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Abstract
In numerous practical domains such as reliability and performance engineering, finance, healthcare, and supply chainmanage-
ment, a common challenge revolves around accurately modeling intricate time-based data and event duration. The inherent
complexities of real-world systems often make it challenging to use conventional statistical distributions. The phase-type (PH)
distributions emerge as a remarkably adaptable class of distributions suited for modeling scenarios like failure or response
times. These distributions are helpful in analytical and simulation-driven system evaluation approaches and are frequently
used to fit empirical datasets. This paper introduces a strategy that leverages user-friendly tools, graphical adjustment features,
and integration with existing tools to streamline the process of fitting PH distributions to empirical data. The simplicity of
this procedure empowers domain experts to more accurately model complex systems, resulting in enhanced decision-making,
more efficient resource allocation, improved reliability assessments, and optimized system performance across an extensive
spectrumof practical domainswhere the analysis of time-based data remains pivotal. Furthermore, this study presents amethod
for the automated determination of parameters within a fitted Hyper-Erlang distribution. This method utilizes the Bayesian
Information Criterion (BIC) within a Bayesian optimization framework integrated into an Expectation-Maximization (EM)
algorithm. Consequently, it enables deriving a given dataset’s probability density function (PDF) through a combination of
Hyper-Erlang distributions. Subsequently, the PDF serves as a tool for assessing system performance.
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1 Introduction

Model-based benchmarking, an essential engineering field
used to estimate attributes such as system reliability, security,
and performance, often employsMarkovChains for the prob-
abilistic description of state-based stochastic models. While
mathematically manageable, Markov Chains still necessitate
efficient numerical methods to compute large-scale systems’
stationary and transient metrics. When these models become
non-Markovian, classical analytical approaches may prove
unfeasible due to including non-exponential distributions.

There are three principal methodologies when evaluating
performance: analytical modeling, simulation, and measure-
ment. Analytical modeling uses equations to predict and
analyze how computational systems behave. These equa-
tions are based on understanding and estimating system
behavior within a finite period and can be enhanced using
phase-type (PH) distributions. PH distributions are helpful
for approximating non-exponential stochastic models, which
are essential for performance and reliability engineering, and
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they densely populate the non-negative probability distribu-
tion space [1], which is crucial for generating approximate
Markov models. As a result, there has been an increase in
research focusing on stochastic models using both Marko-
vian and non-Markovian methods. The maximum likelihood
principle has shown promise in adjusting PH distributions,
highlighting the importance of exploringmethods for param-
eter approximation in contemporary research domains [2, 3].

The expectation–maximization (EM) method is pivotal in
statistical analysis and machine learning applications, sig-
nificantly facilitating the maximum likelihood estimation
(MLE) in the presence of latent variables. This technique
offers a direct approach to MLE, known for its precision and
adaptability. However, it faces challenges when dealing with
censored data that require tailored solutions for distributions
that diverge from the exponential model. In this context, the
phase-type (PH) distributions have emerged as a compelling
tool, championing the creation of robust probabilistic models
adept at capturing the nuances of lifetime systems.

Hyper-Erlang distributions, a class of PH distributions,
provide a significant context for EM application. These dis-
tributions can model a wide range of behaviors in stochastic
systems [4]. Applying the EM algorithm to hyper-Erlang
distributions allows for estimating phase numbers, phase-
associated distributions, and phase transition probabilities.
This process, beginning with initial parameter assumptions,
iteratively updates them until convergence.

This work proposes an iterative algorithm to fit the
empirical distribution using PH distributions. Utilizing the
established expectation–maximization algorithm, it provides
the hyper-Erlang phase-type parameters. After determining
the parameters of the fitted distributions, we define a function
representing the fitted distribution. We then use this func-
tion to study the system’s performance and reliability and
simulate other potential scenarios without additional data
collection or modeling requirements. The main aims of this
paper are: (1) proposing a methodology to automatically
find the parameters of a hyper-Erlang distribution that accu-
rately describes a system’s distribution; (2) Integrating the
Bayesian Information Criterion (BIC) into the expectation–
maximization (EM) algorithm for precisely determining the
distribution parameters; (3) showing the algorithm’s use-
fulness and versatility by testing it on various datasets by
applying the methodology; (4) derivating functions such as
the dataset’s probability density and reliability functions.

This paper is structured as follows: Sect. 2 presents the
knowledge required to obtain such functions. Section 3 offers
a list of related works. Section 6 briefly describes the algo-
rithm for fitting reliability using PH distributions. Section 5
introduces PhaseFitPro, a tool implemented to support the
proposed fitting process. In Sects. 6.1 and 6.2, we apply the
proposed methodology to an experiment for performance

metrics. Finally, Sect. 7 presents final considerations and
potential future research directions.

2 Background

This section presents the fundamental concepts necessary
for developing the present text. One of the essential concepts
in developing PH theory is the matrix analytical methods
developed by Neuts, in particular, Refs. [5, 6]. These papers
introduced the necessary mathematical tools to support the
theory of PH distributions.

2.1 Exponential distributions

The exponential distribution, often used to model the time
between events, provides insight into understanding the inter-
vals or waiting times for specific occurrences. A defining
characteristic of the exponential distribution is its memory-
lessness; past events or waiting times do not influence future
outcomes [7]. Essentially, each instance is a fresh start, unin-
fluenced by prior results. Suppose X represents a continuous
random variable with a single phase with parameter λ. The
following formulas are widely known:

fX = dF(x)

dx
= λe−λx , ∀x > 0, F(x) = 1 − e−λx ,

E[X ] = 1

λ
, and σ 2

X = 1

λ2
. (1)

However, the exponential distribution could better rep-
resent the studied distribution in many practical situations.
However, the combination of n exponential phases has
excellent flexibility and adjustment power. Fortunately, the
computational advances that have occurred in recent decades
have made it possible to create algorithms that determine the
combination of exponential distributions that best represent
the pdf of a dataset. Deciding on the infinitesimal matrix
of the underlying Markov chain is possible. Thus, we can
determine the probability density function (PDF) and the
cumulative distribution function (CDF) of more general dis-
tributions.

