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Abstract
Software reliability and qualitymeasurement has a long-lasting impact on the final products and user experiences. The analytic
hierarchy process (AHP) and its various hybrid models, including fuzzy AHP, have been applied to software reliability and
quality measurement in various aspects. Related studies indicate that limitations in the paired ratio scales of AHP may lead
to misapplications, which most AHP users might not be aware of. To address this issue, the fuzzy cognitive network process
(FCNP) is proposed as a promising alternative applied for software reliability and quality measurement. One application based
Fuzzy AHP is revisited to demonstrate the feasibility and usability of the FCNP. The paper discusses conversion from the
FAHP to the FCNP, examining their reproducibility, comparability, merits, and limitations. The proposed fuzzy CNP method
can a valuable tool for software customers, designers, developers, testers, and purchasers, to evaluate the level of software
reliability and quality in general applications within intelligent environment.

Keywords Software reliability · Software quality · Measurement · Pairwise comparisons · Operations research

1 Introduction

Software Engineering was firstly termed in the first NATO
Software Engineering Conference to address the Software
Crisis from 1960s [1]. Many projects ran behind schedule,
ran over budget, caused damage, and even failed. The soft-
ware crisis highlights the solutions of software reliability
and quality. The software reliability and quality engineering
includes software operational management techniques, such
as quality evaluation, performancemeasurement, and project
management, to support the decision activities in the software
development life cycle including user requirement, analysis,
design, coding, testing, implementation, improvement, and
maintenance. Examples of a list of the comprehensive oper-
ational management techniques for software reliability and
quality engineering were presented in [2]. The muti-criteria
decision making (MCDM) is one of the essential operational
management techniques.

Regarding the related studies of decision sciences in soft-
ware reliability and quality measurement in JoRIE. Lavado
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et al. [3] used the verification tools to analyse different
properties of SDNs before deployment and/or during the
exploitation of the network. Palade et al. [4] presented a quan-
titative evaluation of four representative proposals: OpenIoT,
CHOReOS, LinkSmart and UBIWARE to complement the
existing qualitative studies of IoT middlewares. Corno et al.
[5] conducted analysis from the qualitative and quantitative
points of view the contributions of the past papers in the user
involvement aspect. Maciel et al. [6] conducted a survey on
reliability and availability modeling of edge, fog, and cloud
computing. Laghari et al. [7] conducted a reviewon quality of
experience in cloud computing.More examples of IE include
human sensing systems [8], IOT-based systems [9], human
and animal digital health platforms [10], reliable systems for
artificial intelligence of things [11], point-of-interest recom-
mendation systems for smart cites [12], medical information
systems [13] and context-aware systems [14, 15].

The MCDM tools or methods for software reliability and
quality measurement in reliable intelligent environment may
be further explored in JoRIE. Especially, the pairwise com-
parisons as the methods and tools should be further included.
An overview of the studies related to the pairwise compar-
isons such as AHP, fuzzy AHP and the other AHP hybrid
models applied to software reliability and quality measure-
ment has been offered in Sect. 2. To highlight themotivations,
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this paper focuses on pairwise comparisons as an initiative
for the MCDM for software reliability and quality engineer-
ing in intelligent environment.

The first use of the method of pairwise comparisons
may be attributed to Ramon Llull in the 13th-century [16].
Thurstone [17] further developed the pairwise comparison
concept to the psychological research. Saaty [18] devel-
oped pairwise comparison based on paired ratio scale and
established the popular decision models: analytic hierarchy
process (AHP) [19] and analytic network process (ANP)
[20]. Instead of crisp number used for the paired ratio scale
in AHP, the Fuzzy AHP applies fuzzy number for the paired
ratio scale for the pairwise comparison judgements. Due to
the potential scale definition problems discussed in Sect. 3,
this paper proposed the Cognitive Network Process (CNP)
[21, 22] based on paired interval scale and Fuzzy CNP
based on fuzzy interval scale [21, 23], which the approach
is presented in Sect. 4 and the applicability with example is
presented in Sect. 5.

The contributions of this paper are summarized as fol-
lows. In Sect. 2, comprehensive reviews are conducted for the
research motivations. The reviews also include the AHP and
its variant forms including FAHP that applied to the applica-
tions of reliability and qualitymeasurement. The background
and limitations of FAHP and the motivation of FCNP are
presented in Sect. 3. The technical details applying FCNP
to the problem domains are offered in Sect. 4. A demonstra-
tion using FCNP in comparison to the FAHP is offered in
Sect. 5. Conclusion and future study highlights are presented
in Sect. 6.

2 Related studies

In this section, applications based on the AHP, fuzzy AHP
and Hybrid AHP in reliability and quality measurement are
reviewed.

2.1 AHP applications in reliability and quality
measurement

The research works below have been found for software
reliability and quality measurement using the single AHP
technique. Zahedi and Ashrafi [24] evaluated software reli-
ability allocation for software and programs to maximize
the user’s utility with considering on financial and tech-
nical constraints of the system. Aggarwal and Singh [25]
measured software reliability apportionment. Ossadnik and
Lange [26] evaluated the AHP-Software. Fahmy [27] eval-
uated the reliability in distributed computing environments.
Sureshchandar and Leisten [28] examined the relative impor-
tance of software metrics from the standpoints of their utility
towards improving business performance. Lee et al. [29]

demonstrated an example for reliability optimization in high
concentration photovoltaic systemdesign. [30]modeled soft-
ware reliability based on ISO/IEC SQuaRE. Kumar and
Singh [31] evaluated the software attributes with respect
to aspect-oriented software quality model. Srivastava et al.
[32] compared smart phones with their reliability factors.
Verma and Mehlawat [33] selected the commercial off-the-
shelf components. [34] evaluated the reliability allocation
for the subsystems of a control and monitoring system. [35]
assessed the reliability of object-oriented software system.
[36] selected the most suitable human reliability analysis
technique for the automotive industry. [37] selected the soft-
ware alternative according to its functionality. [38] evaluated
the reliability of software vendors.

2.2 Fuzzy AHP in reliability and quality
measurement

When the rating scale points in fuzzy number are applied to
AHP, the variant form is called the fuzzy AHP. The major
forms of FAHP are briefly introduced in the next section. For
the FAHP applied to reliability and quality measurement,
Chang et al. [39] evaluated software quality of digital video
recorder systems. Yuen and Lau [40] applied fuzzy loga-
rithmic least squares method [41, 42] for software quality
assurance management. Mishra and Dubey [43] evaluated
the reliability of object-oriented software system. Chatterjee
et al. [44] illustrated an example for software reliability allo-
cation. Febrero et al. [45] measured the software reliability
in view of user perception. Chatterjee et al. [46] estimated
the software reliability and development cost using interval
type-2 fuzzy AHP. Ghunaim and Dichter [47] evaluated the
reliability performance of software defect classifiers. Akbar
et al. [48] prioritized the challenges of cloud-based out-
sourcing software development. Tong et al. [49] evaluated
reliability for IoT-Based monitoring System. Neha et al. [50]
measured software reliability allocation with Pythagorean
FAHP. Neha et al. [51] measured the multi-objective release
time problem for modular software. Upadhyay et al. [52]
measured the software reliability allocation concerning oper-
ational profile.

