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Abstract
There is a growing importance of the Internet ofMedical Things (IoMT), an emerging aspect of the Internet of Things (IoT), in
smart healthcare. With the emergence of the Coronavirus (COVID-19) pandemic, healthcare systems faced extreme pressure,
leading to the need for advancements and research focused on IoMT. Smart hospital infrastructures face challenges regarding
availability and reliability measures, especially in the event of local server failures or disasters. Unpredictable malfunctions in
any aspect of medical computing infrastructure, from the power system in a remote area to local computing systems in a smart
hospital, can result in critical failures in medical monitoring services. These failures can have serious consequences, including
potentially fatal loss of life in the most serious cases. Therefore, we propose a disaster analysis and recovery measures using
Stochastic Petri Nets (SPN) to resolve these critical issues. The proposed model aims to identify the system’s most critical
components, develop strategies to mitigate failures and ensure system resilience. Our results show that the disaster recovery
system demonstrated availability and reliability. The sensitivity analysis indicated the components that had the greatest impact
on availability-for example, the failure time of the Standby Edge Server proved to be a very relevant component in the proposed
architecture. The present work can help system architects develop distributed architectures considering points of failure and
recovery measures.
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1 Introduction

The Coronavirus (COVID-19) pandemic has triggered an
unprecedented global crisis, putting healthcare systems
worldwide under extreme pressure. Overloading on the wire-
less sensor networks (WSNs) used for medical monitoring
and treatment has become a critical concern. The pandemic
has accelerated research and development focused on this
area due to the growing demand for reliable and sustainable
medical services amid often uncertain failures in IoT infras-
tructures. The concept of IoT involves the use, processing,
and storage of information in the cloud; such information is
made available and can be used independently by intelligent
objects connected to the cloud via the Internet [1, 7]. The per-
vasive development of the IoT and its use inmedical research
has improved the effectiveness of remote health monitoring
systems [13, 14]. Healthcare systems are among these appli-
cations revolutionized with IoT, introducing a branch of IoT
known as Internet-of-Medical Things (IoMT) systems, an
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emerging area that is gaining researcher’s attention due to its
wide applicability in smart healthcare systems (SHS) [37].

Electrical infrastructure is critical in supporting the grow-
ing demand for IoMT-based healthcare systems. The reliable,
uninterrupted operation of these systems depends on contin-
uous power availability. Therefore, providing a sustainable
and autonomous power supply is essential as it allows con-
tinuous power sensing, flexible positioning, reduced human
intervention, and easymaintenance [6]. In smart hospitals, an
electrical infrastructure must be designed with redundancy
and stringent safety measures, ensuring that any interrup-
tion in power supply is quickly mitigated. Responsiveness is
critical as a power infrastructure must support the constant
operation of smart medical devices, local servers, and wire-
less sensor networks. Electricity distribution systemsmust be
integrated with the corporate solutions of energy generators
and distributors to guarantee greater reliability, availability,
and agility in responding to emergencies [8]. “Adopting low-
cost and energy-efficient strategies is essential to electrical
infrastructure and meeting the critical needs of smart hospi-
tals in the IoT era.”

Elements of smart healthcare involve automated networks
such as IoT, mobile Internet, cloud networking, big data, 5G,
and artificial intelligence, alongwith evolving biotechnology
[2]. Smart hospital infrastructure involves (i) wireless sen-
sors for remote patient monitoring; (ii) IoT network devices
(gateways, routers) used for data transmission; (iii) platform
for data processing and analysis (cloud computing system,
local servers) used for real-time analysis; (iv) smart medical
devices (connected infusion pumps, smart vital signs moni-
tors, IoT-connected diagnostic equipment) [34]. The constant
operation of these services is extremely important to provide
amore agile and effective response time arising from extreme
situations. Service reliability allows doctors to respond to
changes promptly, mainly because they rely on continuous
information in real-time [30].

Hospital computing systems need to work as accurately
and quickly as possible. However, more than a local server
may be needed to handle a large volume of data on busy
days. In this way, using cloud servers helps distribute data to
be accessed remotely for treatments and diagnoses when the
physical environment is challenging. Cloud computing has
emerged as a vision of the utility computing paradigm that
provides reliable and resilient infrastructure for users to store
data remotely and use on-demand applications and services
[36]. In the context of IoT, Edge Computing is a technology
that enables reliable, context-aware, and low-latency services
for various application areas such as smart healthcare, smart
industry, and smart cities [12]. A local edge server presents
crucial hospital monitoring and treatment conditions due to
its faster response time for making relevant patient decisions.
In the event of a local edge server failure, data can be lost,
and decision response time can be significantly affected. The

existence of a local backup server to mitigate or even avoid
problems like this is extremely important, as lives can be at
risk.

IoMT creates an urgent need for transformation in tra-
ditional hospitals and medical centers. Failures in any part
of the medical IT infrastructure, from the power system in
remote areas to the local IT systems in a smart hospital, can
lead to critical disruptions in medical monitoring services,
resulting, in extreme cases, in fatal loss of life. Given this crit-
ical scenario, it is crucial that the initial design of medical
computing infrastructure carefully considers the reliability
and availability characteristics of the network in smart hos-
pitals, especially under the possibility of uncertain failures
in any part of the power resources or computing servers,
including those arising from situational disasters. Reliability
and availability are important indicators for evaluating the
quality of a cloud provider’s service. In this context, it is
necessary to develop reliability and availability models that
quantify the impact of disasters that may occur on the sys-
tem’s infrastructure. Creating different models, emphasizing
the redundancy of computing resources and disaster recovery
measures to increase availability in extreme cases, becomes
essential to adapt the operations of smart hospitals to the
pandemic context.

