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Abstract This paper considers a class of nondissipative reaction–diffusion equations.
We are particularly interested in globally well-posed equations exhibiting blow-up in
infinite time. These are known as slowly nondissipative equations. We review the
recently developed theory for this class of problems, where a characterization for the
associated noncompact global attractor is obtained. In addition, we derive an extension
for the permutation realization result that holds for dissipative equations. The outlined
results are then illustrated with an example. A brief discussion on the similarities with
the dissipative case closes the paper.

Keywords Global attractors · Slowly non-dissipative equations · Heteroclinic
orbits · Blow-up solutions

1 Introduction

In this survey we consider the following scalar reaction–diffusion equation with Neu-
mann boundary conditions
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{
ut = uxx + f (x, u, ux ), x ∈ [0, π ]
ux (t, 0) = ux (t, π) = 0.

(1)

where f ∈ C2. It is known, from standard semigroup theory (see, for instance, [1,12,
15]), that Eq. (1) with initial condition

u(0, x) = u0(x) (2)

defines a (local) solution semigroup with u0 in the appropriate state space.
A well established theory considers the case where f is dissipative. Sufficient

conditions for f to be dissipative are the following:

f (x, u, 0) · u < 0, (3)

for |u| large enough, and moreover,

| f (x, u, p)| ≤ (
1 + |p|γ )

, (4)

with c > 0 and 0 ≤ γ < 2, uniformly for x and u in compact sets. Under these
conditions, (1), (2) generates a global semigroup on the phase space

X = H2([0, π ]) ∩ {ux (0) = ux (π) = 0} (5)

which admits a global attractor A ⊂ X , that is, a nonempty compact invariant set
attracting every bounded subset of X . See for instance [2,12,13].

It is also known that the semigroup associated with (1), (2) possesses a gradient-
like structure. This is due to the existence of a Lyapunov function [16,22] for the
semigroup. As a consequence, the global attractor is composed of the set of equilibria
E for (1) and their heteroclinic connections

A = E ∪ {heteroclinic connections}.

If all the equilibria in E are hyperbolic, the gradient-like structure of the semigroup
along with the dissipativity property implies that the global attractor A is also given
by the union of the unstable manifolds of all the equilibria

A = ∪e∈EWu(e).

The investigation of nondissipative equations of the form (1) exhibiting finite time
blow-up is an ongoing topic of research. These are known as fast nondissipative equa-
tions. The remaining class of dynamical systems associated with Eq. (1) is composed
by those which exhibit blow-up only in infinite time. We refer to this class as slowly
nondissipative equations.
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A positive linear growth of the nonlinearity is sufficient to ensure slowly nondissi-
pativity of the equation. That is, by assuming that the nonlinearity in Eq. (1) is of the
form

f (x, u, ux ) := bu + g(x, u, ux ), (6)

where b > 0 and g : [0, π ] × R
2 → R is a bounded C2 function, we obtain a slowly

nondissipative equation. Indeed, the global existence of solutions is a consequence of
the boundedness of the function g (see [15]). Moreover, we have the following result,
obtained in [3].

Lemma 1.1 Consider the Eq. (1) with initial condition (2) and nonlinearity f given
by (6). If b > 0 then there exists at least one solution blowing-up in infinite time.

In the context of slowly nondissipative equations, the existence of global solutions
that are unbounded in t implies that one cannot obtain compactness for the attractor.
In this case, the object to be considered is the nonempty minimal set which attracts
all bounded sets in the state space. This is referred to as noncompact global attractor.
Also, we refer to the solutions that blow-up in infinite time as grow-up solutions.
Estimates for the behavior of grow-up solutions of (1), (6) in terms of the initial
conditions were presented in [17].

In [3,4] Ben-Gal addresses slowly nondissipative equations with nonlinearities of
the form (6) with g = g(u). The general case g = g(x, u, ux ) is considered by
the authors in [18]. In the next two sections we outline the results obtained in these
references for the characterization of the noncompact global attractor related to the
equation. As in the dissipative case this characterization is combinatoric in nature as it
uses a permutation defined on the set of equilibria. In Sect. 4 we extend to the slowly
nondissipative case the permutation realization results obtained in the dissipative case,
and characterize the corresponding noncompact global attractors. A specific example
is considered in Sect. 5 and its noncompact global attractor is described. In the final
section we present some comments and discuss the results.

2 Noncompact global attractors

Henceforward we will consider the slowly nondissipative equation

{
ut = uxx + bu + g(x, u, ux ), x ∈ [0, π ]
ux (t, 0) = ux (t, π) = 0.