2.3 Hybrid AHPmethods in reliability and quality
measurement

For the measurement applications, the AHP is usually
employed with the other methods to enhance the evalua-
tion functionalities. Sharma and Dubey [53] integrated AHP
and Fuzzy TOPSIS approach to evaluate the reliability of
software system. Li and Zhao [54] integrated budget con-
strained utility maximization, AHP and genetic algorithm
to optimize the software reliability of the automatic train
operating system. Anthony [55] used AHP and partial least

123



Journal of Reliable Intelligent Environments (2024) 10:319–336 321

square-structural equation modeling to evaluate and priori-
tize software risk factors using risk factor priority selection
for software projectmanagement.Al-Zahrani [56] used fuzzy
logic, ANP and TOPSIS to evaluate the usable-security of
healthcare software. Garg et al. [57] developed a hybrid
approach to select software reliability growth models with
comparing to the AHP. Choudhary et al. [58] applied the
AHP and Entropy method to evaluate software quality and
reliability improvement in open environment. Verma et al.
[59] introduced Neutrosophic AHP approach for budget con-
strained reliability allocation among modules of software
system.

3 Paradoxes of AHP and fuzzy AHP

In this section, general critics for the AHP and Fuzzy AHP
are reviewed. Core concepts of the AHP and fuzzy AHP
are introduced, and the limitations of their rating scales are
explored and discussed.

3.1 Critics

While there are increasing uses of the AHP, the method was
very controversial. Examples includes reversed ranks due to
the deletion of copies and the addition of criteria to differen-
tiate alternatives [60, 61], arbitrary hierarchic composition
[62–64], defending eighteen critics of AHP [65], conflict of
the axioms of expected utility theory [66, 67], and critics for
1–9 points ratio scale in AHP [68]. [16] argued that the AHP
should not be equated with pairwise comparisons.

Although the original author of AHP was strongly against
the fuzzy set applied to the AHP [69, 70], different types
of FAHP are widely used. Extent Analysis Method [71] is
one of the most popular methods used in FAHP. However,
Wang et al. [72] demonstrated some simple examples to indi-
cate critical flaws of the EAM leading to misapplications and
proposed a revised EAM in 2008. Even recently, the flaws
of EAM did not get attention from the recent studies of soft-
ware reliability software, e.g., [44, 48], which still used this
problematic method to make conclusions.

Wang et al. [72] recommended the modified fuzzy loga-
rithmic least squares method (LLSM) [41, 42] since there
were improvements on various established fuzzy LLSM
methods [73–75], whilst Gogus and Boucher [76] indicated
that [73] and [74] in which normalized weights based on
fuzzy ratio scales can exhibit an irrational ordering due to
the problem of normalization procedure of these methods.
Yuen and Lau [40] applied fuzzy LLSM [41, 42] for soft-
ware quality assurance management. Yuen [77] pointed out
fundamental mistakes for both the EAM [71] and the revised
EAM [72, 78], and further proposed Membership Maxi-
mization Prioritization Method (MMPM). Whilst MMPM

produces crisp outputs and modified fuzzy LLSM produces
fuzzy outputs, this paper used modified fuzzy LLSM for the
comparison with the proposed fuzzy CNP generating either
fuzzy or crisp outputs.

3.2 Limitations of AHP rating scales

In AHP, the importance or weight of object i over the object
j is defined by the ratio relationship.

ai j � wi

w j
. (1)

A crisp number is chosen from the 9 points scale, i.e.,
an integer from 1 to 9, for ai j to indicate the ratio relation-
ship for a pair of objects i and j. Usually, the numbers in the
scale are assigned to verbal labels shown in Table 1. Table 1
shows how the verbal labels are mathematically represented
by either crisp (or single) numbers or fuzzy numbers for
both the AHP and the CNP. For example, “slightly” means
“2 times as much as” in the AHP. Assume that person A
is 61 kg and person B is 62 kg. For the paired compari-
son, the syntactic (or linguistic) statement that person A was
“slightly” heavier than person B would be mathematically
interpreted as the semantic (or mathematical) statement that
person A was two times as heavy as person B (or person A
was one time heavier than person B) by applying the default
setting of the AHP scale [21, 22, 79]. Such comparison exag-
gerates the difference between two objects: the better object
is overhyped, and the worse object is underhyped. Providing
that the weight of person A of 61 kg is known, the minimal
weight of person B is expected to be 122 kg by the calcula-
tion based on the AHP ratio scale, i.e., the least value is 2
times. Similarly, the paired ratio scale is not appropriate for
comparisons of IQs, EQs, personal heights, and a short list
of competitive members.

Whilst a single number refers to a crisp number, a trian-
gular fuzzy number refers to three numbers representing the
smallest likely value, most likely value, and the largest pos-
sible value. Due to uncertainty of the exact rating value, a
decision maker may feel more flexible to use fuzzy number
than the crisp number in the pairwise comparison. A fuzzy
number in FAHP shown in Table 1 is chosen to represent the
linguistic label of dominance using fuzzy ratio scale for the
relationship below.

ãi j � w̃i

w̃ j
. (2)

For the case of comparison of weights, the linguistic state-
ment is that person A was (1, 2, 3) times as heavy as person
B, where (1, 2, 3) is a fuzzy triangular number of the modal
value of 2 and the support interval values between 1 and 3.
The crisp number may be considered as a special case of the
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Table 1 Rating scale schemas for
AHP and CNP in crisp and fuzzy
types [79]

Verbal label Notation Crisp number Fuzzy number

Paired ratio
scale (AHP)

Paired interval
scale (CNP,
κ � 8)

Paired ratio
scale (FAHP)

Paired interval
scale (F-CNP)

Equally 0 1 0 (1,1,1) (0,0,0)

Slightly 1 2 κ/8 (1,2,3)
(

0, κ
8 ,

2κ
8

)

Moderately 2 3 2 κ/8 (2,3,4)
(

κ
8 ,

2κ
8 , 3κ

8

)

Fairly 3 4 3 κ/8 (3,4,5)
( 2κ

8 , 3κ
8 , 4κ

8

)

Highly 4 5 4 κ/8 (4,5,6)
(

3κ
8 , 4κ

8 , 5κ
8

)

Strongly 5 6 5 κ/8 (5,6,7)
(

4κ
8 , 5κ

8 , 6κ
8

)

Significantly 6 7 6 κ/8 (6,7,8)
(

5κ
8 , 6κ

8 , 7κ
8

)

Outstandingly 7 8 7 κ/8 (7,8,9)
( 6κ

8 , 7κ
8 , 8κ

8

)

Absolutely 8 9 κ (8,9,9)
( 7κ

8 , 8κ
8 , κ

)

Reciprocals of the above
(AHP/F-AHP)

Opposites of the above
(CNP/F-CNP)

fuzzy number, i.e. modal value. Providing that the weight of
person A is known, person B is expected to be (61, 122, 183)
kg by fuzzy AHP ratio scale. Obviously, the fuzzy pairwise
reciprocal comparison produces misleading results, consid-
ering some simple comparison cases using fuzzy ratio scale
to represent the linguistic scales.

