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Abstract
Amid the rise of mobile technologies and Location-Based Social Networks (LBSNs), there’s an escalating demand for
personalized Point-of-Interest (POI) recommendations. Especially pivotal in smart cities, these systems aim to enhance user
experiences by offering location recommendations tailored to past check-ins and visited POIs. Distinguishing itself from
traditional POI recommendations, the next POI approach emphasizes predicting the immediate subsequent location, factoring
in both geographical attributes and temporal patterns. This approach, while promising, faces with challenges like capturing
evolving user preferences and navigating data biases. The introduction of Graph Neural Networks (GNNs) brings forth a
transformative solution, particularly in their ability to capture high-order dependencies between POIs, understanding deeper
relationships and patterns beyond immediate connections. This survey presents a comprehensive exploration of GNN-based
next POI recommendation approaches, delving into their unique characteristics, inherent challenges, and potential avenues
for future research.

Keywords Smart city · Graph neural networks (GNNs) · Next point-of-interest (POI) recommendation · Location-based
services

1 Introduction

The rapid development of mobile technologies and LBSNs
has resulted in a growing demand for personalized POI
recommendations [1–3]. As individuals navigate urban envi-
ronments and engage in their daily activities, the need for
systems that provide personalized POI recommendation has
become increasingly important. These tailored suggestions
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not only enhance the user experience but also significantly
contribute to attracting customers to local businesses. Within
the context of smart cities, next POI recommendation sys-
tems seamlessly integrate into the city’s digital infrastructure.
They offer residents a more intuitive and personalized urban
navigation experience, highlighting how next POI recom-
mendation research is transforming the way users engage
with their surroundings.

The next POI recommendation predicts the subsequent
location that a user might visit based on their past check-ins
and visited POIs. This process considers both the geograph-
ical attributes of the POIs and the temporal patterns of user
movements, aiming to offer timely, context-aware sugges-
tions for location-based services. It’s crucial to differentiate
between “next POI recommendation” and general “POI rec-
ommendation.” While both suggest locations based on past
check-ins, the next POI recommendation emphasizes pre-
dicting the immediate next location by viewing check-ins as
a continuous sequence, capturing dynamic user preferences,
and recognizing geographical factors. In contrast, traditional
POI recommendations focus more on a user’s overall his-
torical preferences, sidelining the importance of sequence,
spatial context, and time sensitivity.
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The next POI recommendation inherently possesses dis-
tinct characteristics that present specific challenges. At its
essence, this approach interprets user check-ins as a contin-
uous sequence, focusing on predicting the user’s immediate
subsequent visit. However, the details of the next POI rec-
ommendation extend beyond simple sequential forecasting.
It places a strong emphasis on spatiotemporal dynamics, rec-
ognizing that user preferences are fluid and evolve over time.
The need to capture these dynamic shifts in user inclinations
becomes paramount, with geographical contexts emerging as
crucial influencers in the recommendation process. From the
user’s perspective, a recommendation system must adeptly
integrate both immediate actions and overarching behav-
iors. This integration is further complicated by user biases
in data recording and the occasional scarcity of data for
certain users. Additionally, the POIs themselves exhibit intri-
cate geographical interrelations, and specific POIs manifest
strong temporal associations. In subsequent sections, we will
delve deeper into these detailed characteristics and chal-
lenges.

Historically, the next POI recommendation primarily
relied on techniques such as matrix factorization [4], Markov
chains [5], and deep learning methods like recurrent neural
networks (RNNs) [1]. While these methods are effective to
a certain extent, they tend to emphasize local spatiotemporal
relationships, often overlooking broader global spatiotem-
poral contexts. For instance, they mainly depend on users’
individual historical visitation data, potentially neglecting
global trajectories not present in historical records, and
struggle to capture the high-order geographic relationships
between POIs. In contrast, GNNs, as an cutting-edge tech-
nology, can grasp the high-order connectivity between POIs
and integrate diverse information. Leveraging their inherent
capabilities, GNNs can model both local and global spa-
tiotemporal relationships, offering a superior solution for
next POI recommendation.

In this survey, we strive to provide a comprehensive
overview of the advancements in GNN-based next POI rec-
ommendation systems. Section 2 introduces the background
of Smart Cities, Next POI Recommendation, and GNNs. In
this section, we start with the concept of Smart Cities, cate-
gorize the distinct characteristics, analyze the challenges of
the next POI recommendation, and delve into the GNN vari-
ants tailored for the next POI context. Section 3 discusses
GNN-based methods for the next POI recommendation. We
approach this from two distinct perspectives: the graph con-
struction and theGNN-based approaches aimed at addressing
different characteristics of next POI recommendation. Sec-
tion 4 introduces the commonly used datasets and evaluation
metrics for the next POI recommendation. Future research
directions are mentioned in Sect. 5. Lastly, we conclude this
paper in Sect. 6. Notably, compared to existing surveys on

the next POI recommendation [6, 7], ours stands out as the
first to offer insights from a GNN-based perspective.

2 Background

This chapter is organized into three interconnected sections,
each highlighting a critical element of the next POI recom-
mendation within the context of smart cities. It begins by
examining the transformative impact of smart cities, where
digital innovations are leveraged to improve urban life, posi-
tioning the next POI recommendation as an essential feature
of this advanced ecosystem. The discussion then shifts to a
detailed examination of the next POI recommendation, out-
lining its definition, reviewing initial research efforts, and
analyzing the complex characteristics of it. The final section
delves into GNN variants in next POI recommendation.

2.1 Smart cities

A smart city is an urban area that uses different types of elec-
tronicmethods and sensors to collect data to gain insights and
manage assets, resources, and services efficiently; in return,
that data is used to improve the operations across the city
[8]. This includes data collected from citizens, devices, and
buildings that are then processed and analyzed tomonitor and
manage traffic and transportation systems, crime detection,
information systems, and other community services.

A key component of smart cities is the development
of Intelligent Environments. These environments leverage
advanced technologies to enhance the interaction between
residents and the urban infrastructure. For instance, IoT
technology facilitates the seamless communication of data
across various systems, enabling more efficient city opera-
tions [9, 10]. The Internet of Medical Things (IoMT) further
enhances data collection, providing valuable health insights
[11]. Advanced human sensing techniques, such as 3D point
cloud analysis, contribute to creating more responsive and
adaptive environments [12]. Moreover, methods like the
Fuzzy Cognitive Network Process are used for software reli-
ability and quality measurement in smart city applications,
ensuring that the underlying systems are robust and depend-
able [13].

The concept of a smart city is intrinsically linked to
improving the quality of life for its residents [8]. One of the
ways to achieve this is by providing personalized services
and recommendations based on the vast amount of data col-
lected. The next POI recommendation is one such service. In
a smart city, as residents move about, interact with various
city services and the advancement of IoT, data about their
preferences, behaviors, and routines are collected [14]. This
data, when processed using advanced models like GNNs,
can predict the next place a resident might want to visit or
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the next service they might require. For instance, if a per-
son frequently visits a particular coffee shop after work, a
next POI recommendation system might suggest trying out
a new dessert place nearby. Such recommendations not only
enhance the user’s experience in the city but also help in effi-
cient city planning. By understanding where residents are
likely to go next, city planners can optimize public transport
routes, manage crowd control, or even plan urban develop-
ment projects more effectively.

2.2 Next POI recommendation

This section elaborates on the problem definition of the next
POI recommendation, early research in this field, and the
characteristics of next POI recommendations.

2.2.1 Problem definition

Next POI recommendation refers to the task of predicting
the next possible location or place a user is likely to visit
based on their historical check-in sequences or past visited
POIs [1–3]. This task takes into account both the geographic
information of the POIs and the temporal patterns of the
user’s movements. The goal is to provide timely and context-
aware recommendations to users, enhancing their experience
in location-based services.

It’s crucial to understand that “Next POI Recommen-
dation” and “POI Recommendation” are distinct concepts.
While both involve suggesting POIs based on a user’s his-
torical check-ins, “Next POI Recommendation” specifically
aims to predict the exact location a user is likely to visit next.
This method treats user check-ins as a continuous sequence,
emphasizing the importance of sequential dependency - the
high correlation between sequential locations visited by a
user. Moreover, it acknowledges temporal dependency by
considering different check-in preferences during various
times, such as day and night. Spatial dependency is also a key
focus, recognizing that users generally prefer visiting loca-
tions closer to them. These aspects collectively contribute to
capturing dynamic user preferences, underscoring geograph-
ical influences as crucial in the recommendation process
[15–17]. In contrast, traditional POI recommendation pre-
dominantly relies on a user’s broader historical preferences,
placing less emphasis on sequentiality, spatial proximity, and
temporal sensitivity.