(7)

We let X = L2([0, π ]) with norm ‖ · ‖ and consider the densely defined sectorial
operator A := −∂xx − bI . Then the fractional power spaces associated with the
operator A1 = A + (b + 1)I are well-defined and given by

Xα := D(Aα
1 ),

for each α ≥ 0, with the graph norm ‖x‖α := ‖Aα
1 x‖, x ∈ Xα .
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Despite the nondissipativity, the Eq. (7) has a gradient-like structure. This is due
to the existence of the Lyapunov function already mentioned. As a consequence we
have the following result, derived in [3].

Lemma 2.1 Any solution u(t, x) of (1), (2) either converges to some bounded equi-
librium as t goes to infinity, or is a grow-up solution.

By assuming that all the equilibria are hyperbolic, it also follows that the noncom-
pact global attractor A f for Eq. (7) can be characterized as the union of the unstable
manifolds of all the equilibria

A f = ∪e∈Ec
f
Wu(e)

where Ec
f denotes the set of (bounded) equilibria of Eq. (7).

By analysing the asymptotic behavior of grow-up solutions it is obtained via
Poincaré projection, as used in [14], the existence of some objects at infinity for
which these unbounded solutions will limit to. These objects are defined as equilibria
at infinity. These are given more precisely as follows. Consider an orthonormal basis
{ϕ j (·)} j∈N of L2([0, π ]) comprised of eigenvalues of the operator A with Neumann
boundary conditions. It was obtained in [3] that, given a grow-up solution u(t, ·), there
exists j ≤ √

b such that the normalized trajectory u(t,·)
‖u(t,·)‖ converges to either ϕ j (·) or

−ϕ j (·). The projections to infinite norm of the functions {±ϕ j (·)}0≤ j≤√
b, denoted by

±� j (·) for each 0 ≤ j ≤ √
b, are the equilibria at infinity.

Therefore, the set of equilibria E f of Eq. (7) is composed by the set of (bounded)
equilibria Ec

f and the set of equilibria at infinity E∞ := {±�0,±�1, . . . ,±�[√b]},
that is,

E f = Ec
f ∪ E∞

f (8)

Under the setting of slowly nondissipative equations, grow-up solutions are inter-
preted as heteroclinics to equilibria at infinity. That is, if u(t, ·) is a grow-up solution
in the unstable manifold of v ∈ Ec

f , W
u(v), and u(t,·)

‖u(t,·)‖ converges to ιϕ j (·) with
ι ∈ {−1,+1}, we say that u(t, ·) is a heteroclinic connection from v to the equilibrium
at infinity ι� j (·).

A bounded equilibrium v ∈ Ec
f is hyperbolic if λ = 0 is not an eigenvalue of the

linearization of (1) at v,

{
λw = wxx + fu(x, v, vx )w + f p(x, v, vx )wx , x ∈ [0, π ]
wx (0) = wx (π) = 0.

(9)

From here on we make the generic nondegeneracy assumption that all bounded equi-
libria v ∈ Ec

f are hyperbolic. For the genericity of this assumption see [5,20]. This
implies that Ec

f = {v1, . . . , vn} is a finite set. Moreover, in this case the Morse index
i(v) of v ∈ Ec

f denotes the number of strictly positive eigenvalues of (9), alias the

dimension of the unstablemanifold of v,Wu(v).We also assume the condition b �= n2.
This additional assumption is a nondegeneracy condition corresponding to hyperbol-
icity of the equilibria at infinity, (see [18]).
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For a continuous function u defined on [0, π ] the zero number z(u) of u is the
number of strict sign changes of u in [0, π ]. Then, two equilibrium points v1 and
v2 are said to be adjacent if there does not exist any other equilibrium v such that
z(v2 − v) = z(v − v1) = z(v2 − v1) with v(0) strictly between v1(0) and v2(0),
[21]. These two notions are essential for the characterization of global attractors in
the dissipative setting. In the slowly nondissipative case, given the relation between
the objects ±� j (·) and the functions ±ϕ j (·), one can trivially extend the definition of
zero numbers to the equilibria at infinity. Also, the notion of adjacency of equilibria
can be naturally extended to this case. Then the following result, obtained in [18],
provides a characterization of the noncompact global attractor for Eq. (7), described
through the adjacency criterion.

Theorem 2.1 The noncompact global A f is given by

A f = E f ∪ {heteroclinic connections}.

Moreover, given u, v ∈ E f there exists a heteroclinic orbit connecting them if, and
only if, they are adjacent. Also, the equilibrium with higher Morse index is the source
of the connection.