This work mainly focuses on analyzing dependability and
implementing disaster recovery measures in intelligent sys-
tems in hospital environments. The analysis is based on
Stochastic Petri Nets (SPN) to evaluate system availability
and reliability considering hardware and software failures,
disaster occurrence, and recovery. The proposed models aim
to contribute pertinent information so that system designers
can identify the system’smost critical components and imple-
ment effective strategies and measures to mitigate failures
and ensure system resilience. Faced with this problem, dis-
aster recoverywas implemented, considering adisaster on the
edge server. The choice of this implementation demonstrated
effectiveness in the proposal addressed, given the metrics
analyzed. Our ultimate objective is to contribute to develop-
ing systems with more efficient disaster recovery measures
regarding availability and reliability to face the challenges
associated with this complex problem. The contributions of
this paper are as follows:

• Two availability SPN models consider systems without
andwith disaster recoverymeasures to evaluate the avail-
ability of resources of a smart hospital. Availability is
analyzed for both situations, indicating that adding dis-
aster recovery is important.

• Two SPN models that calculate smart hospital reliabil-
ity. The models are considered without and with disaster
recovery measures. We vary a specific time, considering
the increase in failure time of edge servers. The simu-
lation was carried out considering both models, and the
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Fig. 1 SPN components

scenario with disaster recovery showed greater reliabil-
ity.

• A sensitivity analysis with Design of Experiments (DoE)
of the four proposed SPN models. The analysis demon-
stratedwhich components have the greatest impact on the
availability of the entire system. The model considering
disaster recovery on edge servers showed that edge server
failure time has the greatest impact on availability. Thus,
adding disaster recovery proved to be a valid strategy, as
this component has amajor impact on system availability
in the recovery model.

The structure of this work is as follows: Sect. 2 presents
the main concepts about Petri Nets and the DoE. Section 3
presents the main related works. Section 4 presents the sys-
tem architecture that serves as the basis for our proposed
SPN model, while Sect. 5 discusses the particularities of the
proposed SPN models. The analytical results of a case study
using the proposed models are presented in Sect. 6. Finally,
Sect. 7 concludes the research and outlines future work.

2 Background

In this section, we present the main essential concepts that
will serve as the foundations for an in-depth understanding
of the proposals explored throughout this work.

2.1 Stochastic petri net

Stochastic Petri Nets (SPNs) consist of two sections: the
structural section, which defines the topology of the model
with places, transitions, and connections, and the data (or
parameters) section, which specifies stochastic information,
such as transition rates and firing probabilities, to describe
the probabilistic behavior of the system. Petri nets are tools
used to analyze systems with concurrency and synchroniza-
tion [18, 23, 24, 28]. SPNs can be identified as a directed
graph divided into two parts, filledwith three types of objects.
These objects are places, transitions, and directed arcs that
connect places to transitions and transitions to places [29].
Figure 1 shows the components that represent an SPN.

Transitions are classified according to the delay between
enabling and triggering a transition; such a delay may be

Fig. 2 Example of an SPNs model to represent the availability and
reliability of a generic component

absent (an immediate transition), deterministic, or sampled
from a given distribution (stochastic). When firing, a transi-
tion removes a token from its entry location and deposits
it at its exit location [40]. On the other hand, immedi-
ate transitions are triggered instantly, without any waiting
period. White circles symbolize the representation of places,
and arrows symbolize arcs to establish connections between
places and transitions. Inhibitory arcs are symbolized by a
line with a small white ball at the end, where they can block
or allow the flow of tokens from one place to another. A token
symbolized by a small black ball is also assigned to a spe-
cific place. In SPN models that evaluate system availability
and reliability, the concept of active and inactive components
plays a crucial role. Figure 2 presents generic availability and
reliability models that will be detailed below.

Figure 2a presents a generic example of an SPNmodel for
availability. If there is a token in component_up, it means the
component is up. The component has entered a failed state
if the failure_event transition is enabled. A token is fired
to the component_down location, representing that the com-
ponent is unavailable. This transition is modeled according
to a stochastic process (generally followed by an exponen-
tial distribution) defined by the parameter (MTTF). The
repair_event transition represents repair, defined by themean
time to repair (MTTR). In this example, component availabil-
ity is the probability of at least one token in component_up.

Figure 2b presents a generic model for reliability. The
difference with the availability model is the removal of the
repair_event component. The other components of themodel
follow the same flow. In this context, the reliability model
aims to represent the system’s or component’s continuous
functioning without considering the possibility of repairs or
maintenance.

2.2 Sensitivity analysis with DoE

Sensitivity analysis systematically investigates the reaction
of simulation responses to extreme values of the model input
or drastic changes in the model structure [15]. It can also be
defined by a series of tests where the researcher changes a set
of variables or input factors to be observed and identifies the
reasons for the changes in the output response [5]. The defi-
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Fig. 3 Generic example of factor effect graph

nition of the parameters to bemodified is established through
an experiment plan. The underlying objective is to obtain the
maximum amount of meaningful information with as few
experiments as possible. From these parameter variations,
observing changes in the system’s behavior through sets of
outputs is possible. In specialized literature [9, 11, 33], we
find three categories of graphs generally used in experiments
with the DoE approach.