From the cases above, either crisp or fuzzy ratio scales
for pairwise comparison do not manifest the reality of the
perception of linguistic comparison, and usually produce
exaggerated results beyond our common sense, e.g. either
magnification or minification of the human perception. As
the AHP rating scale fails to reflect rater’s cognition of the
difference of two objects, especially when the difference
of two objects was not significant enough to be measured
by times in the 1–9 point paired ratio scale schema, Yuen
[21, 22, 79] proposed the use of the paired interval scale for
conducting pairwise comparisons. Fuzzy Cognitive Pairwise
Comparison (FCPC) is used to address this issue. FCPC is
the extension applying fuzzy number to Cognitive Pairwise
Comparison. For the case of weight comparison, providing
that the weight of person A is known, person B may be inter-
pretated to be (0, 1, 1.25) kg heavier than person A by Fuzzy
CNP interval scale. The detail of FCPC incorporating to the
FCNP is presented in the next section.

4 Fuzzy cognitive network process

The Fuzzy Cognitive Network Process mainly consists of
the following steps: (1) Structure the decision problem with
defining decision criteria and alternatives; (2) Compare and

assess the criteria and alternatives using fuzzy cognitive pair-
wise comparison; (3) Compute the utility values for each
criterion and alternatives using fuzzy cognitive prioritization;
(4) Rank the aggregated results. The details are presented as
follows.

4.1 Structuring a decision problem

Structural Assessment Network (SAN) contains a set of cri-
teria of different levels organized in hierarchy or network
structure. The SAN example showing quality evaluation for
the software components with 27 ISO sub-criteria is pre-
sented in Fig. 1. The decision goal is to select the best
solution. A vector of candidate alternative solutions for the
decision problem ̂T � (T1, . . . , Ti , . . . , Tm) are evaluated
with respect to themeasurable criteria and the external leaves
of structural criteria. Subject to the complexity of the cri-
teria structure, the criteria structure can be organized as
a hierarchical tree structure. A vector of structured deci-
sion criteria, C � (C1, . . . , Ci , . . . , Cn), is the top-level
criteria to measure the decision objective. A criterion Ci

is measured by aggregating a vector of its sub-level cri-
teria

(

Ci , 1, ..., Ci , j , ..., Ci , Ni

)

, and a sub-level criterion
Ci , j is aggregated by a vector of its lower level criteria
(

Ci , j , 1, ..., Ci , j , k , ..., Ci , j , Ni , j

)

.

4.2 Comparisons and assessments in fuzzy cognitive
pairwise comparison

A cluster of assessment values for the measurement objects
are derived from a fuzzy pairwise opposite matrix (FPOM).
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Fig. 1 SAN for software vendor quality evaluation with 27 ISO sub-criteria [21]

Fuzzy triangular number is chosen as a fuzzy set due
to its popularity in fuzzy applications. Let a set of
assessment values in fuzzy triangular number be v̂ �
{̂v1, . . . , v̂n}, where v̂i � (

vli , vπ
i , vui

)

. The compari-
son score in fuzzy number to compare two object values
is

̂bi j ∼� v̂i − v̂ j . (3)

̂bi j is a rating score drawn from the fuzzy paired interval
scale shown in Table 1. A subjective judgmental FPOM
using fuzzy paired interval scale is ̂B � [

̂bi j
]

. A domain
expert may be the decisionmaker, or the stakeholders such as
software customers, designers, developers, testers, and pur-
chasers, who are qualified to make reasonable decision in the
process for a particular decision problem. The model result
highly depends on how knowledgeable an engaged domain
expert is. The expert only provides the rating scores in fuzzy
upper triangularmatrix ̂B+,whilst the lower triangularmatrix
̂B− is the opposite of ̂B+, and thus ̂B � ̂B+ +̂B−. For a com-
plete comparison of a vector of candidates, FPOM requires
n(n−1)

2 ratings. The ideal FPOM is ˜̂B � [

v̂i − v̂ j
]

is deter-
mined by ̂B as follows:

�̃

B �
[

�̃

bi j

]

�

⎡

⎢

⎢

⎢

⎢

⎣

�
v1 − �

v1
�
v1 − �

v2 . . .
�
v1 − �

vn
�
v2 − �

v1
�
v2 − �

v2 . . .
�
v2 − �

vn
...

...
. . .

...
�
vn − �

v1
�
vn − �

v2 · · · �
vn − �

vn

⎤

⎥

⎥

⎥

⎥

⎦

∼�

⎡

⎢

⎢

⎢

⎢

⎢

⎣

�

b11
�

b12 . . .
�

b1n
�

b21
�

b22 . . .
�

b2n
...

...
. . .

...
�

bn1
�

bn2 · · · �

bnn

⎤

⎥

⎥

⎥

⎥

⎥

⎦

�
[

�

bi j

]

� �

B. (4)

�

bi j �
(

bli j , b
π
i j , b

u
i j

)

� −�

b ji �
(

−buji , −bπ
j i , −blji

)

, and

for i , j � 1, . . . , n and i �� j . If i � j , then
�

bi j � �
vi −

�
v j �(0,0, 0).

�

B can be decomposed as three matrices: Bl �
[

bli j

]

, Bπ �
[

bπ
i j

]

, Bu �
[

bui j

]

.
�

B is validated by the Fuzzy

Accordance Index, denoted by
�
AI or FAI, is of the form

below:

�
AI �

(

AI l
) 1

4 × (AIπ
) 1
2 × (AI u) 14 ,

AI l � 1

n2

n
∑

i�1

n
∑

j�1

δli j , δli j

�
√

√

√

√Mean

(

(

1

κ l

(

Bl
i +
(

Bl
j

)T − bli j

))2
)

,

AIπ � 1

n2

n
∑

i�1

n
∑

j�1

δπ
i j , δπ

i j

�
√

√

√

√Mean

(

(

1

κπ

(

Bπ
i +

(

Bπ
j

)T − bπ
i j

))2
)

,

AI u � 1

n2

n
∑

i�1

n
∑

j�1

δui j , δui j
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�
√

√

√

√Mean

(

(

1

κπ

(

Bu
i +
(

Bu
j

)T − bπ
i j

))2
)

. (5)

By default, the fuzzy normal utility (FNU) is of the form
below.

�
κ �

(

κ l , κπ , κu
)

�
(

Max

(

�

X
π

ℵ
)

− δ, Max

(

�

X
π

ℵ
)

,

Max

(

�

X
π

ℵ
)

+ δ

)

. (6)

δ is the average of the modal values of two adjacent
atomic terms, and X

π

ℵ is the set of the modal values from

Xℵ.
�
AI is the normalized weighted geometric mean of

(

AI l , AIπ , AI u
)

, and
�
AI ≥ 0. If

�
AI � 0, then

�

B is per-

fectly accordant; If 0 <
�
AI ≤ 0.1,

�

B is satisfactory. If
�
AI > 0.1,

�

Bmay require revision. The definitions aremerely
based on the error tolerance that a decisionmaker can accept.
It looks that there is a lack of statistical theory to provide gen-
erally acceptable results.

4.3 Fuzzy cognitive prioritization

After FPOMs are formed, the fuzzy utilities can be computed
from each FPOMby a fuzzy cognitive prioritization operator
(FCPO). To extend the crisp forms of primitive least squares
(PLS) (or row average plus the normal utility (RAU)) and
least penalty squares (LPS) in [21, 22], two fuzzy cognitive
prioritization operators [21, 23] are proposed.