3 Permutation characterization

In the dissipative case, the study of heteroclinic orbit connections in the global attractor
of (1) was initiated in [6,7]. The existence of a permutation associated with Eq. (1)
describing the dynamics on the global attractor was then established in [8]. This
permutationσ f ∈ Sn , wheren is the number of equilibria and Sn denotes the symmetric
group of permutations of degree n, is obtained from the ordering of the equilibria by
their values at x = 0 and at x = π .

The equilibria v ∈ E f are solutions of the ODE boundary value problem

{
uxx + f (x, u, ux ) = 0, x ∈ [0, π ]
ux = 0, x = 0, π.

(10)

We use the initial value problem corresponding to the ODE in (10) with Neumann
initial conditions (u(0), ux (0)) = (u0, 0) to define the meander curve γ0 in the plane
(u, v) = (u, ux ) ∈ R

2,

γ0 := {(u(π), ux (π)) : u0 ∈ R} . (11)

Then the equilibria v ∈ E f correspond to the intersections of the curve γ0 with the
curve

γ1 := {(u, v) : v = 0}
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in agreement with the Neumann conditions at x = π . We remark that in the Poincaré
spherically extended plane both γ0, γ1 are Jordan curves, and the previous hyperbol-
icity assumption corresponds to transversality of the intersections γ0 ∩ γ1.

In this view, the permutation σ f corresponds to the ordering of the points of inter-
section γ0 ∩ γ1 first along γ0 and then along γ1. In Sect. 5 we show some illustrations.
Such permutations defined by the intersection of Jordan curves are called meander
permutations. Also, a permutation σ ∈ Sn is called dissipative if σ(1) = 1 and
σ(n) = n.

A dissipative permutation σ ∈ Sn is calledMorse if the index vector (im(σ ))1≤m≤n

defined by

i1(σ ) = 0,

im+1(σ ) = im(σ ) + (−1)m+1 sign(σ−1(m + 1) − σ−1(m)), m = 1, . . . , n − 1,

satisfies i j (σ ) ≥ 0 for all 1 ≤ j ≤ n.
The Morse indices of the equilibria v j ∈ E f , j = 1, . . . , n, are determined by the

permutation σ f , (see [8,9,19]). In fact the Morse indices i(v j ) are given by the index
vector just defined,

i(v j ) = i j (σ f ), j = 1, . . . , n.

Also, for any pair of distinct equilibria v j , vk ∈ E f , the intersection number z jk
defined by the zero number of their difference, z jk = z(v j − vk), is determined by the
permutation σ f . Therefore, by the adjacency criterion, σ f determines which equilibria
are heteroclinically connected.

In [18] the authors extended this result to the context of slowly nondissipative
equations (7) by defining a permutationwhich describes the dynamics on the associated
noncompact global attractor. The result was obtained through a suspension technique
applied to the nondissipative permutation obtained from the usual ordering of the
equilibria.

The concept of k-suspension of a permutation σ ∈ Sn is introduced in [18] and is
given as follows.

Definition 3.1 Let k be a positive integer. For any permutation σ ∈ Sn the k-
suspension of σ , denoted by σ k , is defined as the permutation in Sn+2 satisfying:

1. σ k( j) = σ( j − 1) + 1 for j ∈ {2, . . . , n + 1};
2. and

σ k(1) = 1 and σ k(n + 2) = n + 2, if k is odd (12)

σ k(1) = n + 2 and σ k(n + 2) = 1, if k is even. (13)

Let σ f be the usual permutation in Sn related to (7), defined by the ordering of the
equilibria at x = 0 and x = π . Also let k = 1 + [√b]. By successively computing
the suspensions

σ̂ j := (σ̂ j−1)
k− j for j = 1, . . . , k,
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with σ̂0 := σ f , we obtain a permutation σ̂k ∈ Sn+2k . Then, the kth suspension σ̂k of
σ f is a dissipative Morse meander permutation. This ensures that σ̂k is realizable by a
problem (1) with a dissipative nonlinearity f̂ , that is, σ̂k = σ f̂ . See [10]. Moreover, σ̂k
determines completely the Morse indices and intersection numbers of the equilibria
in E f = Ec

f ∪ E∞
f , see [18] for details. For the equilibria at infinity this follows from

the extended interpretation of the nodal properties for such objects.
As a consequence, the suspension σ̂k determines the noncompact global attrac-

tor A f associated with Eq. (7). By considering σ̂k one can answer the question of
whether or not two equilibrium points in E f , bounded or at infinity, are connected by
a heteroclinic orbit.

4 Realization of nondissipative permutations

A simple adjustment of the permutation characterization of Sturm global attractors
described in [10] for the dissipative case leads to a characterization of the permutations
realizable by slowly nondissipative nonlinearities (6).