2.2 Hyper-Erlang distributions

Suppose we are analyzing a system that is a succession of
exponential phases with a parameter λ. In other words, con-
sider a system with n exponential phases at the same rate.
Such distributions are called hyper-Erlang distributions. We
have E(X) = n

λ
, σ 2

X = r
λ2

and the squared coefficient of

variation C2
T = 1

n . The density function and its respective
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cumulative probability function are given by

fX (x) = λ(λx)n−1e−λx

(n − 1)! , ∀x > 0,

FX (x) = 1 − e−λx
n−1∑

0

(λx)i

i ! , x ≥ 0, n = 1, 2, . . . (2)

Thedistribution representing themixture ofn-distributions
is given by

fT (x) =
n∑

i=1

αi fXi . (3)

The results presented in [8] showed that the fitting pro-
cesses defined by mixing Erlang-type distributions are as
robust as those described by general PH’s or acyclic PHs.
Furthermore, they show that distributions with many states
can be fitted efficiently. The fitting algorithm is relatively sta-
ble due to the spatial structure of the density function, which
produces a fast and reliable likelihoodmaximizationmethod.
In this work, Erlang-mixing structures will be used to model
the frequency distributions of the experiments. These gener-
ated functionswill be used for data-driven reliability analysis.

2.3 Continuous-timeMarkov chains

An absorbing stateMarkov chain is a stochastic process char-
acterized by a set of states in which one or more states are
absorbing, and the others are transient. If the chain starts tran-
sient, it will eventually reach an absorbing state and remain
in it forever. The matrix Q is square n × n that describes the
transition rates from one state to another. The vector d1 is a
vector n × 1 that contains the transition probabilities to the
absorbing state [9–11].

Note that when the Markov chain reaches an absorbing
state, it stays in that state forever. The matrix M = (−Q)−1

is the fundamental matrix (also known as the momentum
matrix) of a continuous-time Markov chain with an absorb-
ing state, and each element (−Q)−1(i, j)gives us the average
time required for the state j to be absorbed given the initial
state i . The transition probability matrix satisfies the Kol-
mogorov equation: dP(t)

dt = QP(t). Thus, P(t) = ceQt .
Using the Taylor series of the exponential function, we write

P(t) = eQt =
∞∑

i=0

(Qt)i

i ! and,
dP(t)

dt
= QeQt . (4)

Using the initial probability vector π(0), will set the state
1 as the initial state (at time t = 0) so that after time t ,
the process will still occupy one of the states 1, 2, . . . , n,
with probability π(0) · M · 1, where 1 is a column vector

of 1′s. Thus, the absorption time distribution function will
be given by F(t) = 1 − π(0) · eQt · 1. Furthermore, the
probability density is defined by f (t) = π(0) ·eQt ·q where,
q = −d1, and eQt is an exponential matrix. Let S be a set
of states, a continuous-time stochastic process X∞

t≥0(t) is a

Markov process with a state described in dP(t)
dt = P(t) ·

Q, �(0) · 1 = 1. With the solution of this system, we
obtain P(t) = P(0) eQt , where P(0) vector is the initial
probability vector, and Q infinitesimal generator. From that,

∑

∀ j, j �=i

qi j + qii = 0, and qii = −
∑

∀ j, j �=i

qi j , (5)

knowing that a state i is an absorbing state if qii = 0.
The choice of the continuous-time Markov chain over other
modeling techniques was motivated by the fact that it allows
the development of analytical models to assess component
availability, following the principles presented in Refs. [12–
14].

2.4 Fittingmethod

Anexpectation–maximization algorithm (EM) is an approach
that performs themaximum likelihood estimation in the pres-
ence of latent variables. It does this by estimating the values
for the latent variables and optimizing the model until con-
vergence. It is a practical and commonly used approach to
estimating densities with missing data. The popularity of the
EM algorithm stems from the fact that it can be simple to
implement and that the global maximum can be found reli-
ably through stable and increasing steps.

The fitting of PH’s typically requires defining parameters
such as the number of phases and clusters [15]. However,
considering the application of this analysis technique in a pro-
duction environment, it is crucial to devise a way to automate
this parameter determination process, thereby ensuring both
accurate and reliable models. Given this scenario, adopting
Bayesian optimization tools emerges as a viable and effec-
tive strategy to address this challenge [16]. For hyper-Erlang
distributions, the EMalgorithm can be used to estimate phase
number and phase-type distributions, as well as phase tran-
sition probabilities. The algorithm starts with initial guesses
for these parameters and then iteratively updates them until
convergence. The EM algorithm for hyper-Erlang distribu-
tions is implemented using the Baum–Welch algorithm, a
particular case of the EM algorithm for hiddenMarkov mod-
els.

3 Related works

This section reviews research on estimating probability den-
sity functions (PDFs) and cumulative distribution functions
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(CDFs) for performance metrics. We also highlight this arti-
cle’s contributions compared to the cited works.

3.1 Fittingmethods for phase types

The tutorial in Ref. [17] offers a comprehensive guide to
PH-fitting techniques. It introduces the PH-fitting algorithm,
EM-based PH estimation, and standardization. In addition, it
presents the phase-type software reliabilitymodel (PH-SRM)
and its parameter estimation using the PH estimation algo-
rithm. However, the authors acknowledge that this method
can be computationally intensive in some scenarios.

In Ref. [18], a generic mathematical model is proposed
for open queue systems, providing closed-form equations
for estimating system response times. This work stands out
for its parameterization without assuming specific arrival
distributions. PHDs enhance flexibility and practicality in
Time-To-Failure studies through continuous-time Markov
chains (CTMC).

Barde et al. [19] use PHDs to approximate non-Markov
models, enabling the analysis of complex systems under
Markovian decay. The article includes numerical results and
adjustments for transition probabilities in maintenance opti-
mization Markov decision process models.