The Fuzzy Primitive Least Squares (FPLS) optimization
model of the form below produces a vector of fuzzy individ-

ual utilities,
�

V �
{

�
v1, . . . , �

vn

}

, where �
vi � (vli , vπ

i , vui

)

.

min
�

� �
n
∑

i�1

n
∑

j�i+1

⎡

⎢

⎣

(

bli j − vli + vlj

)2
+

(

bπ
i j − vπ

i + vπ
j

)2
+
(

bui j − vui + vuj

)2

⎤

⎥

⎦
,

s.t .
n
∑

i�1

vli � nκl ,

n
∑

i�1

vπ
i � nκπ ,

n
∑

i�1

vui � nκu .

(7)

n �
∣

∣

∣

{

�
vi

}∣

∣

∣ is a cardinal number of the fuzzy utility vec-

tor.
(

bli j , b
π
i j , b

u
i j

)

∈ �

B is a fuzzy entry of
�

B, n
�
κ �

(

nκ l , nκπ , nκu
)

is the fuzzy population utility, and �
κ �

(

κ l , κπ , κu
)

is the fuzzy normal utility. The closed-form
solution of FPLS is the Fuzzy Row Average plus the nor-
mal Utility (FRAU) of the form below.

FRAU

(

�

B, �
κ

)

�

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

(

vli , vπ
i , vui

)

|

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

vli �
(

1
n

(

i
∑

j�1
bui j +

n
∑

j�i+1
bli j

))

+ κ l

vπ
i �

(

1
n

n
∑

j�1
bπ
i j

)

+ κπ

vui �
(

1
n

(

i
∑

j�1
bli j +

n
∑

j�i+1
bui j

))

+ κu

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, ∀i ∈ {1, . . . , n}

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(8)

Regarding the Fuzzy Least Penalty Squares (FLPS) oper-
ator, the vector of the individual utilities can be derived as
follows.
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FLPS

(

�

B
+
, �
κ

)

� min
�

� �
n
∑

i�1

n
∑

j�i+1

[

βl
i j ·
(

bli j − vli + vlj

)2
+βπ

i j ·
(

bπ
i j − vπ

i + vπ
j

)2
+βu

i j ·
(

bui j − vui + vuj

)2
]

βl
i j �

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

β1, vli > vlj& bli j > 0

or vli < vlj& bli j < 0

β2, vli � vlj bli j �� 0

or vli �� vlj bli j � 0

β3, otherwise

; βπ
i j �

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

β1, vπ
i > vπ

j & bπ
i j > 0

or vπ
i < vπ

j & bπ
i j < 0

β2, vπ
i � vπ

j bπ
i j �� 0

or vπ
i �� vπ

j bπ
i j � 0

β3, otherwise

βu
i j �

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

β1, vui > vuj& bui j > 0

or vui < vuj& bui j < 0

β2, vui � vuj bui j �� 0

or vui �� vuj bui j � 0

β3, otherwise

s.t .
n
∑

i�1

vli � nκ l

n
∑

i�1

vπ
i � nκπ

n
∑

i�1

vui � nκu

vli , vπ
i , vui ≥ 0, i � 1, 2, . . . , n.

(9)

If FAI ≤ 0.1, FRAU is recommended since FRAU pro-
duces the same or very closed result as FLPS, as FAI is very
low, and its computational effort is the least. In terms of the
approximate accuracy of the discordant matrix with more
contradiction, FLPS is preferable since it minimizes the sum
of themultiplications of the contradiction and distance errors.

�

V can be normalized
�

W �
{

�
w1, . . . , �

wi , . . . , �
wn

}

,

where �
wi � (

wl
i , wπ

i , wu
i

)

, such that
n
∑

i�1
wπ
i � 1.

�

W is

called the fuzzy priority vector (or fuzzy normalized weight
vector). The fuzzy rescale function, or the normalization
function, is of the form below.

�

W �
{

�
wi �

(

wl
i , wπ

i , wu
i

)

:
(

wl
i , wπ

i , wu
i

)

�
(

vli
nκπ

,
vπ
i

nκπ
,

vui
nκπ

)

, ∀i ∈ {1, . . . , n}
}

,
∑

i∈{1, ..., n}
vπ
i � nκπandκπ � Max

(

�

Xℵ
)

(10)

Table 4 is an example that shows the FPOM which is

transformed to
�

W by the normalized result with Eq. (10)
from the prioritization result from Eq. (9), and the FAI value
is computed by Eq. (5).

4.4 Fuzzy aggregation and ranking

A fuzzy decision matrix shown in Table 2 com-

prises a matrix of fuzzy individual utility,
{

�
vk j

}

�
{(

vlk j , vπ
k j , vuk j

)}

, with respect to a vector of alternatives,

T � {Tk , . . . , Tk , . . . , Tm}, and a vector of top level of cri-
teria, C � (C1, . . . , Ci , . . . , Cn), associated with a vector

of weights,
�

V �
(

�
v1, . . . , �

v j , . . . , �
vn

)

. A fuzzy individ-

ual utility
(

vlk j , vπ
k j , vuk j

)

is in a triangular fuzzy number for

individual utility of an alternative Tk , k � 1, . . . , m with

respect to a criterion C j , j � 1, . . . , n. A normalized fuzzy

triangular weight, �
v j �

(

vlj , vπ
j , vuj

)

, is assigned to a crite-

rion C j , j � 1, . . . , n. Fuzzy arithmetic mean (FAM) below
is chosen as default aggregation operator since it is used by
most decision models due to its computational efficiency and
comprehensive simplicity.
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Table 2 A fuzzy decision matrix
with fuzzy aggregated utilities
[21, 79]

Alternatives C1 · · · C j · · · Cn Fuzzy aggregated
utilities(

vl1, vπ
1 , vu1

) · · · (

vlj , vπ
j , vuj

) · · · (

vln , vπ
n , vun

)

T1
(

vl11, vπ
11, vu11

) · · · (

vl1 j , vπ
1 j , vu1 j

) · · · (

vl1n , vπ
1n , vu1n

) (

vlT1 , vπ
T1
, vuT1

)

...
... · · ·

... · · ·
...

...

Tk
(

vlk1, vπ
k1, vuk1

) · · · (

vlk j , vπ
k j , vuk j

) · · · (

vlkn , vπ
kn , vukn

) (

vlTk
, vπ

Tk
, vuTk

)

...
... · · ·

... · · ·
...

...

Tm
(

vln1, vπ
n1, vun1

) · · · (

vln j , vπ
nj , vunj

) · · · (

vlmn , vπ
mn , vumn

) (

vlTm , vπ
Tm
, vuTm

)

�

V Tk �

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(

vlTk
, vπ

Tk
, vuTk

)

:

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

vlTk
� 1

n

m
∑

j�1
vlk jv

l
j

vπ
Tk

� 1
n

n
∑

j�1
vπ
k jv

π
j

vuTk
� 1

n

m
∑

j�1
vuk jv

u
j

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

,

k � 1, . . . , m. (11)

By comparing
�

V Tk , k � 1, . . . , m, the best decision
from the fuzzy aggregation results is selected. An example is
shown in Table 17, how Fuzzy decision matrix is aggregated
and ranked by Eq. (11).