2.2.2 Early research in next POI recommendations

The task of the next POI recommendation aims to sug-
gest the subsequent POI a user might visit, based on their
historical check-in sequences which encompass geographic
information and mild time constraints. Traditional methods
employed for this task predominantly includeMatrix Factor-

ization and Markov Chain-based techniques, such as FPMC
[18] and FPMC-LR [19]. Matrix Factorization [4] seeks to
decompose the user–POI interaction matrix into two low-
rank matrices, which can be roughly interpreted as the latent
representations of users and items, respectively. However,
a limitation of this approach is its neglect of the tempo-
ral relationships among check-ins, making it challenging to
accurately recommend the next potential POI. On the other
hand, the essence of the Markov Chain approach [5] is to
capture the sequential mobility patterns of users. It leverages
the transition probabilities estimated from past check-ins to
predict the next POI a user might visit. This method places
a strong emphasis on the patterns and trends within time
series. Yet, to enhance the accuracy of recommendations,
researchers have integrated various factors into these tech-
niques, such as social dynamics, time-based attributes [20],
and geographical considerations [19]. While these methods
excel in extracting latent features from user–POI interactions
and predicting preferences, their linear combination might
not fully grasp the high-order sequential pattern in user–POI
engagements.

The dawn of deep learning has ushered in innovative
strategies to unearth the nuanced, non-linear relationships
between users and POIs. RNNs have emerged as a pow-
erful tool for addressing complex dependencies within
extended sequences, playing a pivotal role in deciphering the
chronological patterns of user check-ins. This prowess has
positioned them as the go-to approach for next-POI recom-
mendation tasks. STRNN[1] innovativelymarriesRNNunits
with spatiotemporalmatrices, where distance and timematri-
ces are parameterized based on specific spatial and temporal
distances between proximate POIs in check-in sequences.
As an advanced variant of RNNs, Long Short TermMemory
Models (LSTMs) adeptly tackle the long-term dependency
challenge, offering nuanced modeling of users’ long-term
and short-term preferences. LSTPM [2], capitalizing on
LSTM’s capabilities, bridges users’ long-termand short-term
inclinations, employing a context-aware network architec-
ture to probe the temporal and spatial interplay between
preceding and current trajectories. STGN [21], building upon
the foundational LSTM, introduces two additional time gates
and two distance gates, capturing the spatiotemporal nuances
in both short-term and long-term sequences. HST-LSTM [3],
on the other hand, harnesses the spatiotemporal intervals
between successive visits, embedding them within an LSTM
that boasts a hierarchical structure.

The aforementioned studies primarily treat the next
POI recommendation as a sequential recommendation task.
While they effectively account for the temporal and spa-
tial influences on user choices, they might still oversimplify
spatial contextual information. This approach may not fully
harness the spatial structure and could struggle to capture
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the high-order geographical and heterogeneous relationships
introduced in Sect. 2.3.2 between POIs.

2.3 Characteristics in next POI recommendation

Next POI recommendation treats user check-ins as a contin-
uous sequence, aiming to suggest the specific location a user
is likely to visit next. However, the complexity of the next
POI recommendation goes beyond mere sequence predic-
tion. It places a heightened emphasis on the spatiotemporal
relationship, recognizing that user needs and preferences
evolve. Capturing these dynamic user preferences is crucial,
with geographical influences emerging as key determinants
in the recommendation process. From the user’s perspective,
there’s a need to balance and integrate both short-term and
long-term preferences, while also addressing data challenges
such as user biases in recording data and limited data avail-
ability for some users. Regarding the POIs themselves, there
exists a high-order geographical interrelation between them,
and certain types of POIs exhibit strong temporal associa-
tions. In the following sections, we will categorize and delve
deeper into the distinct features. The characteristics of the
next POI recommendation task can be found in Table 1.

2.3.1 Inter-user preference

The “Inter-User Preference” refers to the relationship and
similarities between the preferences of different users [22].
The tendency of users in the next POI recommendation sys-
tem is to explore new locations that they haven’t visited
before. This behavior complicates the prediction of their
next move based solely on their historical trajectories. As
users are inherently curious and may seek novel experiences,
relying only on their past behaviors can limit the accuracy
and relevance of recommendations [24, 38]. Furthermore,
the inter-user preference-based relationship comes into play,
where users might be influenced to explore locations based
on the visits or preferences of other users [22]. Addressing
both these biases and relationships is crucial for enhancing
the adaptability and effectiveness of the next POI recommen-
dation systems.

2.3.2 POIs complex interactions and dependencies

The high-order geographical and heterogeneous relation-
ships inherent to POIs present both a distinctive feature and
a challenge for the next POI recommendation systems [15,
25]. High-order dependencies reveal complex patterns of
user behavior that transcend simple geographic proximity,
reflecting preferences that can link disparate POIs through
common themes or user interests. For example, a user may
consistently choose venues that host live music, regardless of
their location, indicating a high-order connection based on

entertainment value rather than distance. On the other hand,
heterogeneous relationships underscore the varied attributes
of POIs, such as a local library’s quiet ambiance contrasted
with a nearby bustling marketplace. These relationships add
layers of complexity to the recommendation process, as
systems must discern and predict user preferences that are
influenced by a rich tapestry of factors, from cultural interests
to activity types. Addressing these multifaceted dependen-
cies is crucial for developing sophisticated recommendation
systems that can navigate the intricate web of user–POI inter-
actions and offer truly personalized suggestions.

2.3.3 Implicit feedback

Users exhibit implicit feedback issues concerning POI data
[29]. “Implicit feedback” refers to the indirect responses from
users, such as browsing history and frequency of visits with-
out explicit user preferences such as ratings. It’s a crucial
component of POI data, as users often are either unwill-
ing or don’t have the time to provide direct feedback in the
form of ratings and reviews. Implicit feedback primarily cap-
tures positive interactions that when a user visits a particular
POI. This leads to a lack of negative feedback when a user
dislikes a specific POI. Implicit feedback leads to difficul-
ties in capturing user preferences, as the data only consists
of user action check-ins without indicating the preference
level. It complicates modeling user–POI interactions effec-
tively, leading to potential inaccuracies in recommendation.
Also, implicit feedbackwill introduce noise into the data. For
instance, a user might visit a POI by chance, not necessarily
because they are genuinely interested in it. However, other
factors can contribute to the noise. For example, users might
deliberately manipulate their check-in records for personal
reasons.

2.3.4 Sparsity of raw relational data

Data sparsity in the next POI recommendation refers to a
situation where there is a significant lack of data points in a
dataset due to the incomplete or infrequent actions of users.
Users have the option to “check in” at specific locations to
indicate their presence. However, not every user will check in
every time they visit a place. Some might forget, some might
not want to share their location due to privacy concerns, and
others might not use the application frequently. Additionally,
to know and rate a POI, users must physically visit it, which
is more costly than rating a movie online [39]. Even when
users visit a POI, they often do not check in due to privacy
or safety concerns. This leads to sparse data, where only a
fraction of a user’s actual visits to places is recorded. In com-
parison to other recommendation tasks, the check-in data in
the POI recommendation is notably sparser. For instance,
the density of check-in data is typically around 0.1 percent
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Table 1 Characteristics of the next POI recommendation

Characteristics Reference examples

Inter-User Preference STP-UDGAT [22],GETNext [23] GSTA-GNN [24],GSTN [15], DRAN [25],SGRec [26]

POIs Complex Interactions and Dependencies GSTN [15], DRAN [25], KBGNN [27], AGRAN [28]

Implicit Feedback EEDN [29]

Sparsity of Raw Relational Data SGRec [26], GETNext [23], HMT-GRN [30],MSDP [31]

Cold Start GETNext [23], EEDN [29], STHGCN [32]

Temporal Sensitivity of POI Categories GETNext [23],[33]

Users Dynamic Preferences LSPL [34], PLSPL [35], LSTPM [2], LSPHGA [36], GCN-LSTM [37]

[40], whereas, for movie recommendations like on Netflix,
the data density is around 1.2% [41]. This data sparsity poses
a significant challenge for the next POI recommendation [30,
37]. Sparse data results in short sequences, making it diffi-
cult to capture a user’s sequential pattern. Moreover, data for
POI recommendations tends to be binary implicit rather than
explicit, meaning the regularity of user behaviors is harder
to discern and leverage.