The factor effect graph, represented by bars arranged in
descending order, highlights the relative impact of each fac-
tor. The higher the bar, the greater its impact, providing a
clear view of the influences of each factor. Figure 3 presents
an example of a factors effect graph. The graph shows three
factors: A, B, and C. Factor C has the greatest impact.

Main effects plots play an important role in analyzing
changes in the average levels of one or more factors. They
visually present the average response for each factor level,
connecting these points using lines. This chart type is espe-
cially valuable for comparing the relative impact of different
factors. The sign and magnitude of the main effect point
are, respectively, the average response value and the effect’s
intensity. A steeper slope of the line reflects a greater magni-
tude of the main effect, while a horizontal line indicates the
absence of a main effect; this means that each factor level
affects the response similarly. The interaction between fac-
tors A and B can be calculated using the Eq. 1. EA,B(+1)

refers to the effect of factor A when factor B is set at a high
level. On the other hand, EA,B(−1) indicates the effect of
factor A when factor B is at a low level.

IA,B = 1

2

(
EA,B(+1) − EA,B(−1)

)
(1)

Interaction graphs are intended to identify interactions
between factors. An interaction occurs when the influence
of a given factor on the outcome is changed (amplified or

Fig. 4 Interaction graphs—examples with interaction and without
interaction

reduced) by variation in the levels of another factor. If the
lines on the graph are parallel, this indicates the absence of
interaction between the factors. On the other hand, if the
lines are not parallel, it is a sign of a significant interac-
tion between the factors in question. Figure 4a represents
an example where there are no interactions between the fac-
tors, as the lines are parallel. Figure 4b exemplifies a case of
interaction between factors as the lines intersect. In this case,
the change under a given metric for factor A at level A1 is
higher than level A2. Changes in levels of factor A for some
given metric indicate a dependence of factor A on the levels
of factor B.

3 Related works

This section presents a literature review relating to the context
of the proposed work. The papers were selected consid-
ering six selection criteria: context, system specification,
type of model, assessing availability and reliability, and
finally, energy-related components. The detailed description
of papers is based on the classification of papers. The works
were classified into two main groups based on the context.
The study context is relevant when considering which smart
hospital sector the literature ismost situated in. Table 1 shows
some important contributions of works related to this study,
followed by their selection criteria.

3.1 Smart hospital system

The first classification is described according to the works
that present the Smart Hospital System context. Rodrigues
et al. [30] emphasizes the need for quick response times
and constant availability in smart hospitals. It suggests using
Stochastic Petri Nets for performance and availability assess-
ment of these systems, which could enhance healthcare and
operational efficiency. Andrade et al. [3] proposes a model
based on Petri Nets to evaluate the reliability of disaster
recovery solutions in critical IoT (Internet of Things) infras-
tructures. This model aims to help ensure the availability and
resilience of these infrastructures in adverse situations, pro-
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Table 1 Related works

Work Context System specification Type of model Availability Reliability Energy system

Rodrigues et al. [30] Smart hospital system Edge/Cloud SPN � � ×
Santos et al. [31] IoT healthcare system Fog/Cloud SPN, RBD � × ×
Santos et al. [32] IoT healthcare system Fog/Cloud SPN, RBD � × ×
Sadok et al. [10] IoT healthcare system Edge/Fog/Cloud SPN, RBD � × ×
Andrade et al. [3] Smart hospital system Edge/Cloud SPN, RBD � × ×
Nguyen et al. [21] Smart hospital system Fog/Cloud FT, CTMC � � ×
Rahmani et al. [26] Smart hospital system Edge CMs × � �
Valentim et al. [39] IoT healthcare system Fog/Cloud SPN � × ×
Strielkina et al. [38] IoT healthcare system Undefined CTMC � × ×
Nguyen et al. [20] Smart hospital system Edge/Fog SPN � × ×
This Work Smart hospital system Edge/Cloud SPN � � �

viding a systematic approach to their analysis. Nguyen et al.
[21] proposes amethodology to quantify reliability and secu-
rity in an Internet of Medical Things (IoMT) infrastructure
with cloud/fog/edge (CFE) computing. It uses hierarchical
models and considers failures, including cyber-attacks. Rah-
mani et al. [26] proposes amethodology toquantify reliability
and security in an Internet of Medical Things (IoMT) infras-
tructure with cloud/fog/edge (CFE) computing. Analyzes
five case studies and four operational scenarios to improve the
design of real-world IoMT systems. Nguyen et al. [20] pro-
poses a comprehensive model to evaluate the performability
of medical information systems in local hospitals. The study
highlights the importance of load balancing and fail-over
techniques to improve the continuity and quality of medi-
cal services, especially in high-demand situations such as
pandemics.

3.2 IoT healthcare system

The second classification is based on works that present the
IoT Healthcare System context. The classification refers to
works focusing on monitoring, not the system itself. Santos
et al. [31] highlights the growing adoption of IoT in home
healthcare and associated challenges such as security andper-
formance.Thework emphasizes the importance of healthcare
system availability and presents an optimization approach
to maximize availability within budgetary constraints. San-
tos et al. [32] addresses the use of technologies such as
fog and edge computing in IoT to improve the availabil-
ity of electronic health systems (e-health), highlighting the
importance of availability in this context. It uses stochas-
tic models and optimization algorithms to maximize system
availability, considering budget constraints, and compares
three optimization algorithms. Sadok et al. [10] explores
how IoT can improve healthcare systems with sensors and
cloud and fog infrastructure for healthmonitoring. Stochastic
models analyze the impact of failures on system availability,

emphasizing sensors and fog devices as critical components.
Valentim et al. [39] discusses the increasing investments
in IoT-enabled smart healthcare and the importance of sys-
tem availability. It introduces a Generalized Stochastic Petri
Net model to assess the availability of private cloud-based
Medical IoT architecture. Strielkina et al. [38] addresses
the emergence of the Internet of Medical Things (IoMT)
for health monitoring, addressing the risks of device and
infrastructure failures. It proposes using Markov models to
consider security issues and includes a case study on attacks
on vulnerabilities in the IoT healthcare system.

