
Journal of Reliable Intelligent Environments (2024) 10:257–279
https://doi.org/10.1007/s40860-024-00231-1

REVIEW

Surveying neuro-symbolic approaches for reliable artificial intelligence
of things

Zhen Lu1 · Imran Afridi2 · Hong Jin Kang3 · Ivan Ruchkin4 · Xi Zheng1,2

Received: 24 May 2024 / Accepted: 8 July 2024 / Published online: 26 July 2024
© The Author(s) 2024

Abstract
The integration of Artificial Intelligence (AI) with the Internet of Things (IoT), known as the Artificial Intelligence of Things
(AIoT), enhances the devices’ processing and analysis capabilities and disrupts such sectors as healthcare, industry, and oil.
However, AIoT’s complexity and scale are challenging for traditional machine learning (ML). Deep learning offers a solution
but has limited testability, verifiability, and interpretability. In turn, the neuro-symbolic paradigm addresses these challenges
by combining the robustness of symbolic AI with the flexibility of DL, enabling AI systems to reason, make decisions,
and generalize knowledge from large datasets better. This paper reviews state-of-the-art DL models for IoT, identifies their
limitations, and explores how neuro-symbolic methods can overcome them. It also discusses key challenges and research
opportunities in enhancing AIoT reliability with neuro-symbolic approaches, including hard-coded symbolic AI, multimodal
sensor data, biased interpretability, trading-off interpretability, and performance, complexity in integrating neural networks
and symbolic AI, and ethical and societal challenges.
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1 Introduction

In the present era of technology, the maturation of artifi-
cial intelligence (AI) has reached a pivotal point, where
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its integration with the IoT is not just a theoretical possi-
bility but a burgeoning reality. This fusion has spawned a
cutting-edge area known as Artificial Intelligence of Things
(AIoT) [1]. AIoT expands both communication and inter-
net technologies, harnessing sensing and intelligent devices
to gain a deeper understanding of the physical world. By
leveraging these technologies, AIoT facilitates a comprehen-
sive network where devices are not only interconnected but
also capable of intelligently analyzing and acting on vast
streams of data. This interconnectivity bridges the gaps in
human-object and object-object interactions, fostering a con-
tinuous exchange of information. The overarching objective
of AIoT is to revolutionize how we interact with the physi-
cal environment. By enabling real-time control and precise
management, AIoT empowers us with informed decision-
making, such as commuter behavior prediction in real-time
[2]. This synergy between AI and IoT promises a future
where the physical world is intelligently orchestrated and
optimized for efficiency and innovation.

According to McKinsey [3], IoT technology will have
an annual economic impact of several trillion US dollars
by 2025. This enormous footprint is spread throughout sev-
eral industries, with the healthcare sector accounting for the
highest portion (41%), followed by the industrial and oil sec-
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tors (33% and 7%, respectively). Other industries, including
retail, public infrastructure, security, irrigation, and trans-
portation, account for roughly 15% of the IoT market. These
forecasts highlight the significant and rapid growth of IoT
services, together with rising data generation and related
economic demands in the upcoming years. That study also
highlighted the significance of automated data processing
with ML.

As IoT takes hold, the number of connected heterogeneous
devices is surging, including UAV systems [4], smartphones
[5], autonomous cars [6], smart meters [7], and many more
generating thousands of gigabytes per second. Due to the
vast amount, complexity, and variability of that data, extract-
ing meaningful insights and making efficient decisions has
become increasingly challenging. Initially, these issues were
tackled with traditional ML algorithms such as K-means,
Decision Trees, Support Vector Machines, and Random
Forests. These algorithms demonstrated significant perfor-
mance in many classification, regression, and clustering
problems, including human activity recognition [8], traf-
fic congestion forecasting [9], IoT environment anomaly
detection [10], heart disease prediction [11], and general
healthcare system [12].

Traditional ML approaches often apply feature engi-
neering and dimensionality reduction methods to optimize
performance and resource utilization. Despite their effi-
cacy across various domains, conventional ML approaches
encounter adaptability and scalability barriers when applied
to more complex IoT applications. Focused on well-defined
or hand-crafted features, these systems are dependent on
prior domain knowledge. Typically, machine ML compo-
nents used in these systems are based on the so-called
“shallow architectures”, which cannot model and represent
particularly high-dimensional or complex data. The rich raw
data from diverse IoT applications was therefore in dire need
of more powerful analytical tools.

The limitations of traditional ML have spurred research
into deep learning (DL). For IoT applications, it is an appeal-
ing substitute due to its capacity to construct hierarchical
representations and automate feature learning. These capa-
bilities enable intelligent decision-making in IoT systems
via more reliable and accurate analytics, minimizing human
effort. DL performs remarkably well in handling the non-
linear relationships present in IoT data, enabling deeper
comprehension by capturing minute variations within intri-
cate multidimensional systems. Consequently, DL models
prove to be a superior option for resolving a wide range of
essential functions in IoT systems such as heart disease diag-
nosis [13] and IoT network intrusion detection [14].

Although DL has greatly advanced AI applications, it
faces significant issues with testability, verifiability, and
interpretability. These problemshamper further applications,
particularly critical ones like autonomous systems, smart

manufacturing, and finance. To motivate further discussion,
we highlight several studies about the issues of testability,
interpretability, and verifiability of DL models. In particular,
Huang et al. [15] explored certification (i.e., testing and ver-
ification) and explanation (i.e., enhancing interpretability)
for reliable DL. They emphasized the need for certifica-
tion before deployment for proper operation, as well as the
process of explaining unusual behavior. Similarly, Zhang
et al. [16] analyzed testing approaches for ML systems,
highlighting the importance of testing in maintaining their
trustworthiness. On a related note, Xiang et al. [17] examined
the recent developments in integrating DL into safety-critical
cyber-physical systems, emphasizingverification, validation,
and formal methods to ensure the security of neural network-
integrated systems. Chakraborty et al. [18] discussed how
trust is based on the interpretability of machine decisions,
requiring insights into the internal working mechanisms of
these systems. Finally, Zhang et al. [19] discussed the need
to improve the interpretability of neural networks in safety-
critical situations, specifically for NN-based control software
to be accurate, comprehensive, error-free, and fault-tolerant.
This study concluded precise testing settings and robustness
against frequent failures require further investigation. The
existing contributions to testability, verifiability, and inter-
operability, generally limited because the fundamental issues
lie within the DL models themselves.

Our study aims to thoroughly review the state-of-the-
art (SOTA) DL models and their limitations, particularly
in terms of testability, verifiability, and interpretability, the
lack of which jeopardizes the reliability of AIoT systems.
Next, we examine the emerging neuro-symbolic paradigm,
focusing on its potential to mitigate these limitations. Neuro-
symbolic approaches provide a hybrid framework that com-
bines the robustness and clarity of symbolic AI with the
adaptability andperformanceofDL.These techniques enable
AI systems to reason, make justified decisions, and general-
ize knowledge from large datasets effectively. By integrating
neural networks and symbolic AI, neuro-symbolic algo-
rithms offer a promising solution for creating more robust
and interpretable AI systems. However, we also identify the
remaining neuro-symbolic challenges: hard-coded symbolic
AI, lack of support for multimodal sensor data, complexity
of neuro-symbolic integration, biased interpretability, trade-
offs between interpretability and performance, and ethical
and societal issues.

Specifically, our survey investigates three research ques-
tions:

• RQ1. What are the primary factors contributing to testa-
bility challenges, verifiability issues, and the absence of
interpretability in DL algorithms?

• RQ2. How do neuro-symbolic algorithms address the
challenges of DL models in the AIoT context?
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• RQ3. What are the key challenges and research opportu-
nities in enhancing AIoT reliability with neuro-symbolic
approaches?

To better understand this promising direction, this paper
reviews neuro-symbolic approaches and their applications,
focusing on their potential to address the challenges faced
by DL models in AIoT. The main contributions of our paper
are:

• Identification of SOTA deep learning models used in
AIoT applications and an in-depth exploration of their
limitations.

• Examination of how neuro-symbolic methods can offer
solutions to the issues in DL models.

• Identification of key challenges and research opportuni-
ties in enhancing AIoT reliability with neuro-symbolic
approaches.

The rest of the paper is organized as follows. Section2
overviews SOTA DL models used in IoT, the challenges of
which are outlined in Sect. 3. Section4 introduces the neuro-
symbolic paradigm, including the evolutionary stages of
neural and symbolic AI, SOTA approaches, applications, and
their key advantages. Finally, Sect. 5 describes the remaining
challenges of neuro-symbolic techniques in AIoT.

2 State-of-the-art deep learningmodels in
IoT

The capability of DL techniques to handle high-dimensional
data has drawn a lot of interest in recent years. Multiple-
layer neural networks are employed in these techniques to
identify and extract significant patterns and characteristics
from the data. It has completely transformed the idea of
ML, advanced AI, and human–computer interaction to an
unprecedented level. IoT applications may improve their
capabilities by leveraging DL approaches in several sectors,
including smart cities, smart transportation, UAVs, cyber
security, smart industries, healthcare, and more. The most
prominent DL architectures are discussed below.

2.1 Convolutional neural networks (CNNs)

In DL, CNN algorithm has become a cornerstone for many
applications including IoT. It consists of input, output, and
hidden layers. The hidden layer includes convolutional,
pooling, and fully connected layers. Each layer has a spe-
cific function in extracting and learning important features
from input data. Convolutional layers convolve input images
using a collection of learnable filters or kernels to create
feature maps that represent local structures and patterns.