2.3.5 Cold start

The “Cold-start” problem refers to the challenge of making
accurate recommendations for new or infrequently visited
locations, or new users with limited interaction history. This
problem arises because the recommendation model strug-
gles to collect sufficient knowledge about these users or
POIs, resulting in poor prediction performance. The lack of
historical data for new users or less-visited POIs makes it
difficult for traditional recommendation systems to predict
future interests accurately. This results in a less personal-
ized and effective recommendation experience, particularly
for new users or for recommending new or niche POIs.
Due to the absence of ample interaction data, this issue hin-
ders traditional recommendation algorithms from effectively
predicting user preferences and behaviors. The cold-start
dilemma is a significant hurdle in the next POI recommen-
dation domain [23, 29]. Addressing the cold-start issue is
pivotal for effectively onboarding and engaging new users in
the system.

2.3.6 Temporal sensitivity of POI categories

Temporal sensitivity refers to the pattern or trend observed
in the frequency or likelihood of check-ins at a particular
POI based on the time of day or other temporal factors. In
the context of location-based social networks, certain POIs
exhibit strong temporal patterns in user check-ins [23, 33].
This means that the frequency with which users check into
certain locations can vary significantly depending on the time
of day, day of the week, or even season. For instance, as

mentioned in the statement, train stations might see a surge
in check-ins during rush hours when people are commut-
ing to and from work. In contrast, during the late hours
of the night or early morning, the check-in frequency at
train stations might be much lower. This pattern indicates
a strong temporal correlation for the train station category.
Traditional recommendation systems that do not account
for temporal sensitivity can make irrelevant suggestions,
such as recommending a bar during working hours. Incor-
porating temporal sensitivity allows for more accurate and
contextually appropriate recommendations, enhancing user
experience by suggesting POIs that align with their current
temporal context.

2.3.7 User dynamic preferences

GE [39] posits that the dynamic preferences of users are
the most critical challenge in the next POI recommenda-
tion problem. Location-based recommendations need to rely
on users’ current preferences and spatiotemporal context
to make effective recommendations. Users exhibit dynamic
preferences, which can be primarily characterized by three
aspects: the fluidity of preferences, the interplay between
short-term and long-term inclinations, and the influence of
time and context.

• Fluidity of Preferences: This denotes that a user’s affinity
towards a POI is not static but evolves over time and
with experiences. For instance, a user might frequently
visit a specific cafe over a period, but as time progresses,
they might shift their preference to other venues or cease
visiting altogether.

• Interplay of Short-term and Long-term Preferences:
Users’ behaviors are often influenced by a combination
of their immediate inclinations and enduring interests.
Short-term preferences might arise from recent experi-
ences or current emotions, while long-term preferences
encapsulate a user’s consistent interests and habits. For
example, a user might have a long-standing preference
for outdoor activities, but on a particular weekend, influ-
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enced by a movie advertisement, they might opt to visit
a cinema.

• Influence of Time and Context [37]: Users’ preferences
can vary based on different times and settings. For
instance, a user might favor fast-food outlets on week-
days but lean towards upscale restaurants on weekends.
Similarly, their choice of activities might be indoors dur-
ing the winter and outdoors during the summer.

2.4 Graph neural network

Graph structures have become a prevalent framework for
representing entities and their interconnections. With the
advancements in deep learning techniques and the surge in
graph data, GNNs [42–44] have gained significant popularity
and success. Unlike traditional Convolutional Neural Net-
works (CNNs) [45], GNNs excel at handling non-Euclidean
structures, processing the topological structures of graphs,
and learning high-dimensional representations. They have
demonstrated superior performance in various graph-related
tasks. Notably, since the success of GNNs, their excep-
tional ability to handle spatial-temporal patterns, capture the
intricate relationships between users and POIs, and learn
high-level representations has led to extensive research in
the domain of next POI recommendation.

2.4.1 Different variants of GNNs in next POI
recommendation

Given graph data, the core idea of GNN is to iteratively
aggregate feature information from neighbors and integrate
this aggregated information with the current representation
of the central node during the propagation process. From
a network architecture perspective, GNN consists of multi-
ple propagation layers, each composed of aggregation and
update operations. The propagation can be formulated as:

h(l)
u = Updater(l)

(
h(l−1)
u ,Aggregator(l)

(
{h(l−1)

v |v ∈ Neighbors(u)}
))

Here, h(l)
u represents the representation of node u at the

lth layer. The functions Aggregator(l) and Updater(l) corre-
spond to the aggregation and update operations at the lth

layer, respectively. In this section, we will briefly introduce
GCN [42], GAT [44], and GraphSAGE [43], three main-
stream GNNs:

GCN

GCN [42] is one of the pioneering works in the domain of
GNNs. It aims to generalize the traditional convolution oper-

ation from regular grids, like images, to irregular graphs.
In GCN, the feature representation of a node is updated by
aggregating information from its neighbors and itself. The
aggregation is typically a weighted average, with weights
determined by the node’s degree. The formula for a single
layer of GCN is:

h(l)
u = σ

⎛
⎝ ∑

v∈Neighbors(u)∪{u}
W (l)h(l−1)

v

⎞
⎠

where σ is a non-linear activation function, and W (l) is a
learnable weight matrix for the (lth) layer.

GAT

GAT [44] introduces attention mechanisms to the graph
domain, allowing nodes to assign different importance
weights to their neighbors. This is particularly useful for
graphs where the relationship strength between nodes varies.
In GAT, the attention coefficients between two nodes are
computed using a shared attention mechanism, which is then
used to weight the feature aggregation. The key formula for
the attention mechanism in GAT is:

αuv = softmaxu
(
LeakyReLU

(
aT [Whu;Whv]

))

where a is a shared attention vector, andW is a shared weight
matrix.

The softmax function normalizes the attention coeffi-
cients, ensuring that they sum up to 1 across all neighbors
of a node, thus providing a probabilistic interpretation of the
attention scores. The LeakyReLU function is an activation
function that allows a small, positive gradient when the input
is negative, which helps the model learn more effectively.

GraphSAGE

GraphSAGE [43] is designed to generate embeddings by
sampling and aggregating features from a node’s neigh-
bors. Unlike GCN and GAT, which consider all neighbors,
GraphSAGE samples a fixed-size set of neighbors at each
depth level, making it more scalable for large graphs. The
method introduces several aggregation functions, such as
mean, LSTM, and pooling, to combine the features from the
node’s neighbors. The general aggregation function can be
expressed as:

h(l)
u = σ

(
W · CONCAT(h(l−1)

u ,Aggregator(l)({h(l−1)
v

|v ∈ Sample(u)})))
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where Sample(u) is a function that samples a fixed number
of neighbors for node u, and Aggregator(l) is an aggregation
function at the (lth) layer.

2.4.2 Why GNN is suitable for next POI recommendation

GNNs combine deep representation learning, the ability to
capture complex relationships, integration of diverse infor-
mation sources, and solutions to data sparsity, making them
particularly effective for the next POI recommendation task.

Deep representation of graph-structured data

The inherent nature of the next POI recommendations is
that interactions between users and POIs, as well as histor-
ical visits, can be naturally represented as a graph. GNNs
excel at processing graph data, allowing them to produce
rich embeddings for each node. These embeddings capture
the intricate interactions and preferences of users towards
different POIs. By iteratively aggregating information from
neighboring nodes, GNNs can produce a comprehensive rep-
resentation that captures both the individual characteristics
of a user or POI and their relationships within the larger net-
work.

Capturing high-order connectivity

Traditional recommendation systems often focus on direct
interactions between users and items. However, in the realm
of POI recommendations, it’s essential to consider not just
direct interactions but also indirect ones. For instance, if
a user’s friend frequently visits a particular POI, it might
also be of interest to the user. GNNs, with their ability to
propagate information through the graph, can capture these
multi-hop relationships, ensuring that both direct and indirect
connections influence the recommendation. This high-order
connectivity provides a richer context, enhancing the accu-
racy of the recommendations.

Integration of auxiliary information

Beyond the direct interactions between users and POIs,
there’s a plethora of auxiliary information that can refine
recommendations. This includes attributes of a POI, user
profiles, social connections between users, and more. GNNs
can seamlessly integrate this auxiliary information into their
framework, providing a holistic view of the user and the envi-
ronment. By doing so, they ensure that the recommendation
is influenced by a broader set of factors, leading to more
personalized and accurate suggestions.