5 Application

Yuen and Lau [40] applied the modified Fuzzy Logarithmic
Least Squares Method (FLLSM) [41, 42] for software qual-
ity assurance management based on group decision making.
Yuen [80] proposed the primitive cognitive network process
to evaluate vendor’s software component quality with six top
level criteria in ISO/IEC 9126. Yuen [81] proposed a hybrid
system including FCNP [23], Quality Function Deployment
(QFD) and aggregative grading clustering for cloud soft-
ware product development. Yuen proposed CNP for forward
feature selection with deep learning for astronomical object
classification with Sloan Digital Sky Survey [82]. For this
study, the FCNP presented in Sect. 4 is applied and demon-
strated, with comparison to the FAHP based on the modified
FLLSM in [41, 42] for the case of evaluating reliability and
quality of software components using ISO/IEC9126-1:2001.
This application is essentially derived in part and further
extended from the case presented in author’s PhD thesis [21].

5.1 Fuzzy CNP approach

5.1.1 Step 1: structuring a decision problem

Acompany designed andmanufactured Smartphones includ-
ing hardware and software research and development. The
company was planning to develop a smartphone model. The
company would like to add one software component into its
new product among three alternatives T1, T2, T3 with respect
to the six ISO criteria of 27 sub-criteria (ISO/IEC9126-1:
2001) [83] in Fig. 1. The fuzzy rating scale using triangu-
lar fuzzy numbers is defined in Table 3. Scale for forward
comparison means the number that object A is better than
object B, whilst scale for backward comparison means the
number that object A is worse than object B, or object B is
better than object A. The fuzzy number is slightly modified
from the template in Table 1. The fuzzy ratio scale is based
on the definition in Eq. (2), whilst fuzzy paired interval scale
is based on the definition in Eq. (3). Whilst diverse software
can be used to implement the functions in this paper, Wol-
framMathematica software is used for the calculation in this
paper, especially to solve the optimization model in Eq. (9).

5.1.2 Steps 2 & 3: Comparisons, assessments
and prioritization

The evaluation initially was based on FAHP scale, which can
be converted to FCNP scale by the conversion scale schema
showing in Table 3, which represents two different views
for the same comparison verbal labels and notations: fuzzy
paired ratio or interval scales. For the top level, the fuzzy

pairwise opposite matrix (
�

B0) and the normalized fuzzy
weights for the six software quality criteria, functionality
(C1), reliability (C2), usability (C3), efficiency (C4), main-
tainability (C5) and portability (C6), are shown in Table 4.
The general form of FPOM is defined in Eq. (4). The Fuzzy
Accordance Index for the top-level criteria is 0.427, which
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Table 3 Scale Schemas for fuzzy
interval scale of FCNP and fuzzy
ratio scale of FAHP

Notations Verbal label Fuzzy CNP
�
κ � (3.5, 4, 4.5)

Fuzzy AHP

0 Equality Equal (0,0,0) (1,1,1)

1
+

Forward
comparison

Low (0.5, 1, 1.5) (1.5, 2, 2.5)

2
+

Moderate (1.5, 2, 2.5) (2.5,3,3.5)

3
+

High (2.5, 3, 3.5) (3.5,4,4.5)

1
−

Backward
comparison

Low’ (− 1.5, − 1, − 0.5) (0.4,0.5,0.67)

2
−

Moderate’ (− 2.5, − 2, − 1.5) (0.29,0.33,0.4)

3
−

High’ (− 3.5, − 3, − 2.5) (0.22,0.25,0.29)

Table 4 FPOM and fuzzy
weights for six criteria (FAI �
0.427)

�

B0 C1 C2 C3 C4 C5 C6
�

W

C1 0 1
+

2
+

1
+

2
+

2
+

(0.19,0.24,0.29)

C2 1
−

0 1
+

1
+

1
+

1
+

(0.15,0.19,0.24)

C3 2
−

1
−

0 2
+

1
+

1
+

(0.14,0.18,0.21)

C4 1
+

1
−

2
−

0 1
+

1
+

(0.13,0.15,0.17)

C5 2
−

1
+

1
−

1
−

0 3
−

(0.08,0.09,0.11)

C6 2
−

1
−

1
−

1
−

3
+

0 (0.13,0.15,0.15)

is computed by Eq. (5). Two methods can be used for pri-
oritization to compute the fuzzy weights: one is the FRAU
of Eq. (8) (a closed form of FPLS of Eq. 7), and another
is the FLPS of Eq. (9). Since the FAI of 0.427 is quite
higher than the recommended value of 0.1, FLPS is recom-

mended to compute the fuzzy weight vector
�

W , which is
shown in Table 4. After prioritization, the preference order
is C1 ≥ C2 ≥ C3 ≥ C4 ≥ C6 ≥ C5. Functionality (C1) has
the highest fuzzy weight.

For the middle level, The FPOMs and their fuzzy impor-
tance for the sub-criteria underC1 toC6 and the fuzzyweights
are presented in Tables 5, 6, 7, 8, 9, 10 respectively. As the
FAIs for all FPOMs are high, FLPS of Eq. (9) is used for

the prioritization. Table 5 shows the FPOM (
�

B1) and the
normalized fuzzy weights for the five sub-criteria of func-
tionality: suitability (C11), accuracy (C12), interoperability
(C13), security (C14) and functionality compliance (C15). The
preference order is C15 ≥ C14 ≥ C13 ≥ C11 ≥ C12, which
functionality compliance (C15) is of the highest weight and
the accuracy weight is the lowest. Table 6 shows the FPOM

(
�

B2) and the normalized fuzzy weights for the four sub-
criteria of reliability: maturity (C21), recoverability (C22),
fault tolerance (C23), and reliability compliance (C24). After
prioritization of FPOM to yield the fuzzy weights, the pref-
erence order is C24 ≥ C21 ≥ C22 ≥ C23.

Table 7 shows the FPOM (
�

B3) and
�

W for the five sub-
criteria of usability: understandability (C31), learnability

(C32), operability (C33), attractiveness (C34), usability com-
pliance (C35). The preference order is C35 ≥ C31 ≥ C34 ≥
C32 ≥ C33 after prioritization of the evaluation inputs.

Table 8 exhibits the FPOM (
�

B4) and
�

W for the three sub-
criteria of efficiency: time behavior (C41), resource behavior
(C42), efficiency compliance (C43). The preference order is
C43 ≥ C41 ≥ C42.

Table 9 illustrates the FPOM (
�

B5) and
�

W for the five sub-
criteria ofmaintainability: analyzability (C51), changeability
(C52), stability (C53), testability (C54), maintainability com-
pliance (C55). The rank based on the prioritization weights
is C55 ≥ C54 ≥ C53 ≥ C51 ≥ C52. Table 10 shows the

FPOM (
�

B6) and
�

W for the five sub-criteria of portability:
adaptability (C61), installability (C62), co-existence (C63),
replaceability (C64) and portability compliance (C65). The
rank is C65 ≥ C64 ≥ C63 ≥ C61 ≥ C62. The subcriteria

indices of
�

B5 and
�

B6 have the same rank due to slightly dif-
ferent fuzzy weights from almost the same FPOM values but
one different entry shown in Tables 9, 10.