After that, pooling layers down-sample these feature maps,
keeping key features while shrinking their spatial dimen-
sions. This improves computing efficiency and makes them
more resilient to translation variance. The architectures of
CNNs have evolved significantly over the years, resulting in
enhanced performance in a number of applications, includ-
ing IoT. IoT applications benefit greatly from MobileNets
[20], which are lightweight CNN architectures made specifi-
cally for mobile and embedded devices. In order to minimize
computational complexity and model size, they use depth-
wise separable convolutions, which makes it possible for IoT
devices with limited resources to perform effective object
identification and image recognition. Another CNN archi-
tecture that achieves accuracy equivalent to larger models
with a substantially smaller number of parameters is called
SqueezeNet, which was proposed by Iandola et al. [21].
It is appropriate for IoT devices with limited memory and
processing resources. With its effective “Inception mod-
ules”, the Inception/GoogLeNet architecture-first proposed
by Szegedy et al. [22] enables extensive feature extraction at
a lower computational cost, enabling real-time object detec-
tion and image classification in IoT devices.

CNNs, therefore, constitute an effective tool for the analy-
sis and interpretation of visual data in IoT systems. It offers an
enormous number of intelligent applications in diverse fields,
ranging from industrial automation and healthcare diagnos-
tics to smart surveillance and autonomous vehicles. Table 1
showcases some exemplary IoT applications where CNNs
have been deployed.

2.1.1 Recurrent neural networks: RNNs and LSTM

Recurrent neural networks (RNNs) is designed to handle
sequential data, such as speech, text, or time series data.
The basic idea of RNNs is to have an internal state that
stores information from prior inputs, enabling the network
to learn and model relationships between successive com-
ponents. RNN designs have been the subject of several
variations to solve various issues and enhance performance.
The long short-termmemory (LSTM) architecture developed
by Hochreiter et al. [33] is a well-known RNN variation
that solves the vanishing gradient issue that conventional
RNNs have. By controlling the input flow, gating mecha-
nisms and memory cells allow LSTMs to efficiently learn
long-term dependencies. Another variation, called gated
recurrent units (GRUs), proposed by Cho et al. [34] simpli-
fies and increases the computational efficiency of the LSTM
design by integrating the input and forget gates into a sin-
gle update gate. Bidirectional RNNs (BRNNs) [35] have the
capability to extract context from inputs received in both
the past and future directions due to their ability to analyze
sequences in forward and backward directions. Furthermore,
by decoupling the neurons inside each layer, the indepen-
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Table 1 CNNs in IoT’s
applications

Category References Applications

Biomedical data analysis [23] Skin cancer

Smart home [24] Home security

[25] Human activity recognition

Smart Cities [26] Enhanced security

[27] Smart energy management

Autonomous vehicles [28] Object detection

[29] Security

Agriculture [30] Hydroponics

Sports [31] Motion recognition in sports

Health inspection [32] Falling detection

Table 2 RNNs and LSTMs in IoT’s applications

Category References Model Applications

Air quality and temperature [40] RNN Temperature and air quality prediction

Smart home [41] LSTM + RNN Traffic flow prediction

[42] LSTM Activity monitoring

Smart city [43] RNN Real-time parking prediction

Intelligent transportation [44] LSTM Intrusion detection

CyberSecurity [45] LSTM Botnet attacks detection

Table 3 RBMs in IoT’s
applications

Category References Applications

Biomedical data analysis [48] Skin lesion detection

Intelligent transportation [49] Traffic congestion prediction

Cyber security [50] Intrusion detection

dently recurrent neural network (IndRNN) [36] solves the
gradient vanishing and exploding issues and enables more
resilient training with non-saturated activation functions.

In IoT applications, multiple architectures of RNNs, par-
ticularly LSTM networks, are used to capture temporal
relationships and model sequential data. Time-series fore-
casting [37], anomaly detection [38], and natural language
processing [39] are all tasks that RNNs and LSTMs excel at
in IoT environments due to time-varying patterns and cor-
relations in data streams. Numerous IoT applications utilize
RNNs and LSTMs; several examples are listed in Table 2.

2.1.2 Restricted Boltzmannmachines (RBMs)

Restricted Boltzmann machines (RBMs) [46] are a class
of stochastic neural networks designed for unsupervised
learning. They consist of visible and hidden layers that
are fully interconnected, yet they lack intra-layer connec-
tions, which is why they are termed “Restricted”. This
category of algorithms has demonstrated effectiveness in
extracting meaningful patterns from sparse and noisy data

typical in IoT environments. For instance, a type of RBM
proposed in [47] may be trained in a greedy layer-wise
fashion and utilized as building blocks for deep neural net-
works (DNNs) and deep belief networks (DBNs). With this
approach, deep models may be efficiently trained on data of
various resource-constrained IoT devices. Some of the IoT
applications where RBMs have shown their significance are
mentioned in Table 3.

2.1.3 Autoencoders (AEs)

An Autoencoder is a type of neural network that is specifi-
cally designed for unsupervised learning, with applications
ranging from feature learning to data compression and
denoising. An Autoencoder is comprised of encoder, bottle-
neck, and decoder. The main principle of Autoencoders is to
take in input data, compress it, and then use that compressed
representation, or encoding, to recreate the original data. The
input data is compressed by the encoder into a representation
in a lower dimension (bottleneck) and the compressed repre-
sentation is used by the decoder to recreate the original data.
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Table 4 Autoencoder in IoT’s applications

Category References Model Applications

Wireless sensor network [55] AE Anomaly detection

[56] Spatio-temporal AE Signal reconstruction

Smart home [57] AE Energy consumption

Intelligent transportation [58] Denoising-AE Data sampling

[59] AE + LSTM Anomoulous event detection

[60] AE Traffic congestion prediction

Smart manufacturing [61] AE Intrusion detection in smart factory

Table 5 GNN in IoT’s
applications

Category References Applications

Autonomous driving [65] Trajectory prediction

Energy management [66] Performance prediction of power station

Object detection and tracking [67] Object tracking

Robotics [68] Decentralization of control

Remote sensing [69] Aerial image classification

[70] Object classification

Smart transportation [71] Travel time estimation

Human activity detection [72] Activity recognition

Neural network [73] Energy prediction

The goal of the Autoencoder’s training process is to reduce
the reconstruction error that is, the discrepancy between the
input and reconstructed data. One type of AEs that works
well for feature extraction and dimensionality reduction in
IoT sensor data is the sparse autoencoder [51],which imposes
sparsity restrictions on the hidden layer activations during
training. Denoising autoencoders [52] are effective for data
denoising in IoT applications because they can be trained
to recover the original input from degraded data. This makes
themnoise-resistant. In order to efficiently compress andgen-
erate newdata samples, variational autoencoders (VAEs) [53]
learn the underlying probability distribution of the input data.
This is advantageous for data transmission and augmentation
in IoT networks. Convolutional autoencoders [54], which use
convolutional layers, are useful for applications like predic-
tive maintenance and video anomaly detection because they
can efficiently extract temporal and spatial correlations in
IoT sensor data. These autoencoder variations have made
it easier to construct reliable and effective ML models for
a range of IoT applications, addressing issues such as data
scarcity, privacy concerns, and resource constraints. Several
applications of Autoencoders in IoT are listed in Table 4.

2.1.4 Graph neural networks

Graph-structured data is common inmany domains including
social networks, biological systems, recommendation sys-
tems, and IoT networks. Such data is handled by graph neural

networks (GNNs), a family of DLmodels. By extending typ-
ical neural network architectures to take graphs as inputs
rather than grid data, GNNs can track complicated associa-
tions among entities and events. The GNNs consist of nodes,
edges, and message-passing mechanisms. Every node in a
graph is initially associated with a feature vector describ-
ing its attributes. The nodes then aggregate information from
each other in each iteration through a process called mes-
sage passing, where information is passed from neighboring
nodes. Nodes aggregate messages received from neighbors
and combine them with their features to update their repre-
sentations. To update this representation, a neural network
layer is applied or a pooling operation is performed. During
this process, nodes continuously refine their representations
based on information they receive from their neighbors over
a fixed number of iterations or until convergence is achieved.
The final representation of the nodes represents different
tasks such as classification and prediction. GNN has variant
flavors, such as graph convolutional network (GCN) [62],
variational graph autoencoder [63], and variational graph
recurrent neural network [64]. Various applications of IoT
have leveraged the GNN, some of the particularly advanta-
geous ones are listed in Table 5.

2.1.5 Geometric deep learningmodels

Geometric neural network models can process and analyze
geometric or graph-structured data efficiently [74]. These
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Table 6 Geometric deep
learning in IoT’s applications

Category References Applications

Smart industries [83] Improving industry’s lean management system

Energy management [84] Power load forecasting

Molecular modeling [85] Drug discovery

Human computer interaction [86] Algorithm optimization

Smart transportation [87] Traffic speed prediction

Neural network [88] Optimization of CNNs

Video processing [89] Emotion recognition

models primarily use manifold and graph data. The network
structure data’s nodes and edges make up the graph. For
example, in a social network, each node represents a per-
son’s information and each edge represents a link between
people. The manifold data make it clear to understand the
high dimensional data where a lot of points are scattered in
a 3D space.