Addressing data sparsity

One of the significant challenges in recommendation systems
is the sparsity of user–POI interaction data.Many usersmight
have interacted with only a small subset of POIs, leading to
a lack of sufficient data to make accurate recommendations.
GNNs can alleviate this issue by leveraging information from
neighboring nodes in the graph. Even if a user hasn’t directly
interacted with a particular POI, the GNN can infer potential
interest based on the interactions of similar users or related
POIs. This capability allows GNNs to provide robust rec-
ommendations even in the face of sparse direct interaction
data.

3 GNN-based approaches for next POI
recommendation

Next POI recommendations with GNN approaches often
learn POI representations and combine the embedding with
sequence modeling. The primary step often involves repre-
senting users and POIs as nodes in a graph. Through GNN
layers, node embeddings are generated by aggregating infor-
mation from neighboring nodes, capturing both local and
global spatial-temporal relationships. Once these embed-
dings are obtained, they can be fed into sequential models
like RNNs to capture the temporal dynamics of user behav-
iors. The combination of GNNs for spatial relationships and
RNNs for temporal patterns allows for a more holistic under-
standing of user preferences, leading to more accurate POI
recommendations. The overall framework for GNN-based
approaches for the next POI recommendation is depicted in
Fig. 1.

In this article, we approach the discussion of GNN-based
methods for the next POI recommendation from two perspec-
tives. First, we analyze how various studies employ different
graph construction techniques to fit the next POI recommen-
dation task. Second, we explore how these studies leverage
GNN-based approaches to face specific characteristic and
challenges inherent to the next POI recommendation task.

3.1 Graph construction

In the next POI recommendation systems, one of the core
components when leveraging GNN is the choice of graph
structure. Different graph structures capture varying contex-
tual information and interaction patterns, leading to distinct
recommendation characteristics. Themethods for graph con-
struction can be found in Table 2. Some examples of graph
construction in the next POI recommendation are depicted
in Fig. 2 and will be explained in the following subsections.
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Fig. 1 Overall framework for
GNN-based approaches for the
next POI recommendation

Table 2 Graph construction methods

Category Nodes Edges Example reference

POI Transition Graph POIs Sequences and patterns of user
movement across various POIs

ATST-GGNN [46], GETNext [23],
DynaPosGNN [47]

POI Relationship Graph POIs Various relationship such as
geographic proximity, and shared
category or temporal connections
among POIs

STP-UDGAT [22], MobGT [48],
GSTN [15], DRAN [25],
KBGNN [27]

User-POI Bipartite Graph POIs & Users Interactions between users and
specific POIs

DynaPosGNN [47], GFUC [49],
MEMO [50]

User–User Social Graph Users Connections among users with
similar visitation or interaction
patterns

STP-UDGAT [22], MEMO [50]

Knowledge Graph POIs & Users & Other
Elements

Attributes of POIs, historical user
behaviors, and geographic and
semantic links between POIs

ARNN [51], STKGRec [52],
Graph-Flashback [53]

Category-Category Graph POI Categories User behaviors in terms of
sequential visits to different
categories

MobGT [48], POI-RGNN [54],
CHA [55]

User Flow Geographical Graph Geographical Regions The directional movement of users
between different geographic
areas

ADQ-GNN [56]

Adaptive Graph POIs Different relationships among
POIs such as geographical

AGRAN [28]

Hierarchical Graph POIs & Users &
Task-Specific Nodes

Interactions between nodes across
different levels of the hierarchy

HMT-GRN [30]

Hypergraphs POIs Connection of multiple nodes and
represent complex relationships

STHGCN [32]

3.1.1 POI transition graph

POI Transition Graph offers a representation of user move-
ments. While its nodes are generally POIs, the edges sym-
bolize the patterns or sequences in which users traverse
these locations. ATST-GGNN [46] proposes a Spatiotempo-
ral Graph which is one variant of the POI Transition Graph.
This model intricately blends temporal and spatial dimen-
sions into the graph’s architecture. Each node represents a
POI,while edges signify not just the sequence but also the fre-
quency of user visits, enriched by unique temporal and spatial
weightmatrices. The temporalmatrix captures the variability
in user behavior over different times, and the spatial matrix
emphasizes geographical proximity between POIs.

GETNext [23] proposes a user-agnostic trajectory flow
map that extended the basic POI Transition Graph and the
weight on each edge quantifies the frequency or likelihood
of these transitions, reflecting how often users move between
specific POIs. This graph structure is crucial for modeling
and predicting user behavior in terms of their next POI visit,
leveraging the observed movement patterns and frequencies
among different POIs.

One of graphs in DynaPosGNN [47] is also constructed
based on transitions between POIs, similar to other models.
However, a distinct feature of this graph is that there can
be multiple edges between two nodes, each representing a
different visit time. This design allows for a more nuanced
representation of user movements, capturing the dynamic
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Fig. 2 Graph construction
examples in next POI
recommendation

nature of their interactions with various POIs based on the
specific times of their visits.

Compared to the above static POI transition graph, map-
ping only direct transitions from one POI to the next is
based on historical data. In contrast, MSDP [31] introduces
a dynamic structure that evolves, taking into account the
sequence of visited POIs, and uses a learning-based method
to infer the graph structure. This includes employing RotatE
[57] knowledge graph embedding and Eigenmap [58] meth-
ods to identify and leverage latent relationships between
POIs, overcoming the sparsity of direct observation.

3.1.2 POI relationship graph

The POI relationship graph is primarily concerned with the
relationships among POIs. Its node set exclusively consists
of POIs, while the edges depict different relationships such
as geographical proximity, shared category, or temporal rela-
tionship.

STP-UDGAT [22] created three types of POI relationship
graphs including POI-POI Spatial Graph, POI-POI Temporal
Graph, and POI-POI PreferenceGraph. These graphs capture
the relationships between POIs from different dimensions.
The Preference Graph is built based on user preferences,
reflecting the connections between POIs favored by simi-
lar users. The Temporal Graph considers the temporal aspect,
constructing relationships based on time-related associations
among POIs, such as popularity during specific time frames.
Lastly, the Spatial Graph is formed based on the geograph-
ical locations of POIs, capturing the relationships between
physically proximate points.

MobGT [48] proposes two different POI Relationship
Graph, Global Spatial Graph and Global Temporal Graph.
The Global Spatial Graph is constructed with nodes repre-

senting POIs and edges based on geographical proximity,
capturing spatial relationships between POIs. The Global
Temporal Graph, on the other hand, is built with the same
nodes but the edges reflect the temporal sequence of user
visits to these POIs, emphasizing the temporal aspect of user
mobility patterns.

This graph focuses on the nuances of POIs, capturing the
inherent similarities and contexts that might not be imme-
diately evident when only considering user interactions. For
example, GSTN [15], DRAN [25] and KBGNN [27] con-
struct a Distance-based Graph with each POI as a node. If
the distance between two POIs is less than a threshold, an
edge is created between them. Furthermore, a Gaussian ker-
nel function is used to reflect the closeness of the distance.

3.1.3 User–POI bipartite graph

The User–POI Bipartite Graph serves as a foundational
structure for many POI recommendation systems. It’s dis-
tinguished by its clear division of nodes into two categories:
users and the POIs. These nodes intermingle through edges
that signify the interactions or visitations between users and
specific POIs. This structure inherently emphasizes the direct
relationships between users and POIs. DynaPosGNN [47]
created two dynamic graphs, one is User–POI Graph. The
edges in this graph are not just simple connections but are
dynamic, reflecting the timing of user visits to POIs. GFUC
[49] and MEMO [50] also utilized the User-POI Bipartite
Graph which comprises two distinct sets of nodes, represent-
ing users and POIs respectively. Edges in the graph connect
users to POIs, indicating a user’s visit to a POI, with the edge
weight reflecting the frequency of visits.
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3.1.4 User–user social graph

Opting for a more user-centric view, the User–User Graph
revolves around user interactions and similarities. Here,
nodes exclusively represent users, while edges connect those
with analogous visitation or interaction patterns. By prioritiz-
ing user similarities, this graph structure enables recommen-
dation systems to infer preferences based on peer behavior,
highlighting communal patterns. STP-UDGAT [22] con-
structed an undirected user–user graph. In this graph, nodes
represent individual users, while edges indicate the similar-
ity between users. Specifically, an edge is formed between
two users if their Jaccard similarity coefficient exceeds 0.2.
In MEMO [50], various types of user–user social graphs
are constructed, with nodes representing individual users.
These social relationships are primarily based on familial
and professional contexts, leading to the formation of dis-
tinct user–user social graphs.