As in the dissipative case we assume hyperbolicity of all the equilibria and consider
the second order boundary value problem corresponding to the stationary problem,

uxx + f (x, u, ux ) = 0, ux (0) = ux (π). (14)

Then the orderings of the stationary solutions v1, . . . , vn of (14) according to their
values at x = 0 and at x = π define the permutation σ ∈ Sn and we say that σ is
realizable by a slowly nondissipative nonlinearity (6).

For b > 0 let k = 1 + [√b]. A permutation σ ∈ Sn with odd n is called a
k-nondissipative permutation if

σ(1) = 1, σ (n) = n if k is odd,

and
σ(1) = n, σ (n) = 1 if k is even.

The index vector (im(σ ))1≤m≤n of a k-nondissipative permutation is given by

i1(σ ) = k,

im+1(σ ) = im(σ ) + (−1)m+1+k sign(σ−1(m + 1) − σ−1(m)), m = 1, . . . , n − 1.

Then a k-nondissipative permutation σ ∈ Sn is called Morse if im(σ ) ≥ 0 for all
1 ≤ m ≤ n. Notice that we always have k ≥ 1. We remark that if we let k = 0, then
we obtain the usual definitions in the dissipative case.

Then we have the following characterization of the permutations realizable by
boundary value problems corresponding to slowly nondissipative problems of the
form (7).
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Theorem 4.1 A permutation σ ∈ Sn is realizable by a slowly nondissipative nonlin-
earity of the form (6) if and only if n is odd and σ is a k-nondissipative Morse meander
permutation with k = 1 + [√b].

For dissipative realizable permutations, it is known that the index vector determines
the Morse indices of the equilibria. The following result, derived in [18], shows that
the same statement holds true for k-nondissipative realizable permutations.

Lemma 4.1 Letσ ∈ Sn bea realizable k-nondissipative permutationand {v1, . . . , vn}
the set of bounded equilibria of the associated slowly nondissipative equation. Then
the Morse indices of the equilibria v j are respectively given by

i(v j ) = i j (σ ), for j = 1, . . . , n. (15)

5 A planar noncompact global attractor

In this section we illustrate the theory for slowly nondissipative systemswith a specific
example. As a consequence of Theorem 4.1 it is sufficient to consider a permutation
realizable by a slowly nondissipative equation. We choose

σ = {5, 2, 3, 4, 1},

or in cycle notation σ = (1 5) ∈ S5. For even positive k this σ is a k-nondissipative
permutation with index vector (im(σ ))1≤m≤5 given by

(im(σ ))1≤m≤5 = (k, k − 1, k − 2, k − 1, k). (16)

Then σ is realizable by a slowly nondissipative nonlinearity of the form (6) with an
odd value of [√b]. Henceforward we let 1 < b < 4, for which we have k = 2.

For our system, generated byEqs. (6), (7)withσ f = σ , the set of bounded equilibria
and the equilibria at infinity are given by

Ec
f = {v1, . . . , v5}, E∞

f = {−�0,−�1,�1,�0}.

We compute the Morse indices of the equilibria in Ec
f using (15). Then, (16) implies

that v3 is stable, i(v3) = 0. Moreover, i(v2) = i(v4) = 1 and i(v1) = i(v5) = 2
which implies that the noncompact global attractor A f is planar. The existence of
heteroclinic orbit connections between all the equilibria in E f = Ec

f ∪ E∞
f follows

from Theorem 2.1. The needed adjacency relations are determined by the suspension
procedure discussed in Sect. 3. Beginning with σ̂0 = σ , we have

σ̂1 = {7, 6, 3, 4, 5, 2, 1},
σ̂2 = {1, 8, 7, 4, 5, 6, 3, 2, 9}.

The suspension σ̂2 = (2 8)(3 7) ∈ S9, illustrated in Fig. 1, then provides the adjacency
relations between the equilibria in E f . This second suspension of σ is realizable by a
dissipative problem with a set of equilibria
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3 4 15 2 6 34781 5 2 9

Fig. 1 Canonical representation of meander curves: (left) the permutation σ = {5, 2, 3, 4, 1}; (right) its
second suspension σ̂2 = {1, 8, 7, 4, 5, 6, 3, 2, 9}

v3

v1 v5

v2

v4

11

0

0

Fig. 2 Noncompact global attractor with permutation σ f = {5, 2, 3, 4, 1}

{w1, w2, w3, w4, w5, w6, w7, w8, w9}

such that w j+2 = v j for j = 1, . . . , 5, and w1, w2, w8, w9, (with very large norms)
play the role of −�0,−�1,�1,�0, respectively. Computing the adjacency relations
made available by σ̂2 then implies the following heteroclinic connections (denoted by
�) between Morse adjacent equilibria, (see for example [9])

w3 � w4, w6, w2, w7 � w4, w6, w8, w4 � w5, w9, w6 � w5, w1,

w2 � w1, w9, w8 � w1, w9.