Zhang et al. [20] present an efficient algorithm for calcu-
lating the Fisher informationmatrix in fitting History Depen-
dent Renewal Processes using PHs. This algorithm employs
a smoothing technique in a continuous-time stochastic pro-
cess (CTMC) to compute crucial second derivatives of the
log-likelihood function (LLF). A computational algorithm
is developed to expedite the Fisher information matrix cal-
culation and compute LLF’s first and second derivatives for
samples and probability density functions.

Bladt and Rojas-Nandayapa [21] tackle statistical infer-
ence for univariate and independent heavy tailed data. They
propose fittingmethods for these data using exponential mix-
ture (EM) and phase-type distributions (NPH) scale mixture
class distributions. This work introduces a new class of heavy
tailed distributions and an EM algorithm for maximum like-
lihood parameter estimation. The authors consider various
data types, including histograms, censored data, and theo-
retical distributions, and provide numerical examples using
simulated and reference reinsurance datasets.

Albrecher et al. [22] introduce scaling PH distributions
with continuous scaling components. They develop an EM
algorithm for maximum likelihood estimation, particularly
useful with empirical data, including censored data. Unlike
NPH distributions, closed-form formulas for mixed distri-
butions can be evaluated using functional calculus tools,
avoiding infinite series truncation. The article also inves-
tigates products between phase-type distributed random
variables and independent, positive, continuous random vari-
ables, establishing their asymptotic properties. Finally, an

expectation–maximization algorithm is derived and imple-
mented for statistical inference of these mixed distributions
using real-world datasets, often exhibiting heavy tails and
retaining phase-type distribution properties.

3.2 Reliability

Alkaff andQomarudin [23] propose a straightforwardmethod
for functional reliability analysis of systems with general
structures using the PH distribution. They present algorithms
for system reliability modeling and analysis, efficiently
generating system reliability functions for independent com-
ponents and other reliability measures.

Wu et al. [24] extend PH distributions to cases with
specific transition thresholds and time spent thresholds in
selected states. They develop three models using aggregated
stochastic processes theory and derive closed-form expres-
sions for reliability indices, such as availability and lifetime
distributions. Numerical examples illustrate the proposed
formulas.

Wang et al. [25] introduce a new mathematical model
for repairable systems with two types of exponentially dis-
tributed components and a repairer. They analyze this model
using Markov process theory and the matrix analytical
method, with an example of solar power generation.

He et al. [26] propose two random variable approxima-
tions using the ‘Erlangization’ technique, which is valuable
for analyzing basic reliability structures. Li et al. [27] offer
a PH-based method for time-dependent reliability analy-
sis of deteriorating structures. They use PH adjustment
techniques to generate a simple reliability expression, con-
sidering progressive and shock deterioration. Numerical
examples demonstrate the method’s efficiency, with accu-
racy validated against Monte Carlo simulations.

Pereira et al. [12] present closed-form equations for evalu-
ating system performance and capacity planning. They apply
this methodology to assess how a web server in a fog node
is affected by unexpected workloads, using Markov chains
for analysis. Similarly, the article [25] provides an analytical
approach for system description, claiming time savings in
system modeling.

Zheng et al. [28] propose an approach for estimating
the performance and reliability of a web service before
deployment based on observed data. They use phase process
expansion to create an expanded continuous-time homoge-
neous Markov chain for the web service, explicitly including
failure and restart states. This approach enables performance
and reliability calculations using the PH tuningmethod based
on observations of service execution times. Experimental
results from web services demonstrate the approach’s effec-
tiveness.

Alkaff et al. [29] extend the state-space model and intro-
duce a deceleration factor for available waiting systems with
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multistate components. These components follow matrix-
based phase-type (PH) distributions. The resulting model
represents the system lifetime distribution as a PH dis-
tribution, facilitating dynamic system reliability analysis.
Comparisons with other methods from previous publications
are included.

Finally,Balali et al. [30] reviewapproaches to degradation-
based reliability estimation models, focusing on their appli-
cation in the Industrial Internet of Things (IIoT). They
provide a roadmap for adopting IIoT-based reliability esti-
mation models, explaining their application and advantages.
The study underscores the importance of these models in
monitoring system conditions over time.

3.3 Fitting tools

Efficient software tools for fitting phase-type distributions
have been developed in recent years. Notable examples
include HyperStar [2, 31] and BuTools [3, 32]. HyperStar is
a modern tool tailored for fitting PH distributions to diverse
datasets.

PH distributions are known for their versatility in approx-
imating non-negative distributions, offering closed-form
expressions for essential metrics and representation as
Markov chains. While HyperStar is user-friendly and sup-
ports various export formats, it lacks streamlined distribution
methods, and its source code remains proprietary, limiting
community refinement.

BuTools—is a comprehensive suite designed for traffic
modeling and queue analysis. It extensively supports PH
distributions, including density function computations and
moment matching. BuTools also covers Markov.

4 Automatic PH-fitting process

When applied to hyper-Erlang distributions, the EM algo-
rithm can be streamlined using specific structural constraints
[33]. Hyper-Erlang distributions can approximate any posi-
tive random variable distribution, with its parameters given
as (π, λ), and the Erlang branch orders represented as r . The
algorithm for these phase-type distributions is outlined in
references. A unique feature of the hyper-Erlang distribu-
tion is the ability to fully describe a continuous-timeMarkov
process, generating a random variable Xk through its initial
state, sufficient for determining the selected Erlang branch.
Outlined below are the EM algorithm steps tailored for the
hyper-Erlang distribution:

1. Initialization: randomly define the initial values of the
model parameters,�0. They help generate a preliminary esti-
mate of the data’s probability distribution.