Data canbe randomly spread out,whichmakes it challeng-
ing for an algorithm to discover hidden patterns. Geometric
Deep Neural Network models can recognize and make use
of the inherent structure and patterns found in the data such
as cloud [75], meshes [76] and manifolds [77]. Since they
are built to consider the spatial relationships and connectiv-
ity between data points. These models adopt a mechanism
that can run on irregular and geometrically structured data
by utilizing concepts of computational topology [78], dif-
ferential geometry [79] and graph theory [80]. Developing
methods for efficiently aggregating and propagating infor-
mation across irregular data structures is a major difficulty
in geometric DL.

Several geometric DL models operating on symmetric
positive definite (SPD) manifolds have been proposed, such
as Tensor-CSPnet [81], which is designed for classifyingMI-
EEGdata. Tensor-CSPnet utilizes special linearmapping and
ReLU layers that operate on SPD manifolds, directly map-
ping the SPDmatrix points to the tangent space for Euclidean
distance operations, such as convolution and fully connected
operations. This manifold learning approach enables direct
processing of the covariance matrix of the input sensor data,
thus preserving the original data attributes and features.
Applications of geometric DL models can be found in many
fields. For instance, GCNNmatch [82] is a geometric DL
model for multi objects tracking (MOT). The initial phase
in GCNNMatch is to extract each identified object’s appear-
ance feature map h pp. This is accomplished by inserting the
corresponding bounding box into a CNN. The FC layer is
omitted, resulting in a high dimensional temporary output
featuremap. The definition of a geometric feature of an object
ishgeom=(a,b,c,d),where (a,b) represents the boundingbox’s
position coordinates, c for width, and d represents height. In
the next stage, the object’s edges ez features are extracted by

merging h pp and hgeom=(a,b,c,d) and inserting the merged
vector into the FC layer fedge. In order to include contextual
information from nearby nodes during the feature extraction
process, the node and edge features hv= h pp and ez are finally
fed into a GCNN with two hidden layers. Some most recent
applications of Geometric DL in IoT are detailed in Table 6.

2.1.6 Transformer deep learning models

Introduced by Vaswani et al. [90], the Transformer model
entirely replaced traditional recurrent and convolutional neu-
ral networks with a novel architecture that relies only on
self-attention mechanisms, revolutionizing the field of natu-
ral language processing (NLP). Since then, many advanced
NLP models [91] have included this architecture as a bench-
markmodel. Themodel consists of a decoder and an encoder.
The encoder takes in a sequence of tokens (for example,
words or characters) and outputs a continuous representa-
tion of the input sequence. From the encoder’s output and
previous tokens, the decoder generates the output sequence
one token at a time. Both encoder and decoder consist of
identical layers, each sub-divided into two sub-layers: a self-
attention mechanism, which computes attention weights that
represent the relative importance of each token in the input
sequence concerning every other token, followed by a feed-
forward network (FFN), which transform the output of the
self-attention mechanism into a higher-dimensional space.
The encoding, which consists of sine and cosine functions
of various frequencies, is applied to the input embeddings.
Similarly, by using various attention mechanisms at once,
the Transformer model’s multi-head attention enables the
network to capture a variety of relationships and dependen-
cies among the input sequence. By concentrating on distinct
input segments, each attention head helps the model acquire
more robust and expressive representations. This method
improves generalization to a variety of input patterns, lessens
information bottlenecks, and increases the model’s capac-
ity to effectively handle a broad range of natural language
processing tasks. There are many variants of transformer
including the most prominent one is BERT (bidirectional
encoder representations from transformers) [92], which was
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Table 7 Transformer models in
IoT’s applications

Category References Applications

Smart home [94] Spoken notification generation

IoT data streams [95] Device identification

Wireless communication [96] Automatic modulation recognition

Smart grid [97] Anomaly detection

Security [98] Intrusion detection in MQTT protocols

pre-trained on a huge corpus of textual data. On a variety
of natural language processing (NLP) tasks, such as named
entity recognition, text categorization, and question answer-
ing, BERT and its variants such as RoBERTa [93] have
demonstrated state-of-the-art performance.

Some of the areas where transformer models are used in
IoT applications are mentioned in Table 7.

After investigating severalDLarchitectures and their uses,
it is clear that DL has advanced significantly in resolving
challenging problems in a variety of fields. To reach its
full potential, DL must overcome several obstacles and con-
straints that comewith these developments.We explore some
of the major concerns surrounding DL in the section that
follows. These challenges include testability, interpretabil-
ity, and verifiability. To create DL systems that are more
dependable and trustworthy, these issues must be recognized
and addressed.

3 RQ1: challenges of deep learning
architectures

Advances inDLhave transformedmany researchfields, often
with performance surpassing that of traditional approaches.
The complexity and widespread adoption of DL models,
however, have led to concerns about their testability, verifia-
bility, and interpretability. For example, autonomous driving
[6] and health care [23], where these models can have major
implications for human lives, are among themost high-stakes
domains where these challenges have become increasingly
important. A comprehensive approach to addressing these
issues will ensure that DL technologies can be widely
adopted and developed to their full potential. Zhang et al. [16]
carried out an in-depth analysis of ML testing approaches,
including definitions, distributions of research, datasets, and
market trends. It emphasizes the need for rigorous testing
procedures to guarantee reliable performance and the crucial
role that ML testing plays in maintaining the credibility of
ML systems.

3.1 Testability

As DL models gain traction across multiple domains, testa-
bility becomes an increasingly important challenge. Within

the field of ML, testability pertains to the capacity to conduct
systematic testing to fully assess the safety, robustness, and
accuracy of a model’s behavior. This is crucial for DL in par-
ticular, which has shown impressive results in challenging
tasks but frequently acts as a “black box” with incomprehen-
sible decision-making procedures. DL models pose distinct
issues because of their intrinsic complexity, sensitivity to data
quality, and absence of standardized testing frameworks, in
contrast to typical software systems where testability is a
well-established practice. To increase trust and achieve the
complete potential of DL, these testability issues must be
addressed. In the following section, we will explore the core
issues that hinder the testability of DL algorithms.
Complexity and scalability DL algorithms are complicated
because of their huge parameter sets, sophisticated architec-
tures, and computationally demanding training procedures.
Neural networks are made up of several layers of connected
nodes that individually process intricate calculations on input
data. These models contain up to millions or even billions of
parameters these models frequently contain. Since DL mod-
els frequently function as closed systems, it might be difficult
to comprehend how they make decisions internally [99]. The
inability to fully test and validate the behaviors of the models
is caused by this opacity.

DL algorithms are highly scalable [100]. Scalability, in
this context, refers to the model’s capacity to effectively
manage massive amounts of data, intricate topologies, and
computing resources. One key aspect of scalability is the
ability to efficiently handle enormous datasets, includingmil-
lions or even billions of samples, by leveraging distributed
or parallel computing paradigms. However, the scalabil-
ity of testing efforts may be hindered by the prohibitively
high computational costs required for comprehensive test-
ing of such large-scale DL models [101]. This issue poses a
significant challenge in ensuring the robustness and reliabil-
ity of DL models across various applications and domains.
To address these challenges, ongoing efforts are directed
towards the development of efficient model architectures,
algorithm optimizations, and the utilization of distributed
computing platforms [102].
Reliance on data quality and quantity

SinceDLmodels are data-driven, the quality and accuracy
of the training dataset significantly impact their performance
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[103]. To ensure the validity of these models, the training
datasets used should be testable, as they are susceptible
to biases and anomalies [104]. One of the crucial aspects
of IoT is the data quality, especially when it comes to
mission-critical AIoT systems such as autonomous cars. The
reliability and accuracy of data are essential for ensuring the
effective functioning of such systems [105].
Coverage challenges An increasingly standard approach is
needed to assess and test DL models as their significance
grows with time. New methods, such as coverage testing
and metamorphic testing, are being investigated because it
is possible that traditional testing methodologies may not
be sufficient. These testing methods despite their potential,
still encounter significant challenges. Guiding test genera-
tion using coverage does not always succeed in improving
test suite effectiveness and generatesmore biased predictions
[106]. On the other hand, metamorphic testing is a manual
process in which the users have to specify metamorphic rela-
tion and does not guide the exploration of a model’s behavior
[107].
Specification challenge To ensure the reliability as well as
safety of DL-based AIoT in real-world scenarios, extensive
testing is necessary. To detect possible vulnerabilities and
guarantee system resilience, thorough testing procedures are
crucial due to the innate complexity and non-deterministic
behavior of DL models. This means creating extensive test
suites that cover a wide range of scenarios and edge cases,
such as changes to input data, system states, and environmen-
tal factors [108]. A testing framework is proposed in [109] for
autonomous driving in uncertain environments, leveraging
deep reinforcement learning for falsifying STL (Signal Tem-
poral Logic) formulas and demonstrating efficacy through
case studies in the autonomous driving domain. STL is a
formal specification language used to describe the proper-
ties and requirements associated with real-time signals that
change over time. However, one unsolved challenge is the
manual extraction of STL formulas, which is error-prone and
laborious [103].

3.1.1 Interpretability

Interpretability refers to the user’s ability to understand and
explain how a model makes decisions in a way that is mean-
ingful and accessible [110]. The inherent complexity and
opacity of DL systems make them hard to interpret. The
stakeholders (domain experts, policymakers, and the pub-
lic) should have a clear understanding of how these models
make their predictions to create trust, ensure accountabil-
ity, and make responsible deployment possible. Therefore,
resolving interpretability issues is essential to utilize the full
potential of these effective approaches and guarantee their
reliable usage. Below, we describe some of the most signifi-
cant issues that prevent interpretability.