3.3 Contributions of this work

The objective of this work is to create SPN models to ana-
lyze the dependability metrics of a smart hospital system.
The analysis is performed by modeling a smart hospital
system. The analysis of dependability metrics brings advan-
tages by offering clear understanding, precise identification
of requirements, and detecting problems, for example. The
factorsmentioned help tomodel the system, facilitating plan-
ning, allowing the evaluation of alternatives, and reducing
risks, resulting in more efficient and collaborative imple-
mentations. The proposed SPNmodel’s evaluation considers
system availability and reliability analysis. The model has
two main versions. The first version is a model without dis-
aster recovery, and the second version is a model considering
disaster recovery. The analysis made it possible to prove that
the system with disaster recovery has greater availability and
reliability than the one without recovery. In addition, a sensi-
tivity analysis was carried out with the DoE to verify how the
system behaves with changes in some system components’
resources. The analysis demonstrated that the system compo-
nent that this study focused on applying disaster recovery is
the component with the greatest impact on system availabil-
ity. In this way, the model is made so that designers adjust the
structure’s parameters and number of components as needed.
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Fig. 5 System architecture

4 Architecture overview

This section describes the proposed architecture. Figure 5
presents the architecture used for this study. The architecture
was divided into twomain parts for better understanding. The
first part on the left refers to the energy system that powers
the hospital. The second part on the right is the smart hospital
and its components.

The power system comprises three main energy sources:
an electrical grid, a power generator, and a solar power sys-
tem with solar panels. The electrical grid represents public
energy supplied by public or private companies that do not
have a direct connection with the hospital. The power gener-
ator runs on diesel, supplying power to the hospital during
an outage. The solar power system comprises solar panels,
charge controllers, battery storage, and solar power inverter;
battery storage refers to batteries that store solar energy pro-
duced by solar panels. The batteries sustain the hospital’s
power for a short period until the main power resumes; the
charge controller controls the energy from the panels stored
in the batteries; the solar energy inverter can be understood
as an electromagnetic energy converter where the conver-
sion occurs from direct current (DC) to alternating current
(AC) [27]; the power switch controls which power sources
will be directed to the hospital. Given the overview of the
energy components, the energy system works considering
solar energy as the main feeder of the hospital. The electri-
cal grid is used when solar energy fails. In the last case, the
generator is activated when the other two energy resources
fail.

The smart hospital is made up of components that dis-
tribute monitored information about patients. Rooms with
sensors present in patient beds generate the monitored infor-
mation. The information is forwarded to a gateway that
distributes this data to the patient’s supervisor and a router.

The supervisor is responsible for analyzing all data and tak-
ing actionwhen necessary. The router transmits the data from
the gateway to a server at the edge of the hospital and to
a remote cloud server. The edge server will maintain data
locally in the hospital to generate reports and queries and
aid in decision-making. The hospital depends significantly
on this data, so another edge server is built into the system-a
standby (or partially powered on) server. The standby server
is activated as soon as the hospital’s main server experi-
ences a failure, not due to a power outage. The server must
be partially powered on to be activated more quickly when
the main one is down. The remote cloud server stores data
remotely as a backup for remote patient monitoring. For the
hospital’s components to function, the power must be work-
ing.

5 Proposedmodels

This section presents the proposed models following the
architecture proposed in the previous section. The configura-
tions followed for the models are based on the characteristics
highlighted in the architecture. The proposed models help to
evaluate the system’s availability and reliability, considering
disaster recovery and non-recovery scenarios. All models
and simulations were performed using the Mercury Tool
[16, 25]. The architecture modeling presented some limi-
tations, therefore, we opted for some simplifications of the
model. We did not investigate external factors that could
affect the model’s availability, such as user interaction, secu-
rity risks, and climate change issues. The aforementioned
specifications increase the complexity and size of the pro-
posed architecture.We focus entirely on the local edge server
failure process.
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Fig. 6 Model without disaster recovery

5.1 Availability models

This subsection presents two models used to calculate sys-
tems availability: availability without disaster recovery and
with disaster recovery.

5.1.1 Model without disaster recovery

Figure 6 shows the availability model without disaster
recovery. The hospital is operational if all of its internal com-
ponents are active and if any power components are working.
Two main components in the model control the states of
the energy and hospital sectors: Power System and Smart
Hospital. Control uses guard expressions in RESTORED,
BLACKOUT, RECOVER, and FAIL. The two components
used allow the system availability to be calculated. Model
transitions that present text in red with e.g. followed by a
number represent that the transition has a guard expression.

Table 2 presents the guard expressions for activation. A
guard expression is a boolean expression that allows a transi-
tion to be enabled and can be fired.In addition to the current
marking enabling this, the transition only becomes enabled
and can be fired when the guard expression assigned to it is
evaluated true [19].

The Power System component represents the system’s
power state, whether active or inactive. Power System is con-
sidered active when there is a token in POWER_SYSTEM_U
and inactive when there is a token in POWER_SYSTEM_D.
State changes are controlledbyBLACKOUT andRESTORED
transitions. The mentioned transitions have guard expres-

sions. The RESTORED transition is activated when there
is at least one active energy source, given by the expres-
sion eg01. The BLACKOUT transition is activated when all
energy sources are unavailable and given by the expression
eg02.