2. Likelihood Differentiation: determine the likelihood
function for data using present model parameters, repre-

sented as

Q(θ, θ0) =
n∑

i=1

r∑

j=1

zi j [(r − 1) ln λ j − λ j xi

+ (r − 1) ln xi − ln(r − 1)!],

where zi j signifies the posterior probability that data point i
belongs to cluster j , xi is sample i’s value, r indicates the
required events in the Erlang-r distribution, and λ j represents
the event occurrence rate in cluster j .

3. Posterior probabilities calculation: determine the pos-
terior probability distribution based on revised data and
parameters. The posterior distribution for each Erlang-r clus-
ter is expressed as

p(zi j = 1|xi , θ) = θrj x
r−1
i e−θ j xi

∑k
l=1 θrl x

r−1
i e−θl xi

,

with k representing the cluster count.
4. Optimal parameter determination: update the model

parameters based on posterior probabilities. Differentiate the
likelihood function for each parameter, equate the derivatives
to zero, and deduce the parameters. The optimal value for
every θi parameter within Erlang-r distributions is

θ j = r
∑n

i=1 zi j∑n
i=1 zi j xi

.

5. Parameter update: use the revised parameters for recal-
culating the posterior probability distribution and iterate until
the parameters reach a stable solution.

The EM algorithm’s core lies in its iterative nature.
Each change in parameter estimates yields varied posterior
probabilities, which, when recalculated in step 4, produce
distinct parameter estimates. The algorithm involves two
main actions: determining the posterior probability using
current parameters and updating parameters based on the
prevailing posterior probability. The process described above
provides the vector π and matrix Q described in this section
with the following structures:

π = (α1, α2, . . . , αM−1, αM ),

Q =

⎛

⎜⎜⎜⎜⎜⎝

T1 0 0 0 0
0 T2 0 0 0

. . .

0 0 0 TM−1 0
0 0 0 0 TM

⎞

⎟⎟⎟⎟⎟⎠
,
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where each

Ti =

⎛

⎜⎜⎜⎜⎜⎝

−λi λi 0 0 0
0 −λi λi 0 0

. . .

0 0 0 −λi λi
0 0 0 0 λi

⎞

⎟⎟⎟⎟⎟⎠
.

Bayesian optimization requires the definition of value
ranges to be tested and ametric to beoptimized.After a prede-
termined number of iterations with random values, Bayesian
optimization employs a surrogate model that estimates the
objective function of the chosen metric. Each point on this
function represents the probability of achieving a particular
score for the evaluation metric, given a specific hyperpa-
rameter. This sequential search technique, anchored on the
principles of Bayes’ theorem, guides the search for optimal
points in an objective function by estimating the posterior
probability distribution of the model parameters based on the
data and a prior distribution. When dealing with a complex
and multivariate parameter space, like in calibrating phase
types (PH) with the expectation–maximization (EM) algo-
rithm, Bayesian optimization proves particularly efficient
[34].

In the context of the EMalgorithmbased on hyper-Erlangs
for determining the number of clusters and phases, Bayesian
optimization will be employed to explore the parameter
space intelligently. First, the prior distribution of the hyper-
parameters will be defined, considering the boundaries and
characteristics of each parameter. Then, based on previous
iterations and the objective function (BIC obtained from log-
likelihood), Bayesian optimization will suggest a new set
of parameters to be tested. This process will continue until
the optimal number of clusters and phases are found, thus
allowing effective automation of PH fitting. The step-by-
step process of this automated hyperparameter optimization
is presented in the Algorithm 1.

The illustrated algorithm provides a general approach to
automated hyperparameter optimization in the context of an
expectation–maximization (EM) algorithm based on hyper-
Erlangs. The goal is to determine the optimal number of
clusters and phases, two critical hyperparameters in this con-
text.

The algorithm begins by initializing placeholders for the
best hyperparameters. The objective function, to be mini-
mized, calculates the Bayesian Information Criterion (BIC),
which is a statistical measure of model validity considering
both the log-likelihood of observed data given the current
model parameters and the number of parameters utilized in
the model. The BIC is designed to penalize model complex-
ity, thereby helping to prevent overfitting.

Hyperparameter values are searched within a specified
range using a specific algorithm that selects a new set of
hyperparameters to evaluate at each iteration, aiming to min-

Algorithm 1:Automated Hyperparameter Search Algo-
rithm
Result: Determine the best clusters and phases

1 Initialize best clusters and phases;
2

3 objective(arguments)
4 - Extract the number of clusters and phases from arguments
5 - Estimate initial parameters mu’s and probabilities based on the
number of clusters

6 - Optimize the parameters using the expectation–maximization
method

7 - Calculate the incomplete log-likelihood
8 - Compute the Bayesian Information Criterion (BIC),
9 BIC = −2 ∗ log − likelihood + num − params ∗ np.log(n)

10 Return BIC;
11

12 Define the hyperparameter search space;
13

14 Perform hyperparameter optimization to find the best parameters;
15

16 Extract the best clusters and phases from the best parameters;
17 return best clusters, best phases

imize the objective function. The algorithm iteratively refines
its hyperparameter selections based on the results of previous
evaluations, guided by the objective of locating the global
minimum of the objective function in the hyperparameter
space.

Once the algorithm has concluded its search-either by
exhausting the number of permitted evaluations or meeting
a specific stopping criterion—it retrieves the best hyperpa-
rameters corresponding to the minimum value of the BIC
obtained. These hyperparameters, representing the optimal
number of clusters and phases, are then returned by the algo-
rithm.

Hyper-Erlangs were selected for this study due to their
flexibility and deference to an analytical expression for
the probability density function (PDF), the CDF, and the
derived functions utilized in reliability analysis. The genera-
tion of these functions depends on Calculus techniques, thus
necessitating the functions to be integrable and preferably
simple—meaning, a smaller number of parameters derived
from the fitting process is desirable. To yield such functions,
the BIC was selected as the stopping criterion for Bayesian
optimization. This criterion imposes a penalty on models
with a more significant number of parameters, thus encour-
aging simpler models.