Lack of standard evaluation metrics The lack of bench-
mark assessment techniques to assess interpretability
approaches is a major obstacle to attaining interpretabil-
ity for DL models. Because the exact definitions of the
terms interpretability, explainability, transparency, and other
related concepts are still up for discussion and disagreement
[110]. Because there are no standard procedures, it is difficult
to develop objective criteria for assessing and comparing the
interpretability of various DL architectures.
Accuracy vs interpretability trade-off The relationship
between interpretability andmodel accuracy is a complicated
andwidely discussed issue. On one side of the debate, it’s fre-
quently stated that if models become less interpretable, they
become more accurate and sophisticated because they learn
complex patterns in the data [111]. This trade-off is especially
noticeable when it comes to deep neural networks, which
have opaque decision-making processes, and have state-of-
the-art performance on many tasks. However, recent studies
have challenged the idea that accuracy and interpretability are
directly correlated.Research has indicated that it is feasible to
createmodels that are highly interpretable and accurate at the
same time. This can be achieved, for instance, by employing
strategies like regularization and feature selectionor by incor-
porating prior domain knowledge [112]. There is still much
to investigate regarding the accuracy-interpretability trade-
off [113] and there is no conclusive agreement on whether
this relationship holds for all situations.
Complex decision-making mechanisms Since deep neu-
ral networks are the foundation of many cutting-edge DL
models, they are frequently referred to as “black-box” sys-
tems since it is difficult to determine the exact cause of the
model’s predictions due to its intricate, multi-layered struc-
ture. DL models use enormous volumes of data to learn
complex, non-linear relationships,which are difficult to inter-
pret or intuitive to human observers. Deep neural networks’
internal workings are opaque, which makes it difficult for
stakeholders-including domain experts and end users to grasp
how the model generates its outputs. This is a major obstacle
to interpretability [18].Many studies have attempted to “open
the black box” and offer explanations for DL predictions.
For instance, through the visualization of patterns within
the input data that elicit specific responses in the model,
researchers can glean insights into the acquired knowledge
of themodel [114]. Additionally, employing Layer-wise Rel-
evance Propagation (LRP) [115] helps attribute the model’s
predictions to specific input features. This technique works
by propagating relevance scores backward through the net-
work. It enables the researchers to discern themost influential
aspects of the input data guiding the model’s predictions.
Nonetheless, the complexity of these models continues to
pose a formidable challenge.
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3.1.2 Verifiability

Verifiability is a major issue in the field of DL [15]. Deep
neural networks are often criticized for their opaque internal
decision-making, which makes them difficult to understand
or verify. Because of this opacity, it may be difficult to ver-
ify that a DL model’s decisions are in line with the desired
goals or values [116]. Researchers have put forth strategies
to deal with this issue, like creating “verifiable AI” frame-
works [117] that include supplementary verification tasks
in addition to the main prediction task. The notion is that
even if the underlying reasoning is still unclear, the model’s
decision-making process can be assured to perform well on
these verification tasks. Verifiability is a useful addition to
explainability in DL systems that can ensure confidence and
guarantee desired output. A framework called Alpha-Beta-
CROWN [118] is designed to offer rigorous assurances on
the robustness of neural networks to the changes in the inputs.
The framework uses bounding propagation to generate out-
put using a defined set called “Alpha” and “Beta” sets. The
inputs in the Beta set are those for which the network’s pre-
diction may vary from the desired output but only within a
bounding range. whereas the inputs in the Alpha set are those
that are certain to generate accurate predictions. Some of the
issues which degrade verifiability are discussed below.
Non-convex optimization The verification of DL networks
is significantly hampered by the non-convex optimization
problem. DL models include the optimization of highly
non-convex objective functions [119], in contrast to convex
optimization problems, which have a single global optimum
that can be easily discovered. This indicates that it is chal-
lenging to ensure convergence to a global optimum due to the
abundance of local minima in the loss curves of DL models.
Depending on the initialization and optimization procedure
employed, the existence of several local minima may result
in differences in the behavior and performance of the trained
model. Making sure DL models converge to a desired solu-
tion that accurately reflects the underlying data distribution
is necessary to validate their accuracy. The verification pro-
cedure is made more difficult by the non-convex nature of
the optimization problem, which makes it even more diffi-
cult to tell if the trained model has found a good solution or
is trapped in a sub-optimal region of the parameter space.
To address the non-convex optimization challenges in DL
[120], it is essential to develop reliable optimization tech-
niques, regularization methods, and initialization strategies
that minimize the risk of converging to suboptimal solutions,
but it is challenging by nature.
Input perturbation limitations In DL, the phenomena
wherein minor adjustments or perturbations in the input data
result in substantial changes in the model’s predictions is
known as the sensitivity of input perturbation. DL models
frequently exhibit sensitivity to small changes in input data,

which may result from adversarial attacks, changes in the
input distribution, and noise [121]. The DLmodel’s decision
boundary may be impacted by these perturbations, which
could lead to inaccurate predictions. To guarantee the dura-
bility of DL models in practical applications, it is essential
to comprehend and reduce the sensitivity to input perturba-
tions. Methods for measuring how sensitive DL models are
to input perturbations have been proposed by researchers.
For example, the idea in [122] was created to quantify how
changes in the input can affect the output of a CNN. Iter-
ative algorithms can be used to compute this sensitivity,
which can be used to evaluate how robust CNNs are to
input noise [123]. The capacity of current methods to test
the input–output robustness of systems is limited to handle
complex system-level properties specified in formal logic
such as signal temporal logic (STL). Furthermore, multi-
modal sensor data inputs-which are frequently encountered
in AIoT applications-cannot be effectively verified using
these methodologies.

4 RQ2: neuro-symbolic paradigm

As IoT technology continues to advance, AIoT has risen
as a pivotal trend shaping the technological landscape of
the future. By fusing the prowess of AI with the expansive
reach of IoT, AIoT paves the way for sophisticated control
mechanisms and insightful data analytics across IoT devices,
thereby enhancing convenience and boosting productivity
in both personal and professional realms. Neuro-symbolic
approaches are gaining attention as a rising force, driving
significant advancements and signaling a fresh chapter for
AIoT.

4.1 Overview of neuro-symbolic paradigm

The neuro-symbolic paradigm is an approach that combines
neural networks (often associated with deep learning) and
symbolic artificial intelligence (symbolic AI) in address-
ing complex cognitive tasks. Neuro-symbolic computational
models amalgamate the power of neural networks with the
precision of symbolic logic, aiming to harness the strengths
of both to enhance the performance of AI systems. These net-
works endeavor to blend the neural network’s proficiency in
handling unstructured data, such as text, speech, and images,
with the symbolic system’s aptitude for managing structured
data and engaging in logical reasoning. Currently, with the
rapid development of DL, connectionist approaches have
achieved significant success in many fields. Simultaneously,
neuro-symbolicAI is attempting to harness the advancements
in DL to create intelligent systems capable of both DL and
symbolic logical reasoning, thus addressing a broader range
of complex problems [124]. This integrated approach may
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Table 8 Evolutionary stages of
neuro-symbolic paradigm

Time Stages References Methods

1990–2000s Initial concepts [125, 126] KBANN, CLIP

2010s Development [127–129] Conceptors, NTMs, memory networks

2010–2020s Current trends [124, 130] Multimodal reasoning models

Table 9 Categories of
state-of-the-art neuro-symbolic
approaches

Category References Methods

Knowledge graph representation learning [131] KGEs

Semantic parsing [132] NSP

Logical reasoning [133] DeepProbLog

Program synthesis [134] R3NN

Intelligent agents and planning [135] Logical neural network

VQA [124, 136] NS-CL, N2NMNs

[130, 137] NS-DR, ViperGPT

represent a significant direction for the future development
of AI. The neuro-symbolic paradigm has undergone three
key stages of development: initial concepts, development,
and current trends, as illustrated in Table 8. These stages
reflect the evolution of research and practical implementa-
tions aimed at leveraging the strengths of both approaches.
Initial concepts (1990–2000s). The concept of neuro-
symbolic AI can be traced back to the 1980s when many
AI scholars began to explore how to combine symbolic logic
with the connectionmechanisms of neural networks. In 1990,
Towell et al. [125] proposed the Knowledge-Based Artifi-
cial Neural Network (KBANN), the first system to allow
background knowledge in learning within neural networks
and knowledge extraction. Garcez et al. [126] introduced the
contrastive language-image pre-training system (CLIP) in
1999, where they transformed background knowledge into
propositional logic, based on which they constructed a for-
ward artificial neural network, and induced new knowledge
from examples to update existing knowledge.However, these
methods did not make significant progress due to the limita-
tions of ML technology at the time.
Development (2010s). Entering the 21st century, with the
rise of DL, neuro-symbolic AI has been presented with new
development opportunities. Researchers began to attempt
to combine DL models with symbolic logic reasoning to
enhance the models’ interpretability and reasoning capa-
bilities. In 2014, Jaeger proposed a method of controlling
recurrent neural networks with “Conceptors” [127], which
endowed the entire network with geometric properties and
enabled effective integration with Boolean logic. Graves et
al. introduced neural turing machines (NTMs) [128] in 2014,
and Sukhbaatar et al. proposed memory networks [129] in
2015, both of which incorporated memory mechanisms to
address the issue of storing intermediate results in the rea-
soning process.