The Smart Hospital component denotes the status of the
hospital. The hospital is considered active when all of its
respective components are active. The inactive state occurs
when any of the components have a token in the inactive
state. The Smart Hospital is active when it has a token in
HOSPITAL_U and inactivewhen it is inHOSPITAL_D. Con-
trolling changes between active and inactive states occurs in
FAIL, RECOVER transitions. The FAIL immediate transition
is activated when all power components fail, indicating a
power outage. The expression used in this transition is eg06.
The RECOVER immediate transition is activated when at
least one active power source powers the hospital. The guard
expression used is eg05.

The Power Generator is a specific component for the
power sector of the system. The behavior of the genera-
tor differs from the other components of the system. The
use of the generator depends on a specific condition. The
SWITCH_TIME transition ensures that the energy genera-
tor enters the state of use only when there is no longer any
energy source. The guard expression is given by eg03. The
TURN_OFF immediate transition ensures that this compo-
nent is turned off immediately as soon as some other power
component is active again. The expression for this is given
by eg04.
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Table 2 Guard expressions for model

Expression index Guard expression

eg01 ((PS_U>0)AND(IN_U>0)AND(CC_U>0)AND((SP_U>0)OR(BS_U>0)))
OR(PG_U>0)OR(EDG_U>0)

eg02 ((PS_U<1)OR(IN_U<1)OR(CC_U<1)OR((SP_U<1)AND
(BS_U<1)))AND(PG_U<1)AND(EDG_U<1)

eg03 ((PS_U<1)OR(IN_U<1)OR(CC_U<1)OR((SP_U<1)AND(BS_U<1))) AND(PG_U<1)

eg04 ((PS_U>0)AND(IN_U>0)AND(CC_U>0)AND((SP_U>0)OR(BS_U>0))) OR
(PG_U>0)

eg05 ((CS_U>0)AND(ES_U>0)AND(RT_U>0)AND(GT_U>0)AND(B_D=0)
AND(SV_U>0))AND(POWER_SYSTEM_U>0)

eg06 (CS_U<1)OR(ES_U<1)OR(RT_D>0)OR(GT_D>0)OR(B_D>0)OR(SV_D>0)

eg07, eg09, eg11, eg13, eg15 (POWER_SYSTEM_D>0)

eg08, eg10, eg12, eg14, eg16 (POWER_SYSTEM_U>0)

The operation of the energy components follows the flow
previously explained in Sect. 5. The Solar Panel generates
energy by receiving sunlight; the Charge Controller adjusts
the level of charge sent to the batteries and solar inverter; the
Batteries stores energy that sustains the solar panel and ulti-
mately canbeused to power the hospital for a short period; the
Solar Inverter converts solar energy for the hospital; Switch
Power chooses which power source to take over when one
of the sources fails; and finally, the Power Generator is only
activated if all power sources fail.

The components of the hospital follow the characteristics
already mentioned above. Sensors in patient rooms collect
vital data about patients in beds; patient information is dis-
tributed to the supervisor and edge and cloud servers. Smart
Hospital components have immediate transitions represented
by T1, T2, T3, T4, T6. Transitions guarantee immediate fail-
ure of the hospital’s components if the power supply fails
and a blackout occurs. The expressions used for these ele-
ments are eg07, eg09, eg11, eg13, eg15. The timed transitions
denoted in the components with MTTF indicate an average
time when a system component can fail naturally. Timed
transitions denoted with MTTR indicate the average recov-
ery time for a component if it is inactive. Model components
only recover their activity state if the Power System is active.
The times manipulated in these components are crucial for
analyzing the system’s overall availability.

Themain components, Power System and Smart Hospital,
control the activity status of both system sectors. The com-
ponents help to calculate the availability metric. Availability
is calculated based on the probability that the Power System
and the Smart Hospital run simultaneously. Equation 2 is
used to calculate availability (A).

A = P((#POWER_SY ST EM_U > 0)AND

(#HOSP IT AL_U > 0)) (2)

P represents the probability, and (#) indicates the number of
tokens in a given model element.

When evaluating system availability, it is also important
to calculate Downtime (D). Downtime can be obtained by
Eq. 3.

D = (1 − A) × 8766 (3)

A is the system availability and, 8766 is the number of hours
present in a year.

5.1.2 Model with disaster recovery

Figure 7 shows the elements added to include disaster
recovery. Disaster recovery is used for the edge server; the
component is added to Smart Hospital. To consider an edge
server failure that does not come from a power outage, an
ES_D element was added that indicates a server failure due
to a disaster other than a power outage. When there is a
token in ES_D, it indicates a disaster-related downtime of
the main edge server. The token in ESR_HOT indicates that
the backup server is on hot standby, that is, on standby or par-
tially powered on. The token inESR_HOT can reach the used
state in ESR_U or idle state in ESR_D. The downtime of the
main server due to disaster activates the transition TO_ESD,
which has a guard condition for the token waiting to reach
the state of use. The guard condition is represented by eg18.
The backup server returns to standbymode if the main server
returns to activity. As soon as the main server has the token
in ESD fired to ES_U again, the RED_ES transition is fired.
The mentioned transition indicates that the standby server
that took over is redirected to the standby state again. The
guard condition that activates the firing of RED_ES is eg19.
Finally, the backup server can reach an inactive state for two
reasons. The first reason is the occurrence of a power out-
age. The immediate transition T7 guarantees that the reserve
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Fig. 7 Model with disaster recovery

Table 3 Guard expressions for model

Expression index Guard expression

eg18 (ESD>0)

eg17 (POWER_SYSTEM_U>0)

eg19 ((ES_U>0)

eg20 (POWER_SYSTEM_D>0)

server changes its state to inactive, given by the guard con-
dition eg20. The second reason occurs due to natural causes.
Like the main one, the backup server can go down over time
and become inactive. The backup server can go down while
waiting or in a state of use. The transitions that indicate the
time before the server can fail are represented byESR_MTTF,
ESR_MTTF2.