As outlined by Bladt [35], observing the negative log-
likelihood when choosing fitted dimensions and structures
is advisable. While the authors concede that larger matri-
ces often result in better likelihoods, they also note that it is
common for this likelihood increase to plateau in practical
scenarios. One can proceed to model selection regard-
ing regression coefficients after determining dimension and
structure. These coefficients align with the conventional sys-
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tem, allowing the use of AIC or BIC criteria for Comparison
and selection among various proposed models.

This study’s approach focuses on achieving the fitting
via log-likelihood. In addition, the Bayesian optimization
process, with its objective function defined as BIC =
−2 × log-likelihood + num-params × np.log(n), where
num − params = num − clusters × (phases + 1) and
n = length of data. This method has shown effectiveness,
yielding promising results in automating selecting the num-
ber of phases and clusters for fitting PH distributions.

Having obtained the parameters from the abovemen-
tioned process, we construct the probability density functions
(PDFs) with mixture distributions. Following this, the reli-
ability evaluation methodology is carried out in a series of
steps:

• The first step involves collecting data associated with the
system’s behavior over time. These data should include
information about the various states of the system, along
with the time required for transitions between these
states.

• Using the collected data, we estimate the parameters of
a phase-type (PH) distribution. This estimation process
utilizes the expectation–maximization (EM) algorithm,
and Bayesian optimization is employed to ascertain the
optimal number of clusters and phases.

• Once the PH distribution has been fitted, it is then used to
model the system’s behavior. This provides us with the
ability to predict the state of the system at a given point
in time. It also allows for calculating various reliability
metrics, such as the probability density function (PDF),
its complementary function, and other metrics crucial for
dependability analysis.

Through this process, we develop a model of the system’s
behavior and gain the capacity to predict its future state and
assess its reliability using various established metrics. While
the flexibility of hyper-Erlang distributions is a significant
advantage, it is crucial to emphasize that fitting through this
mixture of distributions only sometimes guarantees accuracy
in real-world systems. Additional data treatment steps may
be necessary depending on the collected data’s peculiarities.
Therefore, the direct application of the proposed methodol-
ogy without careful preliminary analysis of the data can lead
to inaccurate or misleading results. It is, then, essential to
comprehensively validate the model assumptions and pre-
cisely fit the data in question. This involves pre-processing
stages, such as data cleaning, handling missing values, and
normalization. It is also crucial to conduct exploratory data
analysis identifying trends, patterns, variable relationships,
and outliers. These steps ensure the reliability and robustness
of the results obtained by applying the proposed methodol-
ogy.

5 EMA Tool

This section introduces theEMA(Expectation-Maximization
Algorithm) Tool to automate the fitting process. We aim to
provide a user-friendly interface for those seeking a hassle-
free automatic fitting experience and a more detailed one
for enthusiasts/experts who prefer a finer control via manual
fitting (Fig. 1). This balance between simplicity and function-
ality not only broadens our tool’s accessibility to a broader
range of users but also ensures that every user can achieve
their desired outcomes tailored to their specific needs. The
alpha version of EMA was added to Mercury1 Tool (version
5.2 onwards).

6 Case studies

This section introduces two distinct case studies. The first
case study aims to showcase the algorithm’s versatility by
applying automated fitting using the hyper-Erlang distribu-
tion to a variety of datasets. This evaluates its ability to
manage intricate scenarios and sets the stage for validation in
computational analyses across diverse contexts. The second
case study delves into characterizing the Time-To-Failure
(TTF) and Time To Restore (TTR) distributions within a fog
computing environment. This highlights the utility of auto-
mated fitting with the hyper-Erlang distribution in reliability
analysis.

6.1 Case study 1: automatic fitting in different
scenarios

In this section, we conduct a case study applying automated
hyper-Erlang distribution fitting to diverse datasets, assess-
ing its ability to handle complexity and paving the way for
validation in various computational analysis scenarios.

The method described in Sect. 4 has been applied to sev-
eral datasets. These datasets are detailed in tables 7.13, 7.20,
7.41, 7.42, 24.14, and 24.23, as referenced in Refs. [10, 11].
These cited works are foundational in the realm of compu-
tational system evaluations. They offer an extensive dataset
that captures a wide range of dynamics essential for analyz-
ing and modeling such systems. For our study, we employed
an automated fitting technique on these datasets and con-
ducted an analysis using the hyper-Erlang distribution. This
section provides further details on the parameters chosen and
the outcomes of the fitting for each scenario.

Consider the dataset in Fig. 2, comprising 80 measures.
These data have a coefficient of variation (CoV) of 0.541 and
an interquartile range (IQR) of 184.5. It is evident from the
observation that the data are divided into two distinct groups.
By employing automated fitting with the hyper-Erlang dis-
tribution, we have identified 30 phases and two clusters. The
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Fig. 1 Alpha version of AutoFitting tool

fitting proved more efficient for the first data group in the
histogram.

The sample size depicted in Fig. 3 is 60. By analyzing the
sample histogram, a quick observation allows us to hypoth-
esize that the sample comprises two or three clusters. On
the other hand, the fitting procedure determined the pres-
ence of 2 clusters and 13 phases on each. This configuration
suggests a level of complexity lower than what was previ-
ously observed. This can be attributed to the data being more
densely grouped, forming cohesive clusters.

In the fitting displayed in Fig. 4, the algorithm success-
fully detected the two portions into which the distribution
divides, yielding a result of 2 clusters. However, there was a
substantial increase in the number of phases, totaling 31.
This suggests that the algorithm encountered challenges
in converging due to the inherent complexity of the data
distribution. To deepen the analysis, we examined the empiri-
cal moments (312.9055, 104366.9098, 36132253.8337) and
contrasted themwith themoments of the adjusted distribution
(312.9055, 6080.9833, 180569.4677). A more pronounced
discrepancy between the second and third moments becomes
evident through this comparison.

