the Symposium of
IT—Whistler (Canadá). Wood [76] addressed the problem of duality for modules over
finite chain rings and applied it to equivalence of codes and to the extension theorem
of MacWilliams.

In [14] Carlderbank e Sloane determine the structure of cyclic codes over Zpm .
Later on, in [38] Kanwar and López–Permouth did the same, but with different proofs.
With the same techniques, Wan [73] extended the results from [38] to cyclic codes
over Galois rings. Em 1999, Norton and Sălăgean–Mandache in [52] extended results
of [14,38] to cyclic codes over finite chain rings and later on, in 2004, Dinh and
López–Permouth in [19] prove the same results in a different way.

Codes over rings were themain subject of the CIMPASummer School in 2008 [71].
Further developments can be found in [18,42,47] and a small survey is in [33].

In [68,69] Silva used group ring approach to characterize cyclic codes over chain
rings, their duals and some conditions on self-dual codes, simplifying the proofs and
improving results given in [19].

Let R be a finite commutative chain ring with unity such that | R |= qk , for a prime
q. For M the maximal ideal of R, the quotient R = R

M is a field and we work under
the hypotesis that q �| G |, for a finite cyclic group G. Under these conditions, the
group ring RG is a principal ideal ring, as Silva proves in [68, Teorema 2.1.9], after
characterizing all the ideals in RG. The following general fact is a basis for all Silva’s
work.

Theorem 7.1 [68, Teorema 2.1.2] Let R be a local ring, with | R |= qk and maximal
ideal M = 〈a〉, and G a cyclic group of order n such that q � n. If {e0, . . . , em} is a
full set of primitive orthogonal idempotents in RG, then {e0, . . . , em} is a full set of
primitive orthogonal idempotents in RG.
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The next theorem characterizes all cyclic codes of length n over the local ring RGei
(see [68, Corollary 11.31]), for R a chain ring and ei a primitive orthogonal idempotent,
translating results of [19] to the group ring setting. To simplify the notation we write
(RG)a j ei as 〈a j ei 〉.
Theorem 7.2 [68, Teorema 2.1.3] Let R be a commutative finite chain ring with unity,
| R |= qk, M = 〈a〉 the maximal ideal of R and t the nilpotency index o índice de
nilpotência of a in R. Let G = Cn such that q � n. If I is an ideal of RGei , then I is
of the form I = 〈aki ei 〉, with 0 ≤ ki ≤ t .

Corollary 7.3 [68, Corollary 2.1.4] Under the same hypothesis of Theorem 7.2, the
ideal RGei is indecomposable in RG and the code 〈at−1ei 〉 is minimal.

From this we have a characterization of all cyclic codes of length n over chain rings.

Theorem 7.4 Let R be a commutative finite chain ringwith unity, | R |= qk, M = 〈a〉
the maximal ideal of R and t the nilpotency index of a in R. Let G = 〈g0 / gn0 = 1〉
be such that q � n and {e0, . . . , em} be a full set of primitive orthogonal idempotents
of RG. Then:

(i) [68, Teorema 2.1.5] If I is an ideal of RG, then I is of the form I = I0 ⊕· · ·⊕ Im,
with Ii = 〈aki ei 〉, for 0 ≤ ki ≤ t .

(ii) [68, Teorema 2.1.8] The number of such codes of length n over R is (t + 1)m+1.

One important data in a code is its number ofwords. Next theoremgives this number
for cyclic codes over finite chain rings. We have

RG = RGe0 ⊕ · · · ⊕ RGem � R[x]
〈xn − 1〉 � R[x]

〈 f0〉 ⊕ · · · ⊕ R[x]
〈 fm〉 ,

where fi are irreducible factors of xn−1 and, after reordering the indexes if necessary,
we have RGei � R[x]

〈 fi 〉 . Hence, | RGei |=| R |wi , for wi = deg( fi ).

Theorem 7.5 [68, Teorema 2.1.7] Under the same hypothesis of Theorem 7.2, let C
be a cyclic code of the form C = 〈aki1 ei1〉 ⊕ · · · ⊕ 〈akir eir 〉 in RG. The the number of
words in C is | C |=| R |

∑r
s=1(t−kis )wis .

Considering ∗ : RG −→ RG the classical involution, Silva also gives a description
of the dual cyclic codes in RG as follows.

Theorem 7.6 [68, Teorema 2.2.3] Under the same hypothesis of Theorem 7.4, the
dual code of a cyclic code C = 〈ak0e0〉 ⊕ · · · ⊕ 〈akm em〉, with 0 ≤ ki ≤ t , is
C⊥ = ⊕ ∑m

r=0〈at−kr er ∗〉.
As in [19], Silva in [68, Section 2.2] states the conditions for the ring R under which

the group ring RG admits self-dual codes.
Chapter 3 of [68] is dedicated to codes over chain rings of length pn , for a prime

p, extending the results of Ferraz and Milies [28] and of Melo [48] to this context.
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Silva also proves in [68, Teorema 3.0.14] some facts about the size of such codes and
computes minimum weight of these codes [68, Teoremas 3.0.15 to 3.0.18], similarly
to Theorem 6.6. He also discusses about free codes in RG in [68, Section 3.1] and
about MDS codes of length pn over R in [68, Section 3.2]. Finally, in [68, Chapter 4],
Silva proves all such results for cyclic codes of length 2pn over finite chain rings.

There are also interesting discussion on equivalence of linear codes over rings
in [20,21,75,77].
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