For the lowest level, the decision makers evaluate and
compare the three candidates, T1, T2, T3, for all 27-software
quality subcriteria of six top criteria respectively. The pair-
wise comparisons among the three candidates under each
sub-quality criterion, FAI values and derived fuzzy weights
are presented inTables 11, 12, 13, 14, 15 and16. Similarly, for
fuzzy cognitive prioritization in this case, the FRAU method
is not recommended and the FLPS method is selected due
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Table 5 FPOM and fuzzy
weights for five subcriteria of
functionality (FAI � 0.226)

�

B1 C11 C12 C13 C14 C15
�

W

C11 0 1
+

2
−

1
−

3
−

(0.07,0.13,0.19)

C12 1
−

0 3
−

2
−

3
−

(0.03,0.08,0.13)

C13 2
+

3
+

0 1
−

1
−

(0.21,0.24,0.27)

C14 1
+

2
+

1
+

0 1
−

(0.22,0.24,0.27)

C15 3
+

3
+

1
+

1
+

0 (0.3,0.31,0.31)

Table 6 FPOM and fuzzy
weights for four subcriteria of
reliability (FAI � 0.112)

�

B2 C21 C22 C23 C24
�

W

C21 0 2
+

2
+

1
−

(0.24,0.31,0.39)

C22 2
−

0 1
+

3
−

(0.11,0.17,0.22)

C23 2
−

1
−

0 3
−

(0.09,0.13,0.16)

C24 1
+

3
+

3
+

0 (0.39,0.4,0.41)

Table 7 FPOM and fuzzy
weights for five subcriteria of
usability (FAI � 0.222)

�

B3 C31 C32 C33 C34 C35
�

W

C31 0 1
+

2
+

1
+

3
−

(0.15,0.21,0.27)

C32 1
−

0 1
+

1
−

3
−

(0.1,0.15,0.19)

C33 2
−

1
−

0 1
−

3
−

(0.07,0.11,0.14)

C34 1
−

1
+

1
+

0 3
−

(0.15,0.17,0.19)

C35 3
+

3
+

3
+

3
+

0 (0.35,0.36,0.37)

Table 8 FPOM and fuzzy
weights for three subcriteria of
efficiency (FAI � 0)

�

B4 C41 C42 C43
�

W

C41 0 1
+

1
−

(0.24,0.33,0.43)

C42 1
−

0 2
−

(0.17,0.22,0.28)

C43 1
+

2
+

0 (0.43,0.44,0.46)

Table 9 FPOM and fuzzy
weights for five subcriteria of
maintainability (FAI � 0.218)

�

B5 C51 C52 C53 C54 C55
�

W

C51 0 1
+

1
−

1
−

3
−

(0.09,0.15,0.21)

C52 1
−

0 3
−

3
−

3
−

(0.02,0.07,0.11)

C53 1
+

3
+

0 1
−

2
−

(0.18,0.21,0.25)

C54 1
+

3
+

1
+

0 1
−

(0.23,0.25,0.27)

C55 3
+

3
+

2
+

1
+

0 (0.31,0.32,0.33)
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Table 10 FPOM and fuzzy
weights for the fuzzy importance
of five subcriteria of portability
(FAI � 0.213)

�

B6 C61 C62 C63 C64 C65
�

W

C61 0 1
+

1
−

1
−

3
−

(0.09,0.15,0.21)

C62 1
−

0 3
−

3
−

3
−

(0.02,0.07,0.11)

C63 1
+

3
+

0 1
−

1
−

(0.19,0.23,0.26)

C64 1
+

3
+

1
+

0 1
−

(0.23,0.25,0.27)

C65 3
+

3
+

1
+

1
+

0 (0.3,0.31,0.31)

Table 11 FPOMs and fuzzy
weights for three candidates with
respect to subcriteria of
functionality C1

�

B11 (FAI � 0.129)
�

B12(FAI � 0.12)

T1 T2 T3 FW T1 T2 T3
�

W

T1 0 0 1
−

(0.21,0.29,0.36) 0 1
−

0 (0.24,0.31,0.38)

T2 0 0 2
−

(0.2,0.27,0.34) 1
+

0 0 (0.31,0.36,0.4)

T3 1
+

2
+

0 (0.43,0.44,0.46) 0 0 0 (0.28,0.33,0.39)
�

B13 (FAI � 0)
�

B14 (FAI � 0)

T1 0 1
−

0 (0.22,0.29,0.35) 0 1
−

0 (0.23,0.3,0.36)

T2 1
+

0 2
+

(0.39,0.44,0.5) 1
+

0 1
+

(0.35,0.41,0.46)

T3 0 2
−

0 (0.22,0.27,0.32) 0 1
−

0 (0.25,0.3,0.34)
�

B15 (FAI � 0)

T1 0 1
+

0 (0.31,0.37,0.43)

T2 1
−

0 1
−

(0.2,0.26,0.31)

T3 0 1
+

0 (0.32,0.37,0.42)

to the relatively high FAI value, or high discordance. The
fuzzy weights for the six quality attributes comprising 27
sub-criteria are computed by the FLPS shown in Eq. (9).

Table 11 shows the FPOMs and fuzzy weights for three
candidates with respect to five subcriteria of functionality.
Alternative 2 has the highest weights of accuracy (C12),
interoperability (C13), security (C14), whilst Alternative 3
has the highest weights of suitability (C11). Alternatives 1
and 3 have the almost equal rank for functionality compli-
ance (C15). Table 12 shows the FPOMs and fuzzy weights
for three candidates with respect to subcriteria of reliability.
Alternative 1 has the highest weight of fault tolerance(C23),
and the slightly higher fuzzy weights of recoverability (C22)

and reliability compliance (C24) than the others. Alternative
2 has the highest fuzzy weights of maturity(C21).

Table 13 presents the FPOMs and fuzzy weights for three
candidateswith respect to subcriteria of usability. Alternative
1 has the highest weights of understandability (C31), learn-
ability (C32), operability (C33), and attractiveness (C34).
Alternative 2 has the highest weights of usability compli-
ance (C35). Table 14 illustrates the FPOMs and fuzzyweights

for three candidates with respect to subcriteria of efficiency.
Alternative 1 has the highest weights of time behavior (C41).
Alternative 3 has the highest weights of efficiency compli-
ance (C43). All alternatives have the sameweight of resource
behavior (C42).

Table 15 presents the FPOMs and fuzzy weights for three
candidates with respect to subcriteria of maintainability.
Alternative 1 has the highest weights of analyzability (C51).
Alternative 2 has the highest weights of stability (C53) and
testability (C54). All alternatives have the same weights of
changeability (C52) and maintainability compliance (C55).
Table 16 presents the FPOMs and fuzzy weights for three
candidates with respect to subcriteria of portability. Alterna-
tive 1 has the highest weights of replaceability (C64), and
Alternative 2 has the highest weights of adaptability (C61),
co-existence (C63) and portability compliance (C65). All
alternatives have almost the same fuzzy weights of instal-
lability (C62).
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Table 12 FPOMs and fuzzy
weights for three candidates with
respect to subcriteria of
reliability (C2)

�

B21 (FAI � 0.211)
�

B22 (FAI � 0.509)

T1 T2 T3
�

W T1 T2 T3
�

W

T1 0 0 1
+

(0.31,0.38,0.46) 0 1
+

0 (0.3,0.37,0.42)

T2 0 0 2
+

(0.32,0.4,0.47) 1
−

0 3
+

(0.29,0.37,0.41)

T3 1
+

2
−

0 (0.2,0.22,0.24) 0 3
−

0 (0.24,0.26,0.33)
�

B23(FAI � 0.129)
�

B24 (FAI � 0.385)