Due to the more dispersed nature of the data, the poorest
result was recorded in the dataset referenced in Fig. 5. How-
ever, it is noteworthy that the peak present in the PDF was
detected. There was a need for 3 clusters, each comprising 11
phases. This configuration was influenced by the frequency
distribution having three distinct concentration regions.

The histogram in Fig. 6 displays multimodal data with
a CoV of 0.51. Datasets of this nature pose significant chal-
lengeswhen attempting fitting using traditional distributions.
However, with the algorithm discussed in this text, 3 clusters
were required, each consisting of 49 phases. Notably, the
number of phases has considerably increased compared to
the other cases presented, underscoring the high complexity
of the system under consideration.

Lastly, using another multimodal dataset, the automated
fitting using the hyper-Erlang distribution yielded a phase-
type distribution (PH) with 4 clusters, each comprising 53
phases. The fitting algorithm detected the first two group-
ings of data, as illustrated in Fig. 7. However, a good fit is
achieved at the expense of high dimensionality. Such scenar-
ios illuminate the need for refinements in future iterations of
the algorithm.

Building upon the methodologies highlighted, the next
section will apply this approach to a real-world scenario.
The plan is to integrate the fitting algorithm into experi-
ments previously discussed in various works. Through this,
we aim to validate its performance across different systems
and datasets. This implementation will bolster the algo-
rithm’s credibility and highlight its scalability in the dynamic
landscape of computational analysis. The second case study
characterizes TTF and TTR distributions in a fault-injected
fog computing environment. It demonstrates automated fit-
ting with hyper-Erlang distributions for reliability analysis
in complex real-world systems.

6.2 Case study 2: the fog computing environment

In this study, we seek to characterize the Time-to-Failure
(TTF) and Time to Repair (TTR) distributions within a
fog computing environment, where the observed times were
expedited through a fault injector. Comprehensive insights
on this approach are provided in Refs. [36, 37].

The systemwas exercised by injecting faults in the system
infrastructure andmonitoring its availability during an obser-
vational period. After the experimental phase, the TTFs and
TTRs were obtained. Then, the maximum likelihood estima-
tion algorithm was executed to fit an Erlang-r distribution.
Once the Erlang-r distribution was fitted, the distribution
function was determined.
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Fig. 2 Algorithm applied in table 7.13, obtained parameters (0.1016, 0.2873), and initial probability vector (0.3756, 0.6243)

Fig. 3 Algorithm applied in table 7.20, obtained parameters (0.0147, 0.1317), and initial probability vector (0.8333, 0.1666)

Fig. 4 Algorithm applied in table 7.41, obtained parameters (0.0942, 0.3469), and initial probability vector (0.9333, 0.0666)

After fitting, the PDF and CDF of the fitted distribution
functions are determined using Eq. (2). With these functions
in hand, the system’s reliability study begins, for instance,
using theCDF F(t) to find the reliability,with relation F(t)+
R(t) = 1. The average time to absorption state is MTT A =∫ ∞
0 R(t)dt .
However, despite the inherent flexibility of this approach,

it is crucial to emphasize that employing hyper-Erlang distri-

butions for fitting systems derived from real-world scenarios
often necessitates the use of a significant number of phases
and clusters. Such a traitmight lead to less than optimal fitting
results or yield intricate integration functions, jeopardiz-
ing the calculation procedure for reliability metrics outlined
in this study. Therefore, thoroughly validating underlying
assumptions and adjusting the model to the data becomes
pivotal. Succinctly put, constructing an automated reliability
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Fig. 5 Algorithm applied in table 7.42, obtained parameters (0.0192, 0.0856, 0.7384), and initial probability vector (0.5411, 0.3588, 0.09999)

Fig. 6 Algorithm applied in table 24.14, obtained parameters (0.1410, 0.2847, 0.5792), and initial probability vector (0.2589, 0.4915, 0.2495)

Fig. 7 Algorithm applied in table 24.23, obtained parameters (0.2677, 0.2677, 0.2677, 0.5374, 2.7045), and initial probability vector
(7.9441exp(−09), 0.0636, 0.2434, 0.6439, 0.0490)

evaluator based on hyper-Erlang distributions would encom-
pass the following stages:

1. Collect data on system behavior over a period, capturing
state transitions and the durations of each state.

2. Employ the gathered data to determine PH distribution
parameters through the EM algorithm.

3. Utilize the deduced PH function to establish analytical
functions for reliability metrics.

4. Derive other reliability metrics and generate their respec-
tive graphical representations.

5. Periodically refine the model with fresh data to improve
its predictive accuracy.
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Fig. 8 Fitted PDF and CDF

The following section explores the automated fitting pro-
cess for a fault injector infrastructure within a fog computing
environment. Metrics and initial functions are detailed, with
specific functions omitted if deemed overly extensive.

6.2.1 Enhanced systemmodeling and analysis

In the dynamic landscape of modern computing, cloud
infrastructures have secured a cornerstone position, offer-
ing scalable and proficient solutions to address a diverse
range of computational demands. As elucidated in Sect.
6, these infrastructures play a foundational role in various
applications, accentuating the need for comprehensive reli-
ability assessments. Simultaneously, there is a shift toward
more intuitivemodels.While the traditional analyticalmodel,
defined by its mathematical blueprint of systems and reliance
on deductive processes, is esteemed for characterizing sys-
tems through structured expressions [38, 39], it grapples with
the challenge of authentically mirroring prevailing effects
and interactions. This lacuna paves the way for functions
that imbue flexibility, often eluding conventional modeling.

The significance of automated fitting becomes palpable
when transitioning to the framework delineated in Sect. 4.
Championing a data-driven methodology, it equips stake-
holders to sculpt the stochastic behavior of systems grounded
in empirical observations. Such a paradigm underscores the
aptness of phase-type distributions, adept at echoing the
subtleties inherent to complex, tangible systems like the dis-
cussed cloud infrastructure.