Table 3 shows the guard conditions added to the previous
model to consider disaster recovery on the edge server. The
calculation of availability (A) and downtime (D) are made
with the same equations mentioned previously. Availability
is assessed considering elements added to the base model
and downtime. Using the Power System and Smart Hospital
core components helps maintain the same equation for the
calculation.

5.2 Reliability model

Reliability is the conditional probability of a system remain-
ing operational in a time interval [0, t], considering that it
was operational at t = 0 [34]. Figure 8 presents the relia-
bility model. The model already includes the addition of the
disaster recovery component, but the Standby Edge Server
component is disregarded for the calculation. The operation
of the model follows the same as that of availability. The dif-
ference with the availability model is that the components do
not have elements that allow recovery from inactive to active

state. Removing these elements helps in calculating system
reliability.

The reliability (R) of the mentioned models is calculated
by Eq. 4, where P indicates the probability of the system
being inactive in any sectors that represent it. The equation
helps generate a graph showinghow reliability decreases over
time.

R = 1 − P{(#POWER_SY ST EM_D > 0)OR

(#HOSP IT AL_D > 0)} (4)

6 Results analysis

In this section, we will discuss the main results of the
sensitivity analyses, highlighting the relevance of this infor-
mation for implementing computing systems in the hospital
environment, focusing on its most important infrastructure
components, availability, and reliability of its system. Table 4
presents the parameters used to feed the proposed models.
The values used were taken from some validated studies.
The parameters were taken from [4, 17, 22, 30, 34].

6.1 DoE

In this work, we use the DoE technique to analyze the sys-
tem’s sensitivity without disaster recovery and with disaster
recovery.Thismethodological consistency is critical to ascer-
tain which variable combinations exert the most significant
impact on the system [35]. For this analysis, we run simu-
lations with varying input factors to understand what causes
changes in the output.

Figure 9 presents the factor effect graph, which shows the
impact of factors on the analyzed measure through bars in
descending order. The higher the bar, the greater the influence
of the corresponding factor. This chart assists in pinpointing
and ranking crucial system factors. Figures 10 and 11 present
interaction graphs, which use lines to show how factors inter-
act. If the lines are parallel, there is no interaction between
the factors; however, if the lines are not, the factors interact.

In the experiment conducted for the system in question,
we explored the layers of the architecture in the sensitivity
analysis. However, we will only present the interacting fac-
tors, as the interaction is verified based on the impact of the
combination of factors on the availability metric. The factors
adopted for the study are (i) ES_MTTF, (ii) PG_MTTF, (iii)
SV_MTTF, (iv) B_MTTF, and (v) SP_MTTF. Each factor
has two levels: low setting and high setting. Table 5 presents
all factors and levels analyzed, while Table 6 shows all com-
binations between factors and their respective levels.
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Fig. 8 Reliability model

Fig. 9 Impact of the factors of the two case studies

Table 4 Input parameters for proposed models

Component MTTF (Hours) MTTR (Hours)

Sensors/Actuators 300,000 1

Gateway 480,770 8

Supervisor 44,957 1

Router 698,220 8

Cloud server 760 0.74

Edge servers 940 1.37

Solar panel 219,000 8

Battery storage 47,829 8

Charge control 70,080 8

Solar energy inverter 24,820 8

Power generator 636 37

Power grid 8757 4.807

6.1.1 Without disaster recovery

Figure 9a displays the factor effect graph in themodelwithout
disaster recovery, which reveals the magnitude and impor-
tance of factors about the availability metric. This chart
identifies factors that have a significant impact on simula-
tions, leading to different values when their levels are altered.

Among the factors analyzed, the time to failure of the edge
server is the most relevant, which indicates that the time to
failure is crucial for the system’s efficiency. Furthermore, the
time until power grid failure and the time until supervisor
failure also play an important role in the context studied.

On the other hand, the time until sensors and solar panels
fail has a smaller influence. Although it is a relevant factor,
its impact on availability is relatively minor. The factor effect
graph provides information about the absolute effects of fac-
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Fig. 10 Interaction between
factors and their impact on the
system without disaster recovery

tors, allowing one to determine which effects are significant
but does not allow us to identify whether they increase or
decrease availability.

Figure 10a shows the interaction between the factors
ES_MTTF and PG_MTTF. It can be observed that these
factors do not present any interaction with each other, main-
taining a pattern of parallelism in all possible component
failure time options. This means their variations do not influ-
ence each other regardless of the power grid failure time or
the edge server failure time.

Figure 10b shows the interaction between the factors
ES_MTTF and SV_MTTF. The supervisor’s times until fail-
ure shows similarmovements, almost overwriting each other,
but when it has a time until failure of 67435.5h, it always

presents better availability ≈ 99,600 to ≈ 99,700% regard-
less of the time until edge server failure.