3.1.5 Knowledge graph

AKnowledgeGraph is a specialized graph structure that cap-
tures and represents intricate relationships between users and
locations in the Next POI recommendations. By integrating
the attributes of POIs, users’ historical behaviors, and the
geographical and semantic connections between locations,
knowledge graphs provide rich contextual information for
recommendation systems. This enhances the system’s abil-
ity to accurately understand user preferences and interests,
leading to more tailored POI recommendations. ARNN [51]
proposes a knowledge graph where nodes of the knowledge
graph are primarily users, POIs, and vocabulary elements
such as POI categories and tags. The edges represent dif-
ferent types of relationships between these entities. For
example, there are relationships between users and locations
based on user visits, geographical proximity relationships
between locations, and associations between locations and
vocabulary elements. This structure allows the knowledge
graph to comprehensively represent user behaviors, loca-
tion characteristics, and their interactions, providing valuable
information for the recommendation system. STKGRec [52]
proposes a STKG which is constructed by integrating spa-
tial and temporal data about user interactions with POIs.
This involves capturing user movements and preferences
over time and in different locations. The graph is built using
nodes representing users and POIs, and edges depicting the
interactions, such as visits to a POI at a certain time. This
structure allows the graph to represent complex patterns of
user behavior and preferences in both time and space, mak-
ing it useful for sophisticated POI recommendation systems.
The knowledge graph in Graph-Flashback [53] constructed
includes users and POIs as nodes, and edges represent-
ing the relationships between users and POIs, temporal and

spatial relationships between POIs, and social relationships
among users. This structure enables the knowledge graph to
comprehensively represent user behaviors, characteristics of
locations, and their interactions, thus providing rich contex-
tual information for the recommendation system.

3.1.6 Category–category graph

A category–category graph is a specialized type of graph
designed to represent and analyze relationships between
different categories of POIs. In this structure, the nodes sym-
bolize distinct POI categories, which can range from broad
classifications like “restaurants” or “parks” to more nuanced
ones such as “Italian restaurants” or “modern art muse-
ums.” The edges in the graph capture the sequential behavior
of users concerning category visits. An edge between two
categories indicates that users frequently transition from
visiting a location in one category to a location in the sub-
sequent category. For example, an edge connecting “gyms”
and “health food stores” might imply that users often visit
a health food store right after their workout session at the
gym. MobGT [48] proposes three different graphs including
global category graph which is a directed category–category
graph constructed by using nodes to represent different POI
categories and edges to depict transitions between these cate-
gories. These edges areweighted based on the frequencywith
which pairs of categories appear consecutively in user trajec-
tories. This method captures the patterns of how users move
between different types of POIs, reflecting their preferences
and behaviors in navigating through various categories. POI–
RGNN [54] extends its prediction scope from specific POI
locations to POI categories. Therefore, it constructs a POI
category graph, enabling the model to understand and pre-
dict patterns in user movements between different categories
of locations. This approach allows for amore generalized and
versatile understanding of user behavior in terms of category
preferences rather than specific locations. Compared to the
basic Category–category graph, the graph in CHA [55] com-
prises POIs as leaf nodes and their categorical information as
non-leaf nodes. Edges represent parent–child relationships
in a Directed Acyclic Graph with parent nodes providing
generalized information. This setup enables combining POI
embeddings with their hierarchical categories through an
attention mechanism. The graph in CHA aims to enhance
POI recommendations by leveraging hierarchical category
information andmitigating data sparsitywith attentionmech-
anisms. Conversely, category–category graphs are used for
understanding relationships between categories.

3.1.7 User flow geographical graph

The User Flow Geographical Graph is an illustrative tool
that captures the movement patterns of users across specific
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geographical areas. In this graph, nodes represent distinct
geographical regions, which could be neighborhoods, dis-
tricts, cities, or any demarcated area of interest. The edges,
meanwhile, represent the directional flow of users transition-
ing from one area to another. Crucially, each edge carries a
weight,whichquantifies the volumeof usersmovingbetween
the connected regions. ADQ-GNN [56] proposes an Area
Graph which is a kind of User Flow Geographical Graph,
where each node represents a specific geographical area.
These areas are determined using a quadtree structure. The
edges between nodes indicate the flow of users from one
area to another, capturing the spatial relationships and user
movements.

3.2 Advanced graph structures

• Adaptive graph. Unlike traditional methods, AGRAN
[28] does not rely on pre-defined graphs. Instead, it
employs an adaptive graph, optimizing the graph struc-
ture to automatically infer the inherent geographical rela-
tionships among POIs. Subsequently, with the learned
graph structure combined with the GCN, it generates
adaptive graph-based POI representations that possess
robust expressiveness for capturing geographical depen-
dencies.

• Hierarchical graph. The graph constructed in HMT-
GRN [30] is not a simple POI–User graph or POI-POI
graph. Instead, it utilizes a more complex hierarchical
graph structure designed to address the sparsity issue in
the User-POI matrix and to better learn the relationships
between users’ behaviors and locations. In this Hierar-
chical Spatial Graph, different levels represent different
tasks, with vertices in each level connected to vertices
in the next level, forming a hierarchical structure. This
structure allows the model to more effectively capture
the complex interactions between users and locations, as
well as among locations themselves.

• Hypergraphs. In traditional graphs, each edge connects
two nodes, whereas in a hypergraph, a hyperedge can
connect any number of nodes. This allows hypergraphs
to represent more complex relationships. STHGCN [32]
utilizes hypergraphs to capture and learn users’ histori-
cal trajectories and collaborative trajectory information
among different users. In the hypergraph, nodes represent
POIs, and hyperedges signify the complex high-order
relationships between nodes.

3.3 Application of GNN in next POI recommendation

In the previous sections, we outline the characteristics of the
next POI recommendation problem. In this chapter, we will
conduct a survey of research focused on these characteristics,

exploring how variousmodels address and enhance solutions
to the next POI recommendation challenge.

3.3.1 Inter-user preference

A challenge inherent to the next POI recommendation is that
users might explore areas unfamiliar to them, implying that
their future visits might not be reflected in their historical
trajectories. Consequently, an individual’s next POI recom-
mendation is not solely based on their past behaviors but
leans heavily on other users’ preferences.

In this context, a global POI transition graph becomes a
potent tool, capable of learning and capturing global move-
ment patterns and trends. The STP-UDGAT [22], GETNext
[23], GSTA-GNN [24], GSTN [15], and DRAN [25] mod-
els harness this idea, aiming to exploit global trajectories
through user-agnostic trajectory flow maps, also termed as
POI transition graphs. They utilize GNN methods such as
GCN to learn the embeddings of each node (POIs), captur-
ing the relationships between POIs from a global perspective
across all user trajectories. These embeddings emphasize the
significance of POIs in a global context, offering a compre-
hensive understanding of user movements. However, there
are nuances in their approaches.

In GETNext [23], the weights of the edges in its POI
transition graph are determined by aggregating all trajecto-
ries. In other words, the more frequent the transition from
one POI to another POI across all trajectories, the higher
the weight of the edge connecting them. In STP-UDGAT
[22], the POI transition graph is termed the “POI-POI Pref-
erence Graph,” which is constructed similarly to that of
GETNext. Additionally, STP-UDGAT introduces two other
distinct POI Relationship Graphs. One graph captures the
spatial relationships between POIs, focusing on their dis-
tances from one another. The other graph emphasizes the
temporal aspect, detailing the time intervals between user
visits to different POIs. GSTA-GNN [24] also creates POI
transition graphs where nodes represent POIs and edges indi-
cate transitions between them. The edge weights in the two
transition graphs are based on the spatial distance and tem-
poral intervals between POIs, respectively. For GSTN [15]
and DRAN [25], a distinguishing feature of both GSTN and
DRAN is their use of distance-based POI semantic graphs
to capture the semantic relationships between POIs based on
proximity. What sets these models apart is the method they
employ to determine edge weights in these graphs. Specifi-
cally, they utilize the Gaussian kernel to compute the weights
and an edge is established only if the distance between the
two nodes is below a certain threshold.

Unlike building a global POI transition graph, SGRec [26]
performs data augmentation for each sequence. Constructing
augmented graphs, incorporates relevant POIs from other
user sequences as context for the target POIs. This allows
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the model to learn interest similarities across users, namely
inter-user preferences, which facilitates users to explore a
wider range of POIs instead of just relying on their historical
sequences. Therefore, the sequence augmentation mecha-
nism enhances the modeling of user interest similarities.