Current Trends (2010s–2020s). In recent years, the field
of neuro-symbolic AI has made remarkable progress, par-
ticularly in knowledge graph representation learning [131],
semantic parsing [132], logical reasoning [133], program
synthesis [134], intelligent agents and planning [135], and
visual question answering (VQA) [124, 130, 136, 137].
Neuro-symbolic AI represents a promising direction in the
evolution of AI, aiming to combine the best of neural
networks and symbolic reasoning to create powerful and
interpretable systems. The field is rapidly evolving, with
significant research advances, practical applications, and
growing interest from both academia and industry.

Human knowledge describes the entire world experienced
by humans. This knowledge can be quickly generalized to
different new problems. Neuro-symbolic AI aims to inte-
grate neural networks with human understanding, ultimately
mastering a knowledge system akin to a human’s, while not
losing the flexibility of neural networks.

4.2 Overview of state-of-the-art neuro-symbolic
approaches

Neuro-symbolic AI is an active and promising field within
the realmofAI [138]. Its development trend is tomore deeply
integrate DL and symbolic reasoning to overcome their lim-
itations in representation learning and reasoning. The latest
research develops more powerful and flexible models that
can balance the strengths of DL and symbolic reasoning
when dealing with different tasks. Recent neuro-symbolic
approaches can be categorized into six main types based on
the task at hand: knowledge graph representation learning,
semantic parsing, logical reasoning, programsynthesis, intel-
ligent agents and planning, and VQA, as shown in Table 9.
Knowledge graph representation learning. Knowledge
graphs (KGs) [139] are structured, semantic frameworks
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that represent real-world entities (such as people, places,
and organizations) and the relationships between them. They
organize knowledge in a machine-readable format, which
is useful for applications like data integration, information
retrieval, and natural language processing. Neuro-symbolic
approaches in knowledge graphs integrate symbolic reason-
ing, which uses logic and defined rules, with sub-symbolic
methods like neural networks, which excel at processing
large-scale, noisy data. This aims to leverage the strengths
of both techniques to enhance knowledge graph reasoning.
For example, Wickramarachchi et al. [131] utilized knowl-
edge graph embeddings (KGEs) to manage the vast amount
of heterogeneous data generated by vehicle sensors in the
field of autonomous driving (AD). The performance ofKGEs
on autonomous driving data was evaluated, and the research
explored the relationship between the level of informational
detail in a knowledge graph and the quality of its derivative
embeddings. Different KGs with varying levels of infor-
mational detail were generated for different datasets. The
purpose of these KGs was to represent the various scenar-
ios or situations that an autonomous vehicle encounters on
the road. The study demonstrated that more detailed KGs
are better at capturing type and relational semantics, while
also raising important questions about the applicability of
evaluation metrics used in existing literature. Additionally, it
opened up a rich field for future research in neuro-symbolic
AI within the IoT.
Semantic parsing. Semantic parsing is a subfield ofNLP and
AI that aims to understand the meaning of natural language
sentences in away that is amenable to computational process-
ing. It involves converting natural language text into a formal,
structured representation, often in the form of a semantic
graph or a logical form that captures the underlying meaning
of the text. Over the past few years, significant research has
been into neuro-symbolic AI’s applications in natural lan-
guage processing (NLP) and semantic analysis. A key focus
has been on how the integration of symbolic reasoning with
neural network-basedDL can address some of the limitations
in current NLP technologies. These limitations include the
lack of robustness in understanding context and performing
abstract reasoning, which is crucial for advanced semantic
analysis. One of the significant contributions in this field has
been examining the suitability of neuro-symbolic AI for var-
ious NLP tasks. This includes its role in enhancing model
interpretability, leveraging symbolic reasoning for improved
data efficiency, and enhancing the understanding of complex
language constructs which are often challenging for purely
neural models. For example, Liu et al. presented neural-
symbolic processor (NSP) [132], a framework for natural
language understanding that operates as follows. An encoder
converts input text into a text embedding, which predic-
tors then use to produce neural predictions. Simultaneously,
decoders transform the embedding into executable programs.

The encoder and decoders together form a sequence-to-
sequence model. Executors process the programs to create
symbolic predictions. Finally, a mixture-of-experts model,
guided by a gating network, integrates the neural and sym-
bolic predictions to make the final decision. NSP is powerful
in dealing with the challenging problems that conventional
neural-network-only approaches suffer from.
Logical reasoning. Logical reasoning is the process of con-
cluding systematic logical rules. It involves using known
information and explicit rules to derive new information or
conclusions. Neuro-symbolic AI combines the data-driven
capabilities of DL with the transparency and structured
knowledge representation of symbolic reasoning, enabling
more efficient learning and reasoning processes in logical
reasoning tasks. For example, Manhaeve et al. [133] con-
tribute to the field of probabilistic logic programming with
the introduction of DeepProbLog. DeepProbLog achieves
more efficient and accurate reasoning when handling com-
plex data by integrating deep neural networks with ProbLog
[140], an established probabilistic logic programming lan-
guage. In contrast, traditional ML methods typically model
the relationship between inputs and outputs rather than rea-
soning based on logical rules. This implies that they may be
unable to perform logical reasoning or handle complex log-
ical structures. The capacity for neuro-symbolic techniques
to engage in logical reasoning is, therefore, a crucial factor
in developing AI solutions that are not only reliable but also
possess a high degree of interpretability.
Program synthesis. Program Synthesis refers to the auto-
mated generation or construction of computer programs
given specifications or requirements. Traditional neural net-
work architectures, when used for program synthesis [141],
often incur high computational costs, are difficult to train,
have poor interpretability, or make it challenging to ver-
ify their correctness. Previous methods typically required
training a separate model for each task (program), which
limited the generalizability and scalability of the models.
Neuro-symbolic methods can address these limitations of
traditional approaches in automatic program generation. For
instance, Parisotto et al. [134] proposed a new technology
called neuro-symbolic program synthesis (NSPS). The core
idea of NSPS is to use two novel neural modules, the cross-
correlation I/O network and the recursive-reverse-recursive
neural network (R3NN). The cross-correlation I/O network
can receive a set of input–output examples and produce
a continuous representation of these examples. Given the
continuous representation of examples, R3NN synthesizes
a complete program by incrementally expanding partial pro-
grams. R3NN employs a tree-based neural architecture that
sequentially constructs a parse tree by selecting rules from
a context-free grammar (i.e., the domain-specific language
DSL). For example, to solve string transformation problems
based on regular expressions, NSPS can construct programs
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from new input–output examples and create new programs
for tasks that were never observed during training. Experi-
ments show that the R3NN model can construct programs
from new input–output examples and build entirely new pro-
grams for tasks never seen during the training process, thus
addressing traditional methods’ shortcomings in generaliza-
tion and interpretability.
Intelligent agents and planning. Intelligent agents [142,
143] are computational systems capable of perception, rea-
soning, and action, enabling them to understand the infor-
mation in the environment and take appropriate actions to
achieve set goals. Planning is a crucial concept in intelli-
gent agents, involving the determination of a sequence of
actions or a plan required to achieve an objective. Intelligent
agents are closely related to planning as it is a significant
method for them to realize their goals. Agents typically
use planning to decide on their next course of action and
continuously adjust their plans to adapt to changes in the
environment. Some methods combine neural networks with
symbolic reasoning to address planning and decision-making
problems in reinforcement learning (RL), such as model-
based reinforcement learning and policy gradient methods.
These approaches employ symbolic planning to generate
high-level action plans, which are then executed by neural
networks to realize the planning and execution capabili-
ties of intelligent agents. For example, Kimura et al. [135]
explore a novel RL method for text-based games using a
neuro-symbolic framework called logical neural network,
which addresses intelligent agents and planning problems
by integrating the learning capabilities of neural networks
with the reasoning and knowledge representation strengths of
first-order logic. This approach enhances learning efficiency,
interpretability, and planning abilities, leading to more capa-
ble and understandable intelligent systems.
Visual question answering. VQA is a task in the field of AI
and computer vision that involves answering questions about
images. In this task, a system is given an image along with
a natural language question about the image, and it must
provide an answer based on the visual content. The ques-
tions can range from simple (e.g., “What color is the dog?”)
to complex (e.g., “What is the man doing in the image?”).
VQA systems typically integrate techniques from both com-
puter vision and natural language processing to interpret the
visual information in the image and the textual content of
the question. This involves using image recognition models
to analyze the image, language models to process the ques-
tion, and a way to combine these two streams of information
to generate a correct answer. Below we discuss some of the
key works in this area, which is one of the most active in
neuro-symbolic techniques.

Mao et al. [136] introduced the neural-symbolic con-
cept learner (NS-CL), which uses a CNN to recognize
object attributes and generate a dynamic knowledge base and

employs an RNN to convert natural language questions into
symbolic form. TheNS-CL not only excels in visual question
answering and image-text retrieval but also enhances inter-
pretability and learning efficiency under conditions of limited
data, showcasing the advantages of Neuro-symbolic meth-
ods. Influenced by module networks [144], Hu et al. [124]
proposed a model known as end-to-end module networks
(N2NMNs). N2NMNs comprise two main components: a
set of neural modules with shared attention, providing para-
metric functions to address subtasks, and a layout strategy
that predicts the layout for specific questions and dynami-
cally assembles a neural network from it. N2NMNs employ
a tailored set of modules enhanced with a soft attention
mechanism, which dynamically supplies textual parameters
specific to each module. Dynamic visual reasoning, partic-
ularly understanding physical interactions between objects,
poses a significant challenge in computer vision. Humans
naturally interpret such dynamics using intuitive physics, but
equipping AI with similar capabilities, especially in AIoT
applications like industrial robotics, is crucial for improv-
ing autonomy and operational safety. Based on these, MIT
introduced the neural-symbolic dynamic reasoning (NS-DR)
model [130], which not only predicts unseen movements but
also handles predictive and counterfactual reasoning, estab-
lishing a robust framework that integrates vision, language,
dynamics, and causality to model complex interactions and
reasoning tasks effectively. However, the model’s reliance
on densely annotated videos for accurate visual and physi-
cal attribute representation can pose practical challenges in
real-world applications.