Figure 10c demonstrates the interaction between the fac-
tors B_MTTF and PG_MTTF. The times until failure of the
power grid show similar movements, but when the time until
failure is 13,135.5h, it always results in better availability,
varying from ≈ 99,600% to ≈ 99,700%, regardless of the
time until sensor failure.

Figure 10d shows the interaction between the factors
ES_MMTF and SP_MTTF. The times to failure of solar pan-
els exhibit similar movements. However, when the time to
failure is 328,500h, it presents good availability with the
edge server with a time to failure of 940h, but when the time
to failure of the solar panels is 219,000h, it presents the best
availability with the edge server with 1410h time to failure.
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Fig. 11 Interaction between
factors and their impact on the
system with disaster recovery

Table 5 Design table

Factor name Low setting High setting

ES_MTTF 940.0 1410.0

SV_MTTF 44, 957.0 67, 435.5

B_MTTF 300, 000.0 450, 000.0

SP_MTTF 219, 000.0 328, 500.0

PG_MTTF 8757.0 131, 35.5

Figure 10e shows the interaction between the factors
SV_MTTF and PG_MTTF. Times until power grid failure
exhibits similar movements. However, when the time to
failure is 8757h, good availability is obtainedwhen the super-
visor has a time to failure of 67435.5h. On the other hand,
when the time until power grid failure is 8757h, the best

availability is achieved when the supervisor has 44,957h of
time until failure.

6.1.2 With disaster recovery

Figure 9b presents the graph of factors’ effect in the dis-
aster recovery model, highlighting the difference in factors
with the availability metric compared to the system without
recovery. In this graph, we can see that with the recovery of
the edge server, other factors underwent significant changes
within the system.

The time until the power grid failure has become the most
relevant factor in the system, indicating that the time until the
power grid failure occurs is now the most impactful on the
system. Furthermore, the time until failure of other factors
such as the supervisor, sensors, and solar panels increased
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Table 6 Combination table ES_MTTF SV_MTTF B_MTTF SP_MTTF PG_MTTF SRD & CRD

940.00 44,957.00 300,000.00 219,000.00 8757.00 0.99

940.00 44,957.00 300,000.00 219,000.00 13, 135.50 0.99

940.00 44,957.00 300,000.00 328,500.00 8757.00 0.99

940.00 44,957.00 300,000.00 328,500.00 13, 135.50 0.99

940.00 44,957.00 450,000.00 219,000.00 8757.00 0.99

940.00 44,957.00 450,000.00 219,000.00 13, 135.50 0.99

940.00 44,957.00 450,000.00 328,500.00 8757.00 0.99

940.00 44,957.00 450,000.00 328,500.00 13, 135.50 0.99

940.00 67,435.50 300,000.00 219,000.00 8757.00 0.99

940.00 67,435.50 300,000.00 219,000.00 13, 135.50 0.99

940.00 67,435.50 300,000.00 328,500.00 8757.00 0.99

940.00 67,435.50 300,000.00 328,500.00 13, 135.50 0.99

940.00 67,435.50 450,000.00 219,000.00 8757.00 0.99

940.00 67,435.50 450,000.00 219,000.00 13, 135.50 0.99

940.00 67,435.50 450,000.00 328,500.00 8757.00 0.99

940.00 67,435.50 450,000.00 328,500.00 13, 135.50 0.99

1410.00 44,957.00 300,000.00 219,000.00 8757.00 0.99

1410.00 44,957.00 300,000.00 219,000.00 13, 135.50 0.99

1410.00 44,957.00 300,000.00 328,500.00 8757.00 0.99

1410.00 44,957.00 300,000.00 328,500.00 13, 135.50 0.99

1410.00 44,957.00 450,000.00 219,000.00 8757.00 0.99

1410.00 44,957.00 450,000.00 219,000.00 13, 135.50 0.99

1410.00 44,957.00 450,000.00 328,500.00 8757.00 0.99

1410.00 44,957.00 450,000.00 328,500.00 13, 135.50 0.99

1410.00 67,435.50 300,000.00 219,000.00 8757.00 0.99

1410.00 67,435.50 300,000.00 219,000.00 13, 135.50 0.99

1410.00 67,435.50 300,000.00 328,500.00 8757.00 0.99

1410.00 67,435.50 300,000.00 328,500.00 13, 135.50 0.99

1410.00 67,435.50 450,000.00 219,000.00 8757.00 0.99

1410.00 67,435.50 450,000.00 219,000.00 13, 135.50 0.99

1410.00 67,435.50 450,000.00 328,500.00 8757.00 0.99

1410.00 67,435.50 450,000.00 328,500.00 13, 135.50 0.99

their importance in the system as a whole, but the time until
failure of sensors and solar panels remained as the compo-
nents that have less influence on the system availability.

Figure 11a shows the interaction between the factors
ES_MTTF andPG_MTTF. Generally, the electrical gridwith
8757h of time until failure will always have better availabil-
ity than with 13135.5h of≈ 99,898%. Considering 8757h as
the power grid failure time, the edge server failure time from
940h to 1410h is slightly increased. It may be that for an
even higher value of the time until failure of the edge server.
It could have an even higher result with the power grid with
8757h.

Figure 11b shows the interaction between the factors
ES_MTTF and SV_MTTF. The factors present a significant
interaction.When using 940h as the edge server failure time,

the best supervisor failure time is 44,957h, resulting in an
availability of ≈ 99.895%. The best availability is with the
edge server failure time of 1410h and the supervisor’s failure
time of 67,435.5h, reaching ≈ 99,896% availability.