3.3.2 POIs complex geographical dependencies

Capturing the complexity of geographical influences between
POIs is critical for the next POI recommendation, as the geo-
graphic location is highly correlatedwith actual usermobility
patterns and interest preferences. Simply put, many existing
next POI recommendationmodels solely rely on physical dis-
tance or direct sequential relationships between POIs, such
as STGN [21] and HST-LSTM [3]. However, in reality, there
also exist complex long-distance, cross-category transitional
behaviors between POIs based on their inherent attributes
and functions. For instance, it is rare for a user to directly
transition from a restaurant to a neighboring restaurant of
the same type. Therefore, linear distance metrics and naive
models alone cannot sufficiently describe people’s mobility
decision process and evolving interests.

The recently proposedGSTN [15] andDRAN[25] present
a novel approach to modeling complex geographical influ-
ences between POIs. They construct two types of POI seman-
tic graphs—a distance-based graph and a transition-based
graph. Through graph embedding, it learns latent represen-
tations that capture non-linear and high-order relationships
beyond physical proximity. For example, the transition-based
graph encodes the mobility flow patterns between POIs
based on historical check-in data. By integrating these spatial
dependencies with temporal sequencing signals, GSTN pro-
vides a holistic spatiotemporal modeling framework. More
importantly, attention mechanisms are introduced to enable
adaptive, personalized aggregation of geographical influ-
ences.

Similarly, KBGNN [27] adopts comparable methods. Its
geographical graph aligns with the POI distance graph, and
its user-aware sequential graph mirrors the POI transition
graph discussed earlier.What setsKBGNNapart is its utiliza-
tion of the random walk graph kernel, which is specifically
employed to delve into sequential influences.

Instead of using pre-set graphs, AGRAN [28] uses an
adaptive graph. This approach fine-tunes the graph structure
to better understand the natural geographical relationships
between POIs. After setting up this graph structure, it’s com-
bined with the GCN to create adaptive graph-based POI
representations. These representations are especially good
at showing geographical dependencies.

3.3.3 Implicit feedback

Implicit feedback significantly impacts the next POI recom-
mendation. Implicit feedback, derived from user behaviors
like dwell time or visit, lacks explicit preference indications,
complicating accurate interest inference. It contributes to
challenges in modeling user preferences and predicting the
next POIs accurately, necessitating sophisticated data pre-
processing and modeling techniques to mitigate their effects
and improve recommendation quality.

In the domain of the next POI recommendation, early
research focusing on collaborative filtering and matrix fac-
torization techniques frequently addressed the use of implicit
feedback. For instance, reference [1, 59] is a notable example
where implicit feedback is extensively utilized.

Graph-based approaches to addressing implicit feedback
data are relatively underexplored. EEDN [29] represents one
of the few research efforts that tackle this issue using a graph-
based method. EEDN that utilizes a hypergraph convolution
encoder to enhance the aggregation of graph convolutions,
learning robust user representations. The decoder mines
local and global interactions, modeling implicit feedback by
considering both graph and sequential-based patterns. The
hybrid approach of combining hypergraph convolutions with
matrix factorization and leveraging both local and global
interaction patterns enables themodel to capture amore com-
prehensive and nuanced understanding of user preferences,
effectively addressing the implicit feedback challenge. This
approach allows for a more detailed and nuanced under-
standing of user preferences and behaviors, improving the
accuracy of POI recommendations despite the inherent chal-
lenges of implicit feedback.

3.3.4 Sparsity of raw relational data

In the next POI recommendation task, the user–POI inter-
actions are often sparse, making it difficult to learn complex
sequential patterns at the POI level. However, POI categories
are much more dense and stable in terms of data distribution.
By incorporating category information into model learning,
richer context can be utilized to supplement the capability of
uncovering transition dependencies solely from sparse POI
data. Data augmentation is an effective approach to alleviate
data sparsity in recommender systems. The key idea of data
augmentation is to generate more abundant and diversified
data samples in various ways, providing broader coverage
for model training. This compensates for the difficulties of
feature learning caused by the inherent sparsity of user–item
interactions.

SGRec [26] alleviates the data sparsity issue by construct-
ing augmented graphs for each sequence. It incorporates
relevant POIs from other user sequences to provide addi-
tional context for the target POIs. The enriched contexts allow
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a more comprehensive representation of the POIs’ seman-
tic properties. Additionally, SGRec introduces category-
awareness by incorporating POI category embeddings into
node representations and making auxiliary predictions on
the next POI categories. By modeling the denser category-
level transitions, SGRec further supplements the capability
of learning complex sequential dependencies solely from
sparse POI interactions. Therefore, the sequence augmen-
tation mechanism and multi-task category-aware learning
allow SGRec to tackle the interaction data sparsity challenge
through enriched feature expression, increased context, and
multi-granularity pattern learning.

GETNext [23] constructs a global trajectory flow map by
aggregating generic transition patterns from all historical
records. This provides supplementary information, espe-
cially for inactive users with insufficient contexts or new
users with short trajectories. In effect, crowd knowledge
offers augmented data to compensate for individual data
scarcity. GETNext incorporates POI category information to
model check-in temporal patterns at the category level. As
category-based data ismuchmore dense and stable compared
to sparse user–POI interactions, modeling transitions across
categories compensates for the lack of fine-grained details at
the individual POI level.

HMT-GRN [30] utilizes graph-basedmethods by learning
not only User–POI but also user-region matrices at differ-
ent levels of granularity, using a Graph Recurrent Network
(GRN) module to capture both sequential dependencies and
global spatio-temporal POI–POI relationships. By reducing
data sparsity through multi-task learning and hierarchical
search space reduction via Hierarchical Beam Search (HBS)
as a method for reducing the search space and incorporates a
selectivity layer to balance personalization with exploration.
The model achieves significant improvements in prediction
accuracy and efficiency in the next POI recommendation.

MSDP [31] proposes a novel approach combining RotatE
[57] knowledge graph embedding and Eigenmap [58] meth-
ods to extract POI relationships from sparse check-in data.
This approach builds a POI similarity graph, enhancing the
model’s capability to generalize POI features by aggregating
similar POIs. By dynamically selecting neighboring nodes
for aggregation based on users’ previous POI sequences, the
model can make more accurate and context-aware predic-
tions, thereby significantly improving the effectiveness of
the next POI recommendations.

3.3.5 Cold start

The cold start problem is prevalent in next POI recommen-
dation task due to insufficient user data. For new users or
inactive users with scarce historical records, personalized
models often fail to capture their preferences and mobility
patterns, leading to poor recommendation performance. In

general, data augmentation and incorporating side informa-
tion are two common remedies.

Specifically, data augmentation enriches training data by
supplementing original sparse interaction data with aug-
mented samples synthesized from public knowledge or via
generative strategies. This facilitates feature learning under
cold start settings. Additionally, leveraging supplementary
information beyond interactions compensates for the lack
of contextual details, e.g., categorization imposes structural
constraints on user movements.

Addressing the ubiquitous cold start challenges, GETNext
[23] develops a trajectory flow map augmented by crowd
knowledge to provide generic POI transition patterns. Graph
neural network encodes such common flows into POI rep-
resentations to benefit new users. GETNext also fuses time
encoding with category embedding to better model tempo-
rary interests over categories. By multi-view learning on
augmented data and categories, GETNext alleviates the cold
start problem and outperforms sequential models relying
solely on individual trajectories.

EEDN [29] addresses the cold start problem by utiliz-
ing a novel hypergraph convolution encoder. This encoder
enhances the ability to select effective neighbors and aggre-
gates collaborative signals more effectively, thus improving
the learning of robust user and POI representations, even
when there is limited interaction data. The hypergraph con-
volution approach is effective because it captures complex,
high-order collaborative signals among users and POIs,
overcoming the limitations of sparse interaction data. By
leveraging these collaborative signals, the EEDN can bet-
ter infer the preferences of new users or the attractiveness of
less-visited POIs. This method enhances the model’s gener-
alization capabilities, making it more adept at handling the
cold start problem and providing accurate recommendations
despite limited data.

Furthermore, STHGCN [32] also leverages a hypergraph
to capture high-order relationships among user trajectories,
incorporating both intra-user and inter-user collaborative
information. By modeling high-order relationships and uti-
lizing hypergraph methods, STHGCN effectively alleviates
the cold start problem, improving prediction accuracy for
both short and long trajectories through a novel hypergraph
transformer that combines spatiotemporal context.