The resulting heteroclinic orbit connections in the noncompact global attractor A f ,
as illustrated in Fig. 2, are the following

v1 � v2, v4,−�1, v5 � v2, v4,�1 , v2 � v3,�0, v4 � v3,−�0,

−�1 � −�0,�0, �1 � −�0,�0.

By the transitivity of � we then obtain the complete heteroclinic orbit connectivity
in A f .
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c
f

...

...

k-1

k-1

Fig. 3 The connection graph of grow-up solutions in the noncompact global attractorA f shows a Chafee–
Infante structure of the heteroclinic connections between equilibria at infinity E∞

f

The noncompact global attractor A f contains a compact invariant subset Ac
f

composed of the set of bounded equilibria Ec
f and the heteroclinic orbits connect-

ing them. The information regarding the set of equilibria at infinity, E∞
f , and the

heteroclinic orbits connecting them, essentially derives from the linear equation cor-
responding to (7) with g = 0. In fact, in the general case k = 1 + [√b], we have
that E∞

f = {±�0, . . . ,±�k−1}, has 2k equilibria. Moreover, their heteroclinic con-
nections resemble a k-dimensional Chafee–Infante global attractor (see for example
[9]) with the unstable origin replaced by the suspended compact invariant set Ac

f , as
illustrated in Fig. 3.

6 Discussion

The results obtained for the slowly nondissipative equation (7) should be compared
with the well-established theory of dissipative scalar reaction–diffusion equations. As
shown in [18], a k-nondissipative Morse meander permutation can be suspended k
times to produce a dissipative Morse meander permutation which ensures that the
suspended permutation is realizable by a problem (1) with a dissipative nonlinearity.
This realization provides information on the heteroclinic orbit connections between
all the equilibria, bounded and at infinity, in the noncompact global attractor of the
slowly nondissipative problem (7) realizing the original k-nondissipative permutation.
Therefore, the similarities between the characterization results for the global attractors
of dissipative and slowly nondissipative scalar reaction–diffusion equations are not
surprising.

Taking into account the extended notion of equilibria and the interpretation of grow-
up solutions as transfinite heteroclinics, the combinatorial characterizations of both
compact and noncompact global attractors in terms of permutations of the equilibria
are entirely similar.

The consequences of the permutation characterization of global attractors can also
be extended to the noncompact case. It is known from [11] that global attractors in
the dissipative case are characterized by the corresponding permutations up to orbit
equivalence. More precisely, dissipative equations for which the related permutations
coincide, possess globally C0 orbit equivalent attractors. We recall that two com-
pact global attractors A f1 and A f2 are globally C0 orbit equivalent, A f1

∼= A f2 , if
there exist a homeomorphism h : A f1 → A f2 which maps f1-orbits onto f2-orbits,
preserving the time direction of the flows, see [11].
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A similar result holds true for the slowly nondissipative equation (7) if we restrict
attention to the compact invariant subset Ac

f . Given two nonlinearities f1 and f2 of
the form (6), i.e.

f1(x, u, ux ) = b1u + g1(x, u, ux ), f2(x, u, ux ) = b2u + g2(x, u, ux ),

with g1 and g2 bounded, the noncompact global attractorsA f1 andA f2 of (7) have the
same connection graphs of grow-up solutions if [√b1] = [√b2], (see Fig. 3). Then, if
the k-nondissipative permutationsσ f1 andσ f2 coincide, the global attractors associated

with the dissipative permutations σ̂
f1
k and σ̂

f2
k are globally C0 orbit equivalent. This

leads to the C0 orbit equivalence of the compact invariant subsets Ac
f1
and Ac

f2
.

More general classes of nonlinearities generating slowly nondissipative systems
have not yet been approached. Since the first eigenvalue of the operator −∂2x with
Neumann boundary conditions is λ1 = 0, the following condition on the nonlinearity
f = f (u) produces scalar reaction–diffusion equations with grow-up solutions but
without blow-up in finite time,

0 < lim sup
|u|→∞

f (u)

u
< ∞. (17)

It is not difficult to generalize condition (17) to obtain slowly nondissipative equa-
tions with more general nonlinearities or boundary conditions. We believe that by
analysing the asymptotic behavior of nondissipative equations (1) with more general
nonlinearites will provide a larger set of grow-up behaviors and a better understanding
of the dynamics for this class of dynamical systems.
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