T1 0 2
+

1
+

(0.35,0.44,0.54) 0 1
−

1
+

(0.28,0.34,0.41)

T2 2
−

0 0 (0.23,0.27,0.31) 1
+

0 1
−

(0.28,0.34,0.38)

T3 1
−

0 0 (0.25,0.29,0.32) 1
−

1
+

0 (0.28,0.33,0.38)

Table 13 FPOMs and fuzzy
weights for three candidates with
respect to subcriteria of usability
(C3)

�

B31 (FAI � 0)
�

B32 (FAI � 0.12)

T1 T2 T3
�

W T1 T2 T3
�

W

T1 0 2
+

0 (0.33,0.40,0.46) 0 1
+

1
+

(0.31,0.41,0.5)

T2 2
−

0 1
−

(0.17,0.22,0.28) 1
−

0 1
+

(0.28,0.33,0.39)

T3 0 1
+

0 (0.33,0.38,0.43) 1
−

1
−

0 (0.24,0.26,0.28)
�

B33 (FAI � 0)
�

B34 (FAI � 0.254)

T1 0 1
+

3
+

(0.39,0.48,0.57) 0 2
+

0 (0.31,0.38,0.44)

T2 1
−

0 2
+

(0.31,0.37,0.43) 2
−

0 0 (0.24,0.29,0.33)

T3 3
−

2
−

0 (0.13,0.15,0.17) 0 0 0 (0.28,0.33,0.39)
�

B35 (FAI � 0.12)

T1 0 1
−

1
−

(0.17,0.26,0.35)

T2 1
+

0 1
+

(0.35,0.41,0.46)

T3 1
+

1
−

0 (0.31,0.33,0.35)

Table 14 FPOMs and fuzzy
weights for three candidates with
respect to subcriteria of
efficiency (C4)

�

B41 (FAI � 0.12)
�

B42 (FAI � 0)

T1 T2 T3
�

W T1 T2 T3
�

W

T1 0 1
+

1
+

(0.31,0.41,0.5) 0 0 0 (0.28,0.33,0.39)

T2 1
−

0 1
−

(0.2,0.26,0.31) 0 0 0 (0.28,0.33,0.39)

T3 1
−

1
+

0 (0.31,0.33,0.35) 0 0 0 (0.28,0.33,0.39)
�

B43 (FAI � 0.129)

T1 0 0 1
−

(0.21,0.29,0.36)

T2 0 0 2
−

(0.2,0.27,0.34)

T3 1
+

2
+

0 (0.43,0.44,0.46)
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Table 15 FPOMs and fuzzy
weights for three candidates with
respect to subcriteria of
maintainability (C5)

�

B51 (FAI � 0.12)
�

B52 (FAI � 0)

T1 T2 T3
�

W T1 T2 T3
�

W

T1 0 1
+

0 (0.29,0.36,0.42) 0 0 0 (0.28,0.33,0.39)

T2 1
−

0 0 (0.27,0.31,0.36) 0 0 0 (0.28,0.33,0.39)

T3 0 0 0 (0.28,0.33,0.39) 0 0 0 (0.28,0.33,0.39)
�

B53 (FAI � 0)
�

B54(FAI � 0.24)

T1 0 1
−

0 (0.22,0.29,0.35) 0 1
−

0 (0.21,0.28,0.34)

T2 1
+

0 2
+

(0.39,0.44,0.5) 1
+

0 3
+

(0.43,0.48,0.54)

T3 0 2
−

0 (0.22,0.27,0.32) 0 3
−

0 (0.2,0.24,0.29)
�

B55 (FAI � 0)

T1 0 0 0 (0.28,0.33,0.39)

T2 0 0 0 (0.28,0.33,0.39)

T3 0 0 0 (0.28,0.33,0.39)

Table 16 FPOMs and fuzzy
weights for three candidates with
respect to subcriteria of
portability (C6)

�

B61 (FAI � 0.385)
�

B62 (FAI � 0.385)

T1 T2 T3 FW T1 T2 T3 FW

T1 0 2
−

0 (0.21,0.27,0.33) 0 1
−

1
+

(0.28,0.34,0.41)

T2 2
+

0 1
+

(0.39,0.44,0.5) 1
+

0 1
−

(0.28,0.34,0.38)

T3 0 1
−

0 (0.24,0.29,0.33) 1
−

1
+

0 (0.28,0.33,0.38)
�

B63 (FAI � 0.12)
�

B64 (FAI � 0.376)

T1 0 0 0 (0.28,0.33,0.39) 0 2
+

0 (0.3,0.37,0.44)

T2 0 0 1
+

(0.29,0.36,0.42) 2
−

0 1
+

(0.27,0.32,0.37)

T3 0 1
−

0 (0.27,0.31,0.36) 0 1
−

0 (0.26,0.31,0.37)
�

B65 (FAI � 0.24)

T1 0 1
−

0 (0.21,0.28,0.34)

T2 1
+

0 3
+

(0.43,0.48,0.54)

T3 0 3
−

0 (0.2,0.24,0.29)

Table 17 Fuzzy decision matrix
and aggregation results using
FCNP

Fuzzy weight T1 T2 T3

C1 (0.19,0.24,0.29) (0.21,0.32,0.44) (0.24,0.35,0.47) (0.24,0.34,0.45)

C2 (0.15,0.19,0.24) (0.25,0.37,0.52) (0.24,0.35,0.47) (0.21,0.28,0.37)

C3 (0.14,0.18,0.21) (0.22,0.35,0.52) (0.24,0.33,0.44) (0.24,0.31,0.4)

C4 (0.13,0.15,0.17) (0.21,0.34,0.49) (0.18,0.28,0.4) (0.3,0.38,0.47)

C5 (0.08,0.09,0.11) (0.21,0.31,0.44) (0.29,0.39,0.51) (0.2,0.3,0.41)

C6 (0.13,0.15,0.15) (0.21,0.32,0.44) (0.29,0.4,0.52) (0.2,0.29,0.4)

Final fuzzy weights (0.18,0.34,0.56) (0.2,0.35,0.55) (0.19,0.32,0.49)

Centroid defuzzification 0.36 0.37 0.33
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Fig. 2 Aggregated fuzzy weights using FCNP with �
κ � (3.5, 4, 4.5)

5.1.3 Step 4: fuzzy aggregation and ranking

As different alternatives have different relative strengths and
weaknesses in the software criteria of different weights, a
synthesis method produces the final rank is needed. The
fuzzy utilities/weights of each level of criteria derived from
the FROM prioritizations in previous steps are aggregated
by fuzzy weighted arithmetic mean (Eq. 11), and the final
fuzzy weights of the three candidates are determined. The
details are presented in Table 17. The final fuzzy triangular
set results are visualized in Fig. 2. The fuzzy support interval
of T1 embraces the support intervals of T2 and T3. By com-
paring themodal values of the output fuzzy sets, T2 is the best
alternative, followed by T1 and T3. By comparing the upper
boundary values, the rank order is T1>T2>T3. By comparing
the lower boundary values, the rank is T2>T3>T1. The rank
T2>T1>T3 is selected as the modal value of the fuzzy set may
be relatively more important than the support interval val-
ues. The confidence level is very low due to the high overlap
of support interval region. The centroid defuzzification, the
mean of three values in fuzzy triangular number, produces
the same rank as the modal value selection.