3.3.6 Temporal sensitivity of POI categories

Temporal sensitivity is a critical aspect where users’ prefer-
ences for POIs change dynamically over time. This temporal
aspect is crucial for predicting future POIs that a user is
likely to visit. By dividing the day into time intervals and
constructing virtual trajectories for each user, it can reflect
users’ changing preferences throughout different times of the
day. Ignoring temporal sensitivity leads to static and inflex-
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ible recommendations that fail to adapt to users’ changing
preferences.

Reference [33] utilizes a graph-based approach by trans-
forming Voronoi diagrams into undirected graphs. This
methodcalculates geographic similarity betweenPOIswithin
the same temporal interval by determining adjacency through
shared edges of Voronoi polygons and adding undirected
edges between adjacent points. The geographic similarity
between POIs visited by the same user is then calculated
to enhance the recommendation process. GETNext [23]
incorporates a fusion of time encoding and POI category
embeddings to model users’ time-aware preferences over
different categories. This is because distinct POI categories
exhibit evident temporal correlation patterns such as the
check-in rush hours at train stations.

3.3.7 Dynamic user preferences

In the domain of dynamic user preferences for the next POI
recommendation, there is a growing focus on integrating
both long-term and short-term user behaviors. Recognizing
the importance of temporal dynamics, studies such as LSPL
[34], PLSPL [35], and LSTPM [2] leverage deep learning’s
sequential models, notably RNNs, to better capture these
evolving preferences.

GNN-based methods, particularly those integrating GCN
and RNNs (especially for LSTM), have made significant
strides. These approaches effectively combine spatial and
temporal dynamics through the use of GNNs and sequential
models. For example, LSPHGA [36] significantly enhances
our capability to understand dynamic user preferences by
employing a heterogeneous GCN. This innovative model,
LSPHGA, adeptly navigates the complexities of dynamic
user preferences by integrating long- and short-term user
behaviors through an integrated heterogeneous graph neural
network complemented by attention mechanisms. Notably,
it adopts a self-attention mechanism to analyze recent user
check-in sequences, enabling the model to promptly and
accurately adjust to the latest user behaviors and preferences.
This mechanism is crucial for tailoring short-term user pref-
erences. Furthermore, LSPHGA ingeniously merges these
long- and short-term preferences, assigning personalized
weights to each user. This balanced integration allows for
nuanced predictions of the next POI by adaptively weighting
the importance of enduring, long-term interests against the
immediate, short-term desires, tailored to each user’s unique
pattern of behavior. GCN-LSTM [37] effectively addresses
dynamic user preferences by capturing both the temporal
dynamics of user behavior and the spatial dynamics of POIs.
Specifically, the use ofGCNallows for the extraction of com-
plex spatial relationships and user–POI interactions from the
heterogeneous graph. This captures the influence of geo-
graphical and social contexts. LSTM models the temporal

sequences of user check-ins, capturing the evolving nature
of user preferences over time. By integrating these two mod-
els, the framework can dynamically adapt to changes in user
preferences, leading to more accurate and personalized POI
recommendations.

4 Common datasets and evaluationmetrics

In this section, we will first introduce the commonly used
datasets for the next POI recommendation, followed by an
overview of the prevalent evaluation metrics in the field.

4.1 Datasets

Historical studies in the next POI recommendation have
leveraged check-in records sourced from a diverse array of
LBSNs, encompassing platforms like Foursquare, Gowalla,
Brightkite, and others. These datasets are predominantly
present in tabular formats, detailing interactions between
users and POIs, as well as inter-user connections within
LBSNs. The data related to user–POI interactions often
encapsulates details of user check-ins, encompassing time
stamps, geographical coordinates, and associated semantic
attributes. Such semantic details for POIs might span cate-
gories, tags from user posts, establishment dates, geospatial
data, frequency of check-ins, and more. Conversely, user-
centric semantic data might cover aspects like post counts,
friend counts, and check-in frequencies. To maintain the
essence of social interactions, certain datasets, like those
from Foursquare or Gowalla, also depict user-to-user con-
nections, illustrating a networkwhere users are linked to their
entire friend list. The statistical details of some commonly
used datasets can be found in Table 3.

Foursquare1 collaborated globally to collect and distribute
location data, primarily used for location check-ins and shar-
ing. Many POI recommendation models discussed in recent
literature utilize Foursquare datasets spanning from 2010 to
2014. These datasets predominantly feature check-in data
from regions like the USA (such as New York) and Japan
(such as Tokyo). Additionally, the dataset encompasses the
list of all friends for each user within the LBSNs.

Gowalla,2 a location-centric social media platform was
established in 2007 and later acquired by Facebook in 2012.
Its primary function revolved around location check-ins.
Available datasets fromGowalla cover check-ins fromFebru-
ary 2009 toOctober 2010. Similar to Foursquare, theGowalla
dataset also includes a list of friends for every user. Further-
more, detailed descriptions of each POI and user profiles
enrich this dataset.

1 https://foursquare.com/.
2 https://www.gowalla.com/.
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Brightkite3 was a location-based social networking web-
site launched in 2007. It allowed users to check in at different
locations via text messaging or a mobile app, thereby shar-
ing their whereabouts and seeing who else was nearby or
who had been there before. It also enabled users to post
notes and photos at these locations, which other users could
comment on. The platform was known for its public API,
which let developers create applications that integrated with
Brightkite’s services.

4.2 Evaluationmetrics

Selecting adequate metrics to evaluate the performance of
different models is essential. For the next POI recommen-
dation task, understanding the accuracy and relevance of the
suggested locations is of paramount importance. As users
rely on these systems to guide their next visits or activities,
the quality of recommendations directly impacts user satis-
faction and system utility. Therefore, metrics that evaluate
the accuracy of top-K recommendations are widely adopted.
These metrics provide insights into how well the recommen-
dation system can predict users’ next POIs, ensuring that
users receive timely and relevant suggestions.

In next POI recommendation tasks, Recall@k measures
whether the actual next POI (ground truth) appears within
the top-k recommended POIs. For each instance (i.e., each
recommendation for a user), the model generates a list of the
top-k recommended POIs. If the ground truth POI is present
in this top-k list, Recall@k is 1; otherwise, it is 0. This
metric evaluates the model’s ability to include the correct
POI within the top-k recommendations, without considering
the exact rank of the POI within the list.

Similarly, Accuracy@k (Acc@k) is defined in the same
way for next POI recommendation tasks, measuring whether
the actual next POI (ground truth) appears within the top-
k recommended POIs. Thus, in the context of next POI
recommendation tasks, Recall@k and Accuracy@k are
essentially the same metric, both measuring whether the cor-
rect POI appears within the top-k recommendations.

Recall@k = 1

m

m∑
i=1

1 (ranki ≤ k) (1)

Accuracy@k = 1

m

m∑
i=1

1 (ranki ≤ k) (2)

where 1 is the indicator function that returns 1 if the condi-
tion inside is true, and 0 otherwise. Here, ranki ≤ k indicates
whether the predicted POI for is within the top-k recommen-
dations.

3 https://www.brightkite.com/.

MRR(Mean Reciprocal Rank) measures the position of
the correctly recommended POI in the ordered result list.
It takes into account the order of recommendations, giving
more weight to correctly recommended items that are ranked
higher. MRR places particular emphasis on the position of
the first correct recommendation. If the first correct next POI
is ranked high, theMRR valuewill be close to 1. Conversely,
if the first correct next POI is ranked low, the MRR value
will be much less than 1. If the correct next POI does not
appear in the recommendation list, then the reciprocal MRR
for that query is 0. This makes MRR an excellent metric for
evaluating the performance of a recommendation system in
terms of the order of its suggestions.

MRR = 1

m

m∑
i=1

1

rank(i)
(3)

where rank(i) represents the position of the first correctly
recommended next POI for the i-th query in the ordered rec-
ommendation list. If the correct next POI does not appear in
the recommendation list, ranki = ∞, and thus 1

ranki
= 0.

NDCG@K (Normalized Discounted Cumulative Gain)
is a metric that evaluates the quality of a ranked list of
recommendations. It not only considers whether the rec-
ommendations are correct but also takes into account their
position in the list. The higher the relevance of recom-
mendations at the top of the list, the higher NDCG@K
score. Unlike metrics that treat recommendations as binary
(relevant or not), NDCG@K allows for graded relevance,
meaning items can have varying degrees of relevance.