The modular systems (N2NMNs, NS-DR) mentioned
above attempted to decompose tasks into simpler modules.
However, they are difficult to extend tomore complex tasks or
real-world applications because programgeneration is highly
domain-limited, and training the program generator is diffi-
cult. To overcome these bottlenecks, Suris et al. proposed
a new framework for visual and language query processing
called Visual Inference via Python Execution for Reason-
ing (ViperGPT) [137]. ViperGPT also adopts a modular
approach to visual reasoning, but unlike previous modular
systems, it does not require predefined specific functions or
training a program generator. Instead, it utilizes the LLMs to
generate Python code, composing vision-and-languagemod-
els into subroutines to produce a result for any query. By
defining simple, task-specific APIs, ViperGPT can leverage
existing models’ code generation and reasoning capabilities
without the need for fine-tuning. Additionally, the output
of the code generation model is code, which is more inter-
pretable than end-to-end models. The success of LLMs has
paved new avenues for the development of neuro-symbolic
AI, fostering the integration of symbolic reasoning with
neural networks. This has provided novel approaches and
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methodologies for addressing complex logical and reason-
ing challenges.

4.3 Applications of neuro-symbolic approaches in
AIoT

The application of neuro-symbolic AI in AIOT is primarily
reflected in enhancing the decision-making, reasoning, and
interpretive capabilities of intelligent systems by integrating
the data processing capabilities of neural networks with the
advantages of symbolic logic reasoning. Specific application
areas are as follows:
Common-sense autonomous driving. This is a task that
requires a common-sense understanding expressed in sym-
bolic terms, which the neuro-symbolic paradigm can greatly
help with. The application of neuro-symbolic AI in the field
of autonomous driving mainly focuses on enhancing the
accuracy and logic of decision-making, as well as improving
the interaction between vehicles and the environment. The
following works contributed to this area. Doe et al. [145]
explored how neuro-symbolic reasoning systems bring ben-
efits and also pointed out the challenges faced when applied
in the traffic domain, especially in the context of autonomous
driving. The main focus is on how to improve the system’s
robustness and interpretability by combining neural and sym-
bolic features. JSHST et al. [146] introduced neuro-symbolic
program search (NSPS) for the design of decision-making
modules in autonomous driving. It is an automated search
method for synthesizing neuro-symbolic programs. NSPS is
capable of automatically tuning hyperparameters to generate
robust and expressive neuro-symbolic programs. Sharifi et
al. [147] introduced a model-free deep reinforcement learn-
ing (DRL) approach, termed DRL with symbolic logics
(DRLSL), which integrates the advantages of DRL-learning
from experience-and symbolic first-order logics-knowledge-
driven reasoning. This integration aims to facilitate safe
learning in real-time interactions for autonomous driv-
ing within actual environments. The innovative DRLSL
approach actively engages with the physical environment to
learn autonomous driving policies, ensuring safety through-
out the process.
Service robots with high demands for versatility. Service
robots of this kind do not require performance specialized in a
single task but rather rely on stable and reliable performance,
as well as the ability to be interpretable and communicative.
Therefore, understanding the context and mastering human
symbols holds extraordinary significance for them. Human
concepts are structured as networks composed of symbols,
rather than being singular symbols [148]. Of course, we hope
that AI can achieve this as well. For instance, when an elderly
care robot sees a pear, it needs to understand that it belongs to
the biological category of fruit, is edible, and has high water
and sugar content. It also needs to know the pear belongs

to the category of physical objects, which have attributes
such as size, shape, and color. These classes and attributes
can be captured by individual neural network classifiers and
effectively combined into a graph structure (which can be
simply understood as a form of knowledge graph, similar to
the structure of a family tree). Once combined, a complete
concept of a pear is formed. Constructing these classifiers
and binding them with the corresponding graph structures
is the foundation for building such a visual concept system.
With this system, the pear in front of the robot is not just
an object that can be recognized, but a scenario involving a
lot of background knowledge that can influence the robot’s
behavior. It can decide whether to bring the pear to the owner
based on the situation. If the pear is sweet and the owner is
an elderly person with diabetes, the robot needs to make a
decision not to offer it, based on the background knowledge
it possesses. There is emerging research in this domain, as
discussed below.

Namasivayam et al. [149] introduce a neuro-symbolic
learningmethod to address the task of language-guided robot
manipulation. Specifically, the method aims to train a model
that can output an executablemanipulation programbased on
natural language instructions and an input scene. Venkatesh
et al. [150] proposed a pipelined architecture that integrates
object detection, spatial reasoning, and attentionmechanisms
to address the problem of spatial reasoning and manipulation
of objects by robots based on natural language instructions.
This architecture consists of two main stages: Initially, in
the Localization stage, a separately trained object detec-
tor is used to identify and localize all objects within the
scene. Following this, in the spatial reasoning stage, the nat-
ural language instructions and the localized coordinates of
the objects are mapped to the start coordinates from where
the robot must pick up the object and the end coordinates
where the object should be placed. Hanson et al. [151] intro-
duced a novel anthropomorphic arm controller designed for
the Sophia robot. This arm integrates machine perception,
convolutional neural networks, and symbolic AI for logical
control and affordance indexing.
Systems with highly limited data. AIoT may face the issue
of insufficient data samples in certain scenarios, which typ-
ically occurs in situations where it is difficult to collect a
large amount of data or where the cost of data acquisition
is relatively high. Neuro-symbolic AI, due to its character-
istics of combining DL with symbolic logic reasoning, can
effectively learn and reason under conditions of limited data,
enhancing the interpretability of the model, and leveraging
transfer learning to address new problems. This capability is
of great significance for scenarios with small sample sizes,
such as personalized recommendations for specific customer
groups [152]. For example, Anup et al. [153] introduced
a neuro-symbolic method for predicting the strategies that
students employ when solving problems. By predicting stu-
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dents’ learning strategies, the system can better adapt to the
individual learning needs of different students, enhancing the
personalization and adaptability of automated instructional
systems, such as intelligent tutoring systems, and thereby
improving learning outcomes. Fan et al. [154] presented
Athena 3.0, a sophisticated multimodal chatbot featuring
neuro-symbolic Dialogue Generators, crafted by the Uni-
versity of California, Santa Cruz. Engineered to deliver
captivating and coherent dialogue across a spectrum of trend-
ing topics, Athena 3.0 serves theAlexa Prize SocialbotGrand
Challenge (SGC) with distinction. Beyond its capacity as a
voice interaction platform, Athena 3.0 enriches user engage-
ment throughmultimodal capabilities, seamlessly integrating
screen-based interactions.

In summary, forming corresponding representations with
neural networks and connecting them to human hierarchical
concepts to address a single symbolic entity represents the
initial stage of neuro-symbolic AI. This corresponds to the
most basic aspect of human reasoning. Building upon this
foundation, if we integrate structures related to the task, it
constitutes the intermediate stage of neuro-symbolic AI. The
immense workload here lies in constructing numerous clas-
sifiers to address individual symbolic entities. Fortunately,
current deep pre-trained models are providing a unified base
for these smaller classifiers. The crux of issues in areas such
as autonomous driving and elderly care robots stems from
the lack of integration of this intelligence principle from the
base to the top level. They only tackle minor issues which
are mentioned in [155], which means that human’s common
sense level has not been achieved thoroughly.

4.4 The advantages of neuro-symbolic paradigm in
AIoT

Neuro-symbolic paradigm, offers several advantages inAIoT
applications, particularly in terms of interpretability, testa-
bility, and verifiability [138]. Here’s how these aspects are
enhanced by neuro-symbolic approaches:
Interpretability. Neuro-symbolic techniques enhance the
interpretability of models by integrating symbolic reason-
ing with DL [138, 156]. This combination allows the model
to offer explanations based on symbolic logic that are under-
standable to humans. This is crucial in applications where
decisions need to be understandable and justifiable, such
as in healthcare or infrastructure management. The integra-
tion of symbolic reasoning helps articulate domain-specific
knowledge and shows how decisions are derived, making AI
decisions more transparent and easier to trust. For example,
Daiki et al. [135] proposed a novel neuro-symbolic reinforce-
ment learning method utilizing the Logical Neural Network
framework, which is capable of learning symbolic and inter-
pretable rules and integrating these rules into a differentiable