Utilizing this approach on the collected data, a phase-
type distribution with 3 clusters, each having 10 phases, was
determined. The parameters (0.00338, 0.012433, 0.046129)
represent the hyper-Erlang distribution parameters and the
initial state probabilities. This is further complemented by the
initial probability vector (0.39, 0.45, 0.16). This means that
the PH is characterized by a mixture of these specific func-
tions 6, showcasing the inherent variability and stochastic

nature of the underlying system’s performance and behavior:

fT 1(t) = 0.00338(0.00338t)9e−0.00338t

9! ,

fT 2(t) = 0.012433(0.012433t)9e−0.012433t

9! ,

fT 3(t) = 0.046129(0.046129t)9e−0.046129t

9! . (6)

Through these equations, the analytical PDF can be
ascertained, as referenced in Eq. (7). The corresponding
cumulative distribution function (CDF) is given by F(t) =
P(t) = ∫ t

0 f (x)dx . However, due to the extensive nature of
the formula, it will be omitted here. The graphical represen-
tations of these functions are showcased in Fig. 8:

f (t) = 1.90732exp(−20)t9e−0.0461298t

+1.10205exp(−25)t9e−0.01243t

+2.10596exp(−31)t9e−0.00338t . (7)

In the endeavor to assure the quality of the fitting pro-
cess, the distribution obtained from the automated fitting
was compared against every distribution within the dist-
fit library—a comprehensive repository for goodness-of-fit
functions.1 Among the contenders, the log-Laplace distri-
bution surfaced as the superior fit, with a Residual Sum of
Squares (RSS) registering at 6.0 × 10−7. Notably, the algo-
rithm proposed in this investigation outperformed with an
RSS score of 2.39 × 10−7. Such a result endorses the algo-
rithm’s efficacy and resonates with the graphical evidence,
as seen in Fig. 9.

In the context of the infrastructure under examination,
there is a pronounced pivot towards a data-driven approach,
steering clear of traditional modeling paradigms. Given the
intricate nature of contemporary systems, especially within

1 https://erdogant.github.io/distfit/pages/html/index.html.
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Fig. 9 Comparison between the algorithm and the goodness of fit

cloud and fog computing environments, there is an impera-
tive to adopt frameworks that minimize abstraction. The crux
of this strategy is to derive models directly from empirical
data, positioning such data as the cornerstone of the analysis.

Leveraging the automated fitting method, this study
emphasizes the derivation of PH distributions with con-
strained phases. This constraint ensures the resulting func-
tions remain integrable, a crucial consideration for practical
application. Fundamentally, all metrics related to reliability
modeling are sculpted from the pdf derived from the fitting
of the collected data. This approach negates the necessity to
engage with more conventional or external models, under-
lining the self-sufficiency and pertinence of the proposed
methodology.

In the system under consideration, the Time-to-Failure,
T , represents a continuous random variable, signifying the
elapsed time from when the unit is first operationalized to
its inaugural failure. The pdf will be determined by lever-
aging the parameters from the automated fitting process.
Subsequently, various quantitative reliability measures: the
reliability function R(t), the hazard rate function h(t), and
the Mean Residual Life (MRL).

For any given time t > 0, the reliability function (Fig.
10) is mathematically described as R(t) = 1 − F(t) =∫ ∞
t f (x)dx . Furthermore, the approximate MTTF value is,
MTT F = ∫ ∞

0 R(t)dt ≈ 1544.26h.
The hazard function provides a measure of the instan-

taneous failure rate of a system unit. Mathematically, it is
captured by h(t) = f (t)

R(t) . An insightful examination of the
graphical representation, derived from the fitted function
and showcased in Fig. 11 reveals distinct behavioral phases.
Notably, there is a discernible decrease in the failure rate
between 1000 and 1500h. However, after this interval, the
rate escalates dramatically. This observation underscores the

Fig. 10 Obtained reliability function

Fig. 11 Obtained hazard function

Fig. 12 Obtained MRL function

variable nature of system reliability over time, highlighting
critical periods of heightened vulnerability.
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Fig. 13 Fitted time to repair

As we further examine the reliability of cloud and fog
computing infrastructures, the Mean Residual Life (MRL)
stands out as a significant metric. Illustrated in Fig. 12,
the MRL at a particular time t conveys an expectation—it
outlines the projected remaining lifetime of a unit that has
persisted beyond the interval (0, t]. This metric is rooted in
the formula MRL(t) = 1

R(t)

∫ ∞
t R(x) dx . Importantly, at

the outset, the MRL matches the Mean Time To Failure,
represented as MRL(0) = MTTF. From the data, a dis-
cernible trend is an increase in the MRL between 1000 and
1500h, swiftly followed by a marked decrease. This shift
offers insights into the system’s reliability patterns, signal-
ing enhanced resilience or susceptibility phases.

In examining system reliability, both Time-To-Failure
(TTF) and repair time, Time-To-Repair (TTR)were analyzed
using the same methodology. By converting U and D values
into TTFs and TTRs, approximately 60 sample points were
generated.

It utilizes the fitting process on the repair time, resulting
in a frequency distribution highlighting two distinct clusters,
each encompassing 12 phases. The characterization of these
clusters is definedby the parameters (1.47720, 3.35437). The
initial probability vector (0.48, 0.52) supports and enhances
these parameters. In alignment with the TTF (Time-To-
Failure) methodology, the function epitomizing maintain-
ability is inferred by the mixture of distributions with the
parameters ascertained from the TTR (Time-To-Repair) fit-
ting process:

fR1(t) = 1.47720(1.47720t)11e−1.47720t

11! ,

fR2(t) = 3.35437(3.35437t)11e−3.35437t

11! .

(8)

Fig. 14 Maintainability graph

The derived pdf is presented in Eq. (9), and its correspond-
ing graphical representation can be observed in Fig. 13:

fR(t) = 0.02648t11e−3.35460t

+1.30226exp(−6)t11e−1.47845t

+1.94651exp(−9)t11e−1.31540t . (9)

Following themethodology outlined, the cumulative func-
tion is determined as FR(t) = M(t) = ∫ t

0 fR(x)dx , where
fR(x) is the PDF of the repair time, represents function
maintainability. This interpretation of maintainability pro-
vides insights into how quickly and efficiently a system is
restored after a failure by representing the probability that a
system is repaired by time t .