NDCG@k = DCG@k

I DCG@k
(4)

where DCG@k (Discounted Cumulative Gain) is calculated
as:

DCG@k =
k∑

i=1

2reli − 1

log2(i + 1)
(5)

reli : the graded relevance of the result ranked at position i .
reli = 1 if the recommended POI is in the ground truth and
I DCG@k (Ideal Discounted Cumulative Gain) is the DCG
of the ideal ranking, where the top-k results are perfectly
ranked by relevance. It is calculated as:

I DCG@k =
k∑

i=1

1

log2(i + 1)
(6)

4.3 Performance evaluation

In this survey, we have not conducted experiments to com-
pare the performance of various baselines directly. Instead,
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Table 3 Common used dataset and statistics

Dataset Date Region #User #POIs #Check-in Example Reference

Foursquare Apr.2012–Feb.2013 New York 1075 5099 104,074 GETNext [23],
GSTA-GNN [24],
DynaPosGNN [47],
KBGNN [27], FPG
[60], STHGCN [32]

Apr.2012–Feb.2013 Tokyo 2281 7844 361,430 GETNext [23],
GSTA-GNN [24],
DynaPosGNN [47],
KBGNN [27], FPG
[60], STHGCN [32],
MobGT [48]

Sep.2010–Jan.2011 Global 114,508 62,462 1,434,668 GE [39]

Aug.2010–July.2011 Singapore 2321 5596 194,108 GSTN [15], DRAN
[25], STP-UDGAT
[22]

Dec.2009–July.2013 California 4163 121,142 483,813 GCN-LSTM [37]

Gowalla Feb.2009–Feb.2010 California, Nevada 4318 9923 250,780 GETNext [23],
STHGCN [32]

Feb.2009–Oct.2010 California, Nevada 10,162 24,250 456,988 GSTN [15], DRAN [25]

Feb.2009–Oct.2010 Global 31,708 121,944 2,963,373 GSTA-GNN [24],
SGRec [26]

Feb.2009–Oct.2010 Asia 6846 74,856 251,378 GCN-LSTM [37]

Brightkite May.2008–Oct.2010 – 1850 1672 259,219 GSTN [15]

Apr.2008–Oct.2010 Asia 5677 128,799 572,739 GCN-LSTM [37]

we refer to performance metrics reported in different studies
to illustrate their capabilities. It’s crucial to recognize that
despite using the same dataset, differences in preprocessing
methods, experimental conditions, and parameter selections
exist. These discrepancies render a direct comparison of the
baselines’ performance inappropriate. The performance of
certain baselines on the Foursquare - Tokyo dataset can be
observed in Table 4.

5 Future research directions

As the field of GNNs continues to evolve, several promising
research directions emerge, particularly in the context of the
next POI recommendations. Here, we delve deeper into these
avenues:

Scalability and reliability in GNNs

In the context of scalability in GNNs, particularly for recom-
mendation systems dealing with burgeoning user and loca-
tion data, the challenges of substantial memory requirements
and the high computational complexity of GNNs become
even more pronounced [60]. As user–location interaction
graphs expand in size, the need for efficient GNN algorithms
capable of real-time recommendations on large-scale graphs

becomes critical. This situation is further compounded by the
dynamic nature of these graphs, where the frequent addition
of new POIs and the removal of outdated ones demand agile
model updates. Future research should therefore focus on
developing GNN architectures and training methods that are
not onlymemory-efficient and computationally less intensive
but also capable of adapting quickly to changes in the graph
structure. Such advancements will be pivotal in ensuring that
GNN-based recommendation systems can scale effectively
to handle large and evolving data sets without sacrificing
performance or accuracy.

In the task of next POI recommendation, the reliability of
the model is crucial. Enhancing the interpretability of GNNs
is a key factor in improving model reliability. References
[61–63] has addressed this issue by providing transparent
and interpretable decision-making processes, allowing users
and developers to understand the basis of the model’s recom-
mendations, thereby increasing trust in the model. Moreover,
improving the ability of GNNs to handle data noise and out-
liers is equally important. Real-world data often contains
various noises and anomalies, which can affect the model’s
performance. Reference [64] has discussed ways to enhance
the robustness ofGNNs in the face of these challenges, ensur-
ing that themodel performswell even in noisy and anomalous
data environments. Further enhancing model reliability is a
critical direction for future research. This includes develop-
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Table 4 Performance of
different baselines under the
Foursquare - Tokyo Dataset

Acc@1 Acc@5 Acc@10 Acc@20 NDCG@5 MRR

GETNext [23] 0.2254 0.4417 0.5287 0.5829 – 0.3262

MobGT [48] 0.2209 0.4298 0.4945 – 0.3344 0.3165

DynaPosGNN [47] 0.2686 0.5181 0.6058 0.6799 0.4012 -

STHGCN [32] 0.2950 0.5207 0.5980 – – 0.3986

FPG [60] 0.2492 0.5476 0.6369 0.7086 – 0.3819

ing new techniques and methods to improve the reliability of
GNNs specifically for next POI recommendation models.

Dynamic graph neural networks

Users’ location preferences and behavioral patterns are con-
tinually evolving, making the adaptability of models to these
changes crucial for providing relevant and timely recommen-
dations. Dynamic GNNs promise significant advancements
in capturing these shifts. Unlike static models, dynamic
GNNs can adapt in real-time to changes in user behav-
ior and preferences, offering a more accurate reflection of
current needs [65]. While dynamic GNNs offer promising
adaptability to capture users’ changing preferences, ongo-
ing research is essential to fully harness their potential in
reflecting real-time user behavior and POI status changes.
The integration of dynamic GNNs in online POI recommen-
dation systems represents a forward-looking approach that
could dynamically adapt to changing preferences and behav-
iors by leveraging real-time data streams. This integration
is pivotal for the development of recommendation systems
that are not only responsive to the immediate context but
also scalable and efficient in processing high-velocity data.
Future research in this direction is crucial for achieving a
balance between adaptability and computational efficiency,
enabling recommendation systems to provide timely, rele-
vant, and personalized suggestions that reflect the latest user
behaviors and preferences.

Data privacy

Addressing the critical challengeof user privacy is paramount
for enhancing trust in lots of intelligent systems [66, 67],
especially for the next POI recommendation systems. Imple-
menting advanced privacy-preserving techniques, such as
decentralized collaborative learning, couldmitigate concerns
and enable more accurate recommendations. Users’ hesi-
tance to share GPS traces stems from valid concerns over
potential privacy invasions, as such data can unintentionally
reveal sensitive personal information [68]. This reluctance
compromises the accuracy of the next POI recommenda-
tions, as these systems depend on analyzing large volumes of
sensitive user data, thus posing substantial privacy risks. The

quality of recommendations diminishes when users withhold
their data due to these concerns.

Addressing privacy concerns is crucial for enhancing
user trust and participation, which in turn improves the
quality and reliability of recommendation systems. Imple-
menting measures to ensure privacy can mitigate these risks,
enabling more personalized and accurate recommendations
without compromising sensitive information. One notewor-
thy approach to tackling this issue is the DCLR [69] method,
which allows users to train models locally. This minimizes
reliance on cloud-based systems and significantly enhances
user privacy by keeping sensitive data on the user’s device.
Improving user privacy in the next POI recommendation sys-
tems is essential for addressing data sparsity and enhancing
model personalization. It remains a critical area of focus
for future research, aiming to balance the dual objectives
of maintaining high-quality recommendations and protect-
ing user privacy.

Deployment onmobile devices

GNN-based next POI recommendation on mobile devices
is identified as a future direction due to its ability to lever-
age location-based social networks for personalized service,
overcoming privacy concerns and computational limitations
of centralized systems [48]. Themove towards on-device rec-
ommendation systems addresses issues of privacy, reliance
on centralized servers, and the need for personalized, context-
aware recommendations without sharing sensitive data.

6 Conclusion

In smart cities, the significance of next POI recommenda-
tions has increased, especially with the advent of advanced
technologies. Recognizing the inherent strengths of GNNs
in processing graph data, there has been growing interest
in leveraging GNN techniques for next POI recommenda-
tions. In this review, we embarked on a thorough exploration
of the latest advancements in GNN-based next POI recom-
mendations. We analyzed the characteristics of the next POI
recommendation problem and categorized these characteris-
tics to understand how different studies utilize them with
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GNNs. We also summarized common graph construction
methods for GNNs in the context of next POI recommenda-
tions. Additionally, we provided an overview of frequently
used datasets and evaluation metrics, giving researchers a
clearer understanding of the field. Moreover, we identified
several future research directions, including GNN scalability
and reliability, dynamic architectures, and pressing concerns
like data privacy. In essence, this survey aims to offer read-
ers a comprehensive view of the current state-of-the-art in
GNN-based next POI recommendations, while also high-
lighting potential directions for future innovation in smart
city applications.
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