Fig. 3 Final fuzzy weights using FAHP

5.2 Fuzzy AHP approach

Based on the decision problem described in Sect. 5.1, the
experts have compared the three candidates, T1, T2, T3,
with the two levels of criteria. The Fuzzy Pairwise Recipro-
cal Matrices (FPRMs) are formed by applying fuzzy rating
scores in Table 3 to the pairwise comparison matrices shown
in Tables 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 and 16. The
fuzzy relative importance of the six quality attributes com-
prised of 27 subcriteria, is computed by modified FLLSM
[41, 42]. The fuzzy weights from prioritization of FPRMs
are aggregated by fuzzy weighted arithmetic mean (Eq. 11).
Fuzzy decision matrix and aggregation results are shown in
Table 18. The fuzzy aggregated results are visualized Fig. 3.
It is clear that T2 is the best alternative, followed by T1 and
T3.

5.3 Discussions

Both methods use the same scale labels, but different fuzzy
representation values shown in Table 3 due to the different
axioms for the pairwise comparisons. The rank for the fuzzy

Table 18 Fuzzy decision matrix
and aggregation results using
FAHP

Fuzzy importance T1 T2 T3

C1 (0.27,0.29,0.31) (0.28,0.31,0.33) (0.31,0.36,0.41) (0.31,0.33,0.36)

C2 (0.18,0.21,0.24) (0.32,0.36,0.4) (0.33,0.37,0.4) (0.24,0.27,0.31)

C3 (0.15,0.17,0.19) (0.31,0.34,0.38) (0.31,0.36,0.41) (0.27,0.30,0.33)

C4 (0.12,0.14,0.16) (0.29,0.33,0.38) (0.22,0.23,0.24) (0.4,0.44,0.48)

C5 (0.07,0.07,0.08) (0.28,0.3,0.32) (0.4,0.43,0.45) (0.27,0.27,0.28)

C6 (0.1,0.11,0.13) (0.29,0.31,0.34) (0.41,0.45,0.49) (0.22,0.23,0.26)

Global fuzzy
weights

(0.29,0.33,0.36) (0.31,0.36,0.4) (0.28,0.32,0.35)

Centroid
defuzzification

0.33 0.36 0.32
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Fig. 4 Fingal fuzzy weights using FCNP with �
κ � (3.75, 4, 4.25)

result of FAHP is clear, i.e. T2>T1>T3 on the basis of their
support intervals andmodal values shown in Fig. 3. Themain
reason is that the paired ratio scale significantly enlarges the
difference. On the other hand, the FCNP result is on a case-
by-case basis. It can be observed that the support interval of
T1 embraces the support intervals of T2 and T3 in Fig. 2.

The FCNPcan be used for the decision attitudes. For a pes-
simist decision, low-boundary values are applied, and then
the rank is T2>T3>T1. For an optimist decision, up-boundary
values are applied, and then the rank is T1>T2>T3. For a neu-
tral decision, modal values are applied, and then the rank is
T2>T1>T3. By default, neutral one is applied, as the modal
values of the fuzzy results of FCNP are a special case of
CNP. Centroid defuzzification may be applied to determine
the final rank. The advantage of judgment in fuzzy numbers
is for exploring the ranges of the results associated with the
decision attitudes.

The values of fuzzy accordant indices of the most FPOMs
are high in this case. The main issue is that the FPOMs are
directly converted from FPRMs using the conversion schema
shown in Table 3. Whilst there are a lot of studies using
FAHP, the demonstration shows the steps how the FAHP
data is converted to and compared with FCNP. The fuzzy
accordant index (FAI) is an essential reference for the validity
of the FCNPmodel. This discussion result is crucial to future
applications and development using FCNP.

The support interval of the fuzzyweights of FCNP is larger
than FAHP. The range of the interval is related to the design
of a fuzzy individual utility �

κ . If the interval of �
κ is reduced,

i.e., �
κ � (3.75, 4, 4.25) in this case, the ranges of final fuzzy

outputs become narrower, which are shown in Fig. 4. How-
ever, if �

κ is excessively small, for example, the �
κ modal value

is less than the modal value of the maximum of fuzzy scale,
the fuzzy utility vector is likely to produce negative results.
This situation is also applied to the support interval values.
In contrast, if �

κ is excessively large, the intervals of the final

fuzzy outputs become large accordingly. Users should pay
attention to a reasonable setting for �

κ value, especially δ

defined in Eq. (6).
For the limitation of this application, the case derived

from [21] is based on the ISO/IEC 9126:2001 for com-
parison. Although the demonstration of applying FCNP to
the ISO/IEC 9126:2001 is feasible, the ISO/IEC 9126:2001
standard was replaced ISO/IEC 25010:2011 (Systems and
software Quality Requirements and Evaluation (SQuaRE):
System and software quality models) [84], which was further
replaced by ISO/IEC 25010:2023 (SQuaRE: Product quality
model) [85], ISO/IEC 25019:2023 (SQuaRE: Quality-in-use
model) [86], and ISO/IEC 25002:2024 (SQuaRE: Quality
model overview and usage) [87]. This illustration has estab-
lished an initiative for the future motivations which may
apply the FCNP and the new ISO/IEC quality models for
diverse quality decision applications.

6 Conclusions and future studies

Whilst AHP and its hybrid forms including FAHP are widely
applied as one of promising software reliability and quality
evaluation techniques, this research reviewed their potential
pitfalls leading to misapplications, especially the inappropri-
ateness of the perception of paired ratio scale. This research
proposed the FCNP as the promising alternative for the
researchers and partitioners. The FCNP is themethod applied
the triangular fuzzy number for the paired interval scale in the
CNP model. The advantage of the triangular fuzzy number
may have the promising capabilities to handle uncertainty
calculation as the modal and interval support values may
reflect different levels of decision attitudes, i.e., pessimistic,
neutral and optimistic. Based on six criteria consisting of
27 subcriteria adopted from ISO/IEC9126 for the software
qualitymeasurement, a case study for software quality evalu-
ation to select the best software component under uncertainty
is demonstrated for the advantages of FCNP over FAHP.
The proposed FCNP is a valuable technique for the soft-
ware reliability and qualitymeasurement, especially the ideal
alternative for those applications already applying the AHP
mentioned in the literature.

Future studies for reliable intelligent environment devel-
opment with the FCNP could be in diverse ways. The FCNP
could be applied to the prioritization, ranking and selection
issues in diverse IE areas, such as human sensing systems
[8], IOT-based systems [9], human and animal digital health
platforms [10], reliable systems for artificial intelligence
of things [11], point-of-interest recommendation systems
for smart cites [12], medical information systems [13] and
context-aware systems [14, 15]. The intelligent environment
includes large scale sensor or actuator networks,middleware,
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communication protocols, location or positioning methods,
artificial intelligence techniques, and smart applications with
respect to high levels of reliability, performance, usability,
security, andmany other quality properties, which are usually
entangled [88]. Whilst increasing the levels of some quality
attributes results in decreasing the levels of the others, trade-
offs of different decision problems must be continuously
evaluated to make the best decisions during the IE devel-
opment life cycle. Whilst the software system becomes more
and more complicated nowadays and the software quality
models are regularly updating, the decision tools including
the FCNP can be the promising tool to be applied to address
these issues.
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