We apply the same concepts to system repair times to
determine maintainability and the respective repair rate.
Equations will be omitted, but graphs can be seen in Fig. 14.
The MTTR of the system can be obtained by the follow-
ing integral MTTR =

∫ ∞
0 t · M(t)dt ≈ 5.73 h. Using the

values obtained for the MTTF and MTTR, it is possible
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Fig. 15 Different types of estimated scenarios with reliability function

to determine the system’s availability through the formula
A = MTT F

MTT F+MTT R ≈ 0.996296866948173.
In exploring cloud and fog computing infrastructures

discussed throughout this section, reliability, and maintain-
ability have been articulated throughmathematical functions,
bypassing traditional models. The hazard function, MRL,
and concepts surroundingTime-to-Failure (TTF) andTime to
Repair (TTR) were delved into, laying down a robust frame-
work for grasping system dependability via functions. The
insights derived from these metrics present tangible perspec-
tives on system behavior, especially during stress periods or
specific operational conditions.

Employing the fitting process for failure and repair times
has brought valuable insights. This approach illuminated pat-
terns within the data and fostered a comprehensive compre-
hension of the system’s reliability dynamics. The functions
derived, especially the one denoting maintainability, offer a
detailed perspective into system resilience following a fail-
ure.

6.2.2 Scenarios evaluation

decision-making and service pricing are often anchored in
business operations by diverse modeling and process evalu-
ation techniques. This study aims to model the incorporation
of additional servers to scrutinize shifts in system reliability
using the functions obtained in the previous section. Previ-
ous sections validated the modeling process with functions,
and this section delves into scenarios where replicas of the
modeled system are examined under various configurations:
serial, parallel, a combination of serial and parallel, and k-
out-n.

Utilizing the functions secured in Sect. 6.2.1, various
scenarios can be modeled under the assumption that a com-
ponent’s failure remains independent and does not influence
the failure rates of its counterparts. Starting with a series

connection of n components, the system reliability, denoted
as RS , equates to the product of the reliabilities of the
individual components, expressed as RS = ∏n

i=1 Ri . Con-
versely, when considering these n components in a parallel
configuration, the system reliability, RP , is deduced from
RP = 1 − ∏n

i=1(1 − Ri ). For further exploration, let us
examine a hybrid setup: two components connected in series
with a third in parallel; see Fig. 15.

Drawing from the functions deduced in the context of
the fitted phase-type distribution, all the assumptions and
subsequent analyses are grounded in a data-driven process.
Notably, the modeling is not confined to a specific number of
components; by integrating more components into the sce-
narios, analysts can delve deeper into the system’s intricacies.
This enriched perspective can empower them to pinpoint
the optimal cost–benefit ratio for the system in focus. The
upcoming figure elucidates varied configurations employing
five components, offering a detailed lens into the system’s
potential behavior and outcomes.

Constructing a k-out-of-n configuration necessitates a
minimum number (k) of functioning components out of
the total parallel components (n) for the system to oper-
ate efficiently. The k-out-of-n design can be visualized as
an extended version of parallel systems. Specifically, as the
value of k inches closer to n, the overarching behavior of
the system gravitates towards mirroring that of a serial setup.
The reliability formula for a k-out-of-n structure is expressed
as Rkon(k, n, R) = ∑n

r=k

(n
r

)
Rr (1 − R)n−r .

Building upon this foundation and under the assumption
that all components are homogeneous, possessing a reliabil-
ity function as depicted in Fig. 10, and setting n = 6, the
potential scenarios can be viewed in Fig. 16.

This section is dedicated to scenario evaluation, dissecting
various configurations and their implications on operational
integrity. From simple serial and parallel configurations to
the more intricate k-out-of-n setups, the discourse shows the
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Fig. 16 Different scenarios

nuanced dynamics of system interplay and the impact of each
component on overall reliability. The data-driven approach,
rooted in previously obtained functions, has been pivotal in
these analyses. This methodology empowers analysts with
detailed insights and offers a robust framework for deter-
mining the optimal cost–benefit ratio for the system under
study.

7 Conclusion

Recent technological advancements have made analyzing
stochastic models with non-exponential time distributions
increasingly efficient. PH distributions have risen to the
forefront in this scenario, buoyed by their adaptability and
extensive generalization capacity. This work unveiled a
strategic approach to deduce an analytical function that
mirrors a given dataset endowedwith parameters and an algo-
rithmproficient in estimating the necessary number of phases
for system automation and fine-tuning.

Traditionally, systems valuation exercises have leaned
on numerical methodologies or simulations to ascertain the
Mean Time To Failure (MTTF). Such methods, though
effective, are typically more time-consuming. The tech-
nique introduced in this paper curtails this time drastically,
paving the way for amore streamlined and automated system
analysis. The horizon ahead is teeming with potential. The
ambition is to broaden the scope of research in this domain,
introducing a more comprehensive array of availability met-
rics such as failure rate, repair rate, and mean time between
failures.

Throughout this investigative journey, therewere instances
where the infinitesimal generator matrix manifested in
extremely high orders. In addition, there were cases where
the algorithm’s stopping criterion for ascertaining the phase
number faltered. Such observations highlight the pressing
need for in-depth research to fathom the boundaries of this
methodology and to navigate a course for its seamless adop-
tion across varied scenarios.

What stands out in this exploration is a palpable tilt
towards function-based simulations and methodologies
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anchored in the Monte Carlo Markov chain—a promis-
ing avenue for future endeavors. Even though the deduced
function primarily aligns with the dataset under scrutiny in
this study, the broader vision is to extend its applicability.
Moreover, the aspiration to incorporate control theory more
intensely in subsequent investigations is on the horizon.
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