network.This approach enhances the interpretability andpro-
motes rapid convergence of policieswithin text-based games.
Testability. The symbolic component of neuro-symbolic AI
allows for more structured and hypothesis-driven testing.
Symbolic rules can be explicitly tested against various sce-
narios [157, 158], which is not straightforward with purely
DL models. This explicit structure of symbolic rules enables
the testing of specific reasoning paths and intermediate states
within the model. Furthermore, it improves the granularity
at which models can be tested and ensures that the models
behave as expected across a range of conditions and inputs.
In AIoT systems, a large number of sensors and devices gen-
erate substantial amounts of data, which need to be analyzed
byMLmodels to extract useful information and insights. The
neuro-symbolicmethods and symbolic regression techniques
mentioned in Balla’s work [159] can be used to discover and
validatemodels from this data,which is similar to data-driven
decision-making in AIoT. They demonstrated how to utilize
neuro-symbolic methods to enhance the testability of models
in social science research, that is, by discovering and veri-
fying interpretable models from data to generate predictions
that can be tested across different populations or periods.
The neuro-symbolic methods and symbolic regression tech-
niques discussed in the article can be applied to identify and
validate models within this data, which bears resemblance to
the data-driven decision-making processes in AIoT.
Verifiability. Neuro-symbolic systems improve verifiabil-
ity by leveraging the rigor of symbolic logic to ensure that
the models adhere to defined logical constraints and rules
[156]. This is especially important in safety-critical applica-
tions where AI models must operate within strict regulatory
and operational frameworks. By using symbolic reasoning,
it’s possible to verify that the model’s outputs comply with
these frameworks, providing a layer of safety and compliance
that is hard to achieve with models based solely on neural
networks. For example, Briti et al. [160] proposed a frame-
work called hierarchical program-triggered reinforcement
learning (HPRL), which employs a hierarchical structure to
decompose complex autonomous driving tasks into multiple
relatively simple sub-tasks. Each sub-task is executed by a
trained RL agent that focuses on specific driving strategies,
such as driving straight, turning, or changing lanes. Through
this hierarchical and program-triggered approach, the HPRL
framework not only enhances the interpretability of the RL
agents but also strengthens the verifiability of the system
through formal verification, which is crucial for the safety of
autonomous driving systems.

To summarize, these three characteristics make neuro-
symbolic AI particularly suitable for AIoT applications
where decisionsmust not only be accurate but also justifiable,
understandable, and compliant with regulatory standards.
The ability to explain and verify decisions becomes an advan-
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tage in deploying AI in real-world, critical systems where
accountability and precision are paramount.

5 RQ3: challenges for neuro-symbolic
paradigm

The neuro-symbolic paradigm has shown promise in improv-
ing interpretability, verifiability, and testability, thus making
AIoT systems more reliable. While it has achieved suc-
cess in areas like natural language processing and computer
vision, its applications in AIoT are still in the early stages.
As this technology advances, integrating symbolic reason-
ing with neural networks will be key to addressing the
challenges of IoT data processing and intelligent decision-
making. Currently, challenges remain to be addressed for
the neuro-symbolic paradigm to fully realize its potential in
AIoT.
Manually crafted functions. Neuro-symbolic systems aim
to enhance model generalization, enabling them to learn
from limited data and adapt to new scenarios. However,
achieving this goal is not straightforward. One challenge is
integrating symbolic reasoning, which needs to be robust and
generalizable across diverse tasks in AIoT, such as different
driving scenarios in autonomous driving systems and diverse
landing areas for unmanned delivery drones. How can we
determine which symbolic rules will generalize well—and
which will turn out to be brittle? Such generalizability for
symbolic AI is even difficult in relatively simpler applica-
tions in terms of data diversity and system complexity. In
VQA [124, 130], for example, neuro-symbolic methods aim
to combine the strengths of neural networks in processing
visual information with symbolic reasoning for answering
questions. However, traditional symbolic functions are often
handcrafted and designed to work well only within specific
contexts or domains. When applied to scenarios unforeseen
by their creators, these manually created domain-specific
functions may fail to generalize out of the domain they were
designed for, leading to reduced performance or inaccura-
cies in answering questions. One reason for this limitation is
the difficulty in designing symbolic functions that can ade-
quately capture the complexity and variability of real-world
visual data.AlthoughSuris et al. [137] have employedLLMs,
utilized to generate Python code via a provided API for exe-
cution, in tackling certain common-sense problems, the core
functions are manually created in a domain-specific manner,
with no solution offered for the hallucinations LLMs may
encounter. Handcrafted rules or heuristics may not be suffi-
ciently flexible to handle the diverse range of questions and
images encountered in VQA tasks. Moreover, the reliance on
manually crafted symbolic functions can hinder the adapt-
ability and scalability of neuro-symbolic models. As the
complexity of VQA tasks increases or as the distribution of

visual data shifts, thesefixed symbolic functionsmaybecome
less effective or even obsolete, requiringmanual intervention
or re-engineering to maintain performance.
Lack of support for multimodal sensor data. As mul-
timodal data (such as images, text, and audio) becomes
more prevalent, neuro-symbolic systems need to handle and
generalize across these various modalities. This capability
requiresmodels to not only comprehend data from individual
modalities—but also establish connections across different
modalities. Neuro-symbolic models may struggle to gen-
eralize to unseen data distributions or adapt to changes in
the environment due to the inherent assumption of similarity
between the training distribution and real-world data for neu-
ral networks [161, 162]. Ensuring robustness to cross-modal
distributional shifts is essential for deploying these systems
in real-world applications where the data distribution may
change over time.

Diverse sensor data are heavily used in AIoT, including
LiDAR [163], millimeter-wave radar [164], ultrasonic radar
[165], electroencephalography (EEG) [166], electrocardio-
gram (ECG) [167], accelerometer [165], gyroscope [168],
and altimeter [169]. Often, these sensors are used together,
and such multimodal sensor data is not yet supported by cur-
rent neuro-symbolic methods. Handling such multimodality
is crucial for the applicability of neuro-symbolic AI in
thosemulti-modalAIoT systems such as autonomous driving
cars (cameras, radars, and LiDARs [165]), UAVs (cam-
eras, altimeters, and radars) [170, 171], activity recognition
(accelerometers and gyroscopes) [172, 173], and medical
human sensors (ECG and EEG) [174]. The complexity of
integrating diverse data types and ensuring accurate and
robust generalization across these modalities remains a sig-
nificant challenge. Current neuro-symbolic models need to
be enhanced to process and synthesize multimodal data
effectively, improving their reliability and performance in
real-world AIoT applications [175].
Complex integration of neural networks and symbolic
AI. Building integrated neuro-symbolic systems requires
expertise in both neural networks and symbolic AI, increas-
ing the development complexity and the need for interdis-
ciplinary collaboration. We illustrate this challenge on two
notable approaches that integrate neural networks with sym-
bolic AI: logic tensor networks (LTNs) and DeepProbLog.

LTNs [176] combine DL with first-order logic to perform
logical reasoning over data. LTNs use a neural network to
embed data into a continuous vector space, where logical for-
mulas are interpreted as differentiable functions. This allows
the network to learn the parameters of the logic-based model
jointly with the neural network parameters. However, this
integration introduces complexity as the logical reasoning
process needs to be robust and generalizable across diverse
tasks, requiring significant expertise in both neural networks
and symbolic reasoning. DeepProbLog [133] is a proba-
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bilistic logic programming language that incorporates DL
models. In DeepProbLog, neural networks are used to pro-
vide probabilistic facts, which are then processed by the logic
programming component to perform reasoning. This archi-
tecture allows the system to combine the strengths of neural
networks in handling raw sensory input with the logical rea-
soning capabilities of symbolic AI. Despite its advantages,
the performance of such integrated systems can be limited
by the slow symbolic reasoning processes, which may not
match the speed of neural network inference.

Combining neural and symbolic methods often results
in complex models that are difficult to scale and debug.
The symbolic reasoning components can become a scala-
bility bottleneck, limiting the model’s ability to handle large
datasets and complex tasks efficiently. The neural part will
likely remain difficult to understand and debug for engineers.
Ensuring debuggability and scalability in these hybrid mod-
els remains a challenge, as they must effectively manage the
trade-offs between the flexibility of neural networks and the
precision of symbolic reasoning.
Biased interpretability. Biased interpretability refers to the
bias exhibited by a model during its interpretation process.
This bias can originate from training data, model structure, or
the reasoning process. (1) Data bias. Bias in the training data
affects the model’s learning outcomes. If the training data
contains more samples of certain categories, the model may
be inclined towards these categories, thus displaying bias in
its interpretations. (2) Model structure bias. The design of
the model may introduce bias. For example, predefined rules
in the symbolic reasoning module might favor certain log-
ical paths, leading to biased interpretations. (3) Reasoning
process bias. The logical rules and probabilities applied dur-
ing the reasoning process can introduce bias. For instance,
specific reasoning paths might be used more frequently by
the model, resulting in biased interpretations. Using NS-CL
[136] as an example, NS-CL is a model that combines neu-
ral networks and symbolic reasoning, designed for VQA. It
uses DL for perception and combines it with symbolic rea-
soning for interpretable decision-making. Suppose we have
a visual question-answering system with the question, “Is
there a red ball in the picture?” If the training data contains
significantly more images of red balls than balls of other
colors, then biased interpretability in NS-CL would mani-
fest in three aspects. (1) Impact of data bias. Since there are
more samples of red balls in the training data, the neural net-
work (perception module) might be more likely to recognize
ambiguous or unclear balls as red. This bias would trans-
fer to the symbolic reasoning module, leading the system
to interpret the presence of a red ball, even in cases where
there might not actually be one in the image. (2) Impact of
model structure bias. If the rules defined in the symbolic
reasoning module favor identifying color over shape (e.g.,
prioritizing color judgment), the model would tend to con-