Figure 11c demonstrates the interaction between the fac-
torsB_MTTF andPG_MTTF. Generally, the power grid with
8757h time to failure will always show better availability
between≈ 99.894% and 99.895% compared to 8757h. Note
that the best availability is with 8757h as the power grid
failure time and 300,000h of sensors reaching ≈ 99.895%
availability.

Figure 11d shows the interaction between the factors
ES_MMTF and SP_MTTF. When the time to failure of the
edge server is 940h, the failure time of the good solar pan-
els is 219,000h, maximizing availability reaching up to ≈
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99,896%. When the edge server failure time is 1410h, the
solar panel’s failure time is 328,500h, and the maximum
availability achieved is ≈ 99,894%.

Figure 11e displays the interaction between the factors
SV_MTTF and PG_MTTF. Generally, the power grid with
13,135.5h time to failure will always have better availabil-
ity of around ≈ 99,897% compared to 8757h. Looking at
13,135.5h as the mains failure time, we observe a slight
increase in availability for a supervisor failure time between
44,957h and 67,435.5h. The result could be even higher with
the power grid of 13,135.5h time to failure for an even higher
value of the supervisor failure time.

6.2 Availability analysis

In this study, we employ approaches to analyze system
availability to understand how the absence and applica-
tion of disaster recovery measures affect its operability.
Figure 12a displays the model’s availability graph without
disaster recovery, which reveals the relevance of the edge
server about the availability metric. This chart shows how
changes in the edge server’s levels lead to significant differ-
ences in simulation outcomes, particularly in time-to-failure
values.

We can see in Fig. 12a that when the system does not
have disaster recovery, system availability suffers significant
impacts when the time until edge server failure is varied.
Availability behaves so that the longer the time until the edge
server fails, the greater the system availability.

The systemwith the inclusionof disaster recoverypresents
a completely different behavior. This is due to the lesser
importance of the edge server as an isolated component. The
system always presents greater availability when compared
to the systemwithout disaster recovery measures, remaining
stable regardless of the time until the edge server fails.

Figure 12b shows the downtime differences between the
two systems, defined as periods when activities are halted
or resources are inaccessible due to failures, maintenance,
or interruptions. Edge server failure can lead to consider-
able system downtime without disaster recovery measures,
resulting in≈35h. This significant interruption can have seri-
ous consequences for the proper functioning of the hospital
service. When disaster recovery measures are implemented,
downtime is significantly impacted, reducing compared to
the systemwithout recovery. The downtime shownwith edge
server disaster recovery measures is ≈9h of downtime.

6.3 Reliability analysis

This study analyzes system reliability to see how strategies
like disaster recovery affect the system’s consistent, error-
free performance. Figure 13 presents the reliability graphs
of the models, in which we can notice the impact that the

Fig. 12 Availability results of the two study cases

edge server time to failure values have on the reliability of
the system, resulting in significantly different scenarios and
the difference between the system without and with disaster
recovery measures on the edge server.

Based on Fig. 13a, it is observed that in the absence of
disaster recovery, system reliability is considerably affected
by the variation in time until edge server failure. The trend
evident is that the longer the time until edge server failure,
the greater the system’s overall reliability. This relationship
between edge server lifetime and reliability is visible in the
simulations, reflecting the strategic importance of ensuring
the resilience and reliability of this critical system compo-
nent.

Figure 13b shows the reliability of the two systems. The
system without the presence of disaster recovery measures
has lower reliability when compared to the system with dis-
aster recovery measures. Due to the recovery measures, the
system becomes more reliable, taking longer until it presents
constant failures and has reduced reliability.
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Fig. 13 System reliability results with and without disaster recovery
measures

6.4 Results discussion

The results provide valuable information for the design and
management of smart hospital systems. Using SPN model-
ing, we evaluate the system’s dependability, focusing mainly
on the edge server. The analysis revealed that edge server
failure time is a critical determinant of system efficiency. In
practical terms, this underscores the need for system admin-
istrators to diligently maintain and monitor edge servers to
maximize system availability. Furthermore, implementing a
backup server can substantially increase availability, serving
as an effective strategy to ensure uninterrupted services in a
smart hospital.

However, it is crucial to recognize the limitations of the
study: (i) To overcome the “state space explosion” issue, we
had to simplify some models. For example, complex compo-
nents such as the power grid and cloud servers were treated as
encapsulated components with respective parameters Mean
TimeToFailure (MTTF) andMeanTimeToRepair (MTTR);

(ii) Factors such as user interaction, security risks and envi-
ronmental issues can sometimes impact availability. These
aspects were not investigated in this study, which focused
only on the failure process of local edge servers.

7 Conclusion

This study proposed Stochastic Petri Net (SPN) models to
evaluate a smart hospital architecture, aiming to assist sys-
tem administrators in planning computational architectures.
The model considers several factors that influence the total
availability of the system. The edge server is the main factor
considered, and the use of a backup server showed a con-
siderable increase in availability. Models provide accurate
estimates of availability, downtime, and reliability metrics.
The results show how each model behaves with varying
parameters through sensitivity analyses. The analysis shows
how the addition of a backup edge server strongly impacts
the availability metric compared to the measurement with-
out backup. In this sense, the case studies provide a practical
guide that shows how a system administrator can apply the
model to evaluate various configurations for a smart, con-
sistent and sustainable hospital architecture. Future work
intends to carry out a performance analysis to verify the
impact that the availability of components can have on the
response time and performance of the system. More exter-
nal factors can also be considered, such as disasters in other
components.
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