firm the color first when answering questions. This structural
bias would result in the model emphasizing color features in
its interpretation while possibly neglecting subtle shape dif-
ferences. (3) Impact of reasoning process bias: During the
reasoning process, if the model more frequently applies cer-
tain logical rules (e.g., classifying based on color), it would
rely more on these rules when interpreting results. Conse-
quently, this would lead to a biased interpretation process.
Through the example of NS-CL, we can clearly see how
“biased interpretability” manifests in data, model structure,
and the reasoning process. Although neuro-symbolic mod-
els aim to combine the strengths of neural networks and
symbolic reasoning to provide interpretable decision-making
processes, bias can still be introduced at various stages. To
mitigate these biases, improvements are needed in data col-
lection, model design, and the reasoning process.
Trade-offs between interpretability and performance.
The difficulty in balancing interpretability and performance
in neuro-symbolic models stems from the fact that improv-
ing the model’s interpretability typically requires sacrificing
a certain degree of performance, and vice versa [130]. Again,
use NS-CL [136] as an example. Using a purely DL model,
such as a deep CNN for VQA, can achieve high perfor-
mance on benchmarks because it can learn complex patterns
from data. However, the decision-making process of the
model is a black box, making it difficult to understand why
certain decisions are made. Using a purely symbolic AI sys-
tem provides high interpretability because every step of the
reasoning process is transparent and based on predefined
rules. However, such systems often struggle with raw per-
ceptual data and complex pattern recognition, leading to
lower performance in tasks requiring detailed image under-
standing. NS-CL seeks to balance the strengths of neural
networks and symbolic reasoning. The neural component
(CNN) handles complex perception tasks,while the symbolic
component ensures the interpretability of the reasoning pro-
cess. While NS-CL offers better interpretability compared to
purely neural models, its performance may not reach that of
state-of-the-art DL models. Additionally, integrating these
two components can introduce complexity, affecting overall
system efficiency. NS-CL illustrates the trade-off between
interpretability and performance. By combining neural and
symbolic approaches, it aims to leverage the strengths of
both, providing a more interpretable decision-making pro-
cess while maintaining reasonable performance. However,
achieving the optimal balance is challengingbecause improv-
ing one aspect often impacts the other.

Meanwhile, quantifying and verifying the model’s inter-
pretability capabilities remains a challenge [177]. Inter-
pretability may be subjective, depending on the perspectives
and needs of stakeholders: what one person considers inter-
pretable may not be so for another. Neuro-symbolic models
typically include components based on neural networks and
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symbolic reasoningmodules, leading to complex interactions
and decision-making processes that are difficult to interpret.
Despite efforts to integrate symbolic reasoning, many neuro-
symbolic models still exhibit black-box behavior that is hard
to understand. Additionally, the lack of standardized evalu-
ation metrics to quantify interpretability makes it difficult to
compare different methods objectively.
Ethical and societal challenges. The application of neuro-
symbolic paradigms spans various fields, from autonomous
driving to medical diagnosis, bringing forth a broad range
of ethical and societal challenges in these domains. Firstly,
neuro-symbolic models typically require large amounts of
data for training and optimization. Various types of data are
used, including structured and unstructured data, which may
involve personal privacy information such asmedical records
and financial details [157]. In neuro-symbolic approaches,
models may learn patterns related to personal identities or
sensitive information [178], posing risks of information leak-
age. Even if personal identity information is not explicitly
used during model training, the model may still indirectly
infer personal identities through learned correlated informa-
tion [179]. Neuro-symbolic methods may be used to analyze
and mine large-scale data [133], leading to risks of data
misuse. Incorrect usage or analysis of such data can have
adverse effects on personal privacy and societal fairness.
Additionally, the computational systems and algorithms used
in neuro-symbolicmethodsmay have security vulnerabilities
[180], allowing malicious users to exploit these vulnerabil-
ities to access sensitive information or manipulate model
behavior, thereby increasing the risks of privacy breaches
and data misuse.

Secondly, if there is bias or discrimination present in the
training data, neuro-symbolic systemsmay learn these biases
and reflect them in their reasoning and decision-making pro-
cesses [157, 181]. This means that the model may make
unfair decisions based on biases present in the training data,
resulting in outcomes biased towards certain groups or hold-
ing discriminatory attitudes towards certain groups, thereby
affecting the fairness and reliability of the model. Conse-
quently, the application of neuro-symbolic models in the
real world may have negative societal impacts, exacerbating
social inequalities and causing further harm and exclusion
to affected groups. When models demonstrate bias or dis-
crimination, people may become suspicious and distrustful
of them, which reduces their acceptability and applicability.
This could lead to reluctance to use or rely on these models,
thereby limiting their actual application and impact.

Furthermore, when neuro-symbolic systems encounter
errors or produce adverse effects, determining responsibility
and accountability becomes a complex issue [182]. Neuro-
symbolic models typically consist of multiple components,
including neural network parts and symbolic reasoning parts.
This complexity makes it difficult to determine the respon-

sibility for specific issues or errors because problems may
involve interactions and influences between different com-
ponents. Due to the system’s complexity, it is challenging
to pinpoint which component or data point caused the prob-
lem. Neuro-symbolic methods combine statistical learning
from neural networks with logical reasoning from symbolic
inference, so the model may use both methods interchange-
ably during the reasoning process. This mixture of reasoning
makes it difficult to determine whether the model’s deci-
sions in specific situations are based on statistical learning
or logical reasoning, thereby complicating the determination
of responsibility and accountability. Moreover, the neural
network component is typically a black-box model, mak-
ing its internal mechanisms and decision-making processes
difficult to understand and explain. Thus, it is challenging
to determine whether the model’s behavior in specific situa-
tions is reasonable andwhy errors or adverse outcomes occur.
Additionally, neuro-symbolic methods are often data-driven,
meaning their behavior and decisions are often influenced
by the training data. Therefore, when the model encounters
problems or errors, responsibility may partially be attributed
to the quality and biases of the training data, rather than solely
to the design or implementation of the model itself.

Lastly, incorporating ethical reasoning into neuro-symbolic
methods also presents challenges [183], especially in sit-
uations where decisions affect individuals or groups, as
morality is subjective and context-dependent. Moral reason-
ing involves various aspects, including ethical principles,
values, and emotional factors, which are difficult to integrate
in a unified manner within neuro-symbolic methods. Due to
the complexity of ethical reasoning, models often struggle
to accurately understand and infer human moral decision-
making processes.Different cultures, groups, and individuals
may have varying ethical standards and values, adding to
the difficulty of incorporating ethical reasoning in neuro-
symbolicmethods.Models need to consider this diversity and
account for the influence of different ethical standards dur-
ing the reasoning process. Additionally, the black-box nature
of the neural network component in neuro-symbolic meth-
ods makes the model’s ethical reasoning process difficult to
understand and scrutinize, thereby increasing uncertainty and
risk. The application of neuro-symbolic methods may have
significant societal impacts and consequences, particularly in
fields involving ethical decision-making, such as healthcare
[184], justice [185], and military [186]. Therefore, mod-
els need to consider the societal impacts and consequences
when incorporating ethical reasoning and take appropriate
measures to ensure the fairness and rationality of ethical
decision-making.

In summary, the above challenges highlight the obstacles
that neuro-symbolic approaches need to overcome in achiev-
ing their objectives, while also providing directions for future
research. With advancements in learning-enabled IoT tech-
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nology and increased research efforts, these challenges are
likely to be addressed, thereby driving the further develop-
ment of the neuro-symbolic field.

6 Conclusion

The integration of neuro-symbolic approaches within the
AIoT presents a stride towards creating intelligent systems
capable of sophisticated reasoning and decision-making.
This paper has undertaken a comprehensive reviewof the cur-
rent state-of-the-artDLmodels, highlighting their limitations
in terms of testability, verifiability, and interpretability. We
have underscored the potential of neuro-symbolic methods
to transcend these limitations by synergizing the robustness
of symbolic AI with the adaptability of DL. The survey has
delineated the progress and prospects of neuro-symbolic AI
across various domains, including autonomous driving, ser-
vice robots, and systems with highly limited data. We have
accentuated the unique advantages that the neuro-symbolic
paradigm offers in enhancing the interpretability, testability,
and verifiability of AIoT systems. These advantages are piv-
otal for the deployment of AI in safety-critical applications
where decisions must be not only accurate but also justifiable
and transparent. However, the journey towards the seamless
integration of neuro-symbolic AI in AIoT systems is fraught
with challenges.We have identified and discussed significant
hurdles such as hard-coded symbolic AI, lack of support
for multimodal sensor data, complex integration of neural
networks and symbolic AI, biased interpretability, trade-offs
between interpretability and performance, and ethical and
societal challenges. Addressing these challenges calls for
concerted efforts in research and development, interdisci-
plinary collaboration, and the formulation of standardized
evaluation metrics. The ethical and societal implications
of neuro-symbolic AI are profound, extending from data
privacy concerns to the fairness and accountability of AI
systems. As we advance, it is imperative to integrate eth-
ical reasoning into neuro-symbolic methods, ensuring that
AI systems respect human values and societal norms. In
conclusion, the neuro-symbolic approach holds significant
potential for advancing AIoT by improving the reliability,
interpretability, and decision-making of intelligent systems.
The path forward involves overcoming the existing chal-
lenges, fostering interdisciplinary research, and developing
ethical guidelines that will usher in a new generation of AIoT
applications that are not only technologically advanced but
also socially responsible and trustworthy. As we look ahead,
the future of neuro-symbolicAI inAIoT is bright but requires
careful navigation through the complex landscape of techno-
logical and ethical considerations. With dedicated research
efforts and a commitment to addressing the challenges iden-
tified in this survey, we can pave the way for a new era of

AIoT that is underpinned by the powerful and interpretable
neuro-symbolic AI.
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