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Abstract
Near-field tides prediction for tsunami detection in the coastal area is a significant problem of the cable-based tsunami meter
system in north Sipora, Indonesia. The problem is caused by its shallowwater condition and the unavailability of an applicable
model or research for tsunami detection in this area. The problem foundation of shallow water area is its ambient noise level-
dependent property that requires preprocessing to improve its feature representation. Moreover, because this shallow water
is close to the land area, we must consider a model that can accommodate low prediction time for a Tsunami Early Warning
System. Therefore, we propose a recurrent neural network (RNN) model because of its reliable performance for time series
forecasting. Our report evaluates variants of the RNN model (the vanilla RNN, LSTM and GRU models) in tides prediction
and z-score analysis for tsunami identification. The GRU model overwhelms the other two variants in error scores and
time processed (training and prediction). It can achieve median error score distribution of 7.8 × 10−5 on the L1000-P250
configuration with time prediction under 0.1 s. This lower-time prediction is necessary to ensure the early warning system is
going well. Moreover, the GRU model can identify all synthetic tsunami tide spikes (compared with the ground truth result)
from magnitude 7.2–8.2 by applying a z-score on the GRU’s prediction.

Keywords Recurrent neural network · Deep neural network · Shallow water body · Tides prediction · Tsunami early warning
system
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1 Introduction

There is already quite much proof of how devastating the
tsunami impacted the land of Indonesia, which brought in
significant loss of material and human lives. Take one of
the recent tsunami events as an example [1], tsunami Palu
Dongala (2018) records a total loss of 20.89 trillion rupiahs
and 4340 people died. tsunami Palu Dongala (2018) records
a total loss of 20.89 trillion rupiahs, and 4340 people died.
Moreover, the impact will be worsened because of the stop
of the economic growth in the post-disaster.

One of the attempts to reduce the number of tsunami strike
victims, Indonesia has developed a Tsunami Early Warn-
ing System (TEWS), which started in 2005 [2] (post-Aceh’s
tsunami). Recently, predicated on the president’s instruction,
article 5 number 93 2019, as part of strengthening disaster
mitigation, the Agency for the Assessment and Applica-
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tion of Technology or BPPT Indonesia developed Cable
Based Tsunami-meter (CBT) [3]. This system will adopt
the SMART concept, Scientific Monitoring, And Reliable
Telecommunication, which incorporates a monitoring func-
tion of the tsunami, earthquake, climate, ocean condition,
and sea level with telecommunication capabilities.

Concerning the threat of the giant tsunami caused by
megathrust earthquakes in the Mentawai island area [4],
BPPT initiated the deployment of the CBT system in Sipora.
The subduction zone of this area has a characteristic of a low
water depth of about 80m, which consider having consider-
able ambient noise [5, 6]. Multiple occurrences of bottom
bounce path in the sound channel and uncertain seafloor
properties, including sound speed, density, and attenuation,
make continental shelves environment has significant exter-
nal noise, which muddles up the data measurement retrieved
from Bottom Pressure Recorder (BPR). This ambient noise
level-dependent feature makes shallow water environments
more challenging to analyze and model [5].

Meanwhile, tides prediction is a time series problem in
which the output is the sequence prediction within some
margin of error. The traditional modelings are mainly para-
metric based, such as AutoRegressive (AR) [7], exponential
smoothing [8, 9] or structural time series model [10]. How-
ever, it has also been found thatmany of these real-time series
modelings seem to follow nonlinear behavior [11] and are
insufficient to represent their dynamics [11–13]. Therefore,
another approach using a different mathematical represen-
tation of the nonlinearity present in the data is suggested to
overcome this problem [11, 13, 14].

Notably, the emergence of artificial neural networks
(ANN) adopting this approach have been widely used for
the prediction of various complex system [15–17]. They can
identify and learn the complicated nonlinear relationship
between system variables, showing more accurate results
than linear regression techniques [18].

Among these various techniques, recurrent neural network
(RNN) can detect a pattern in the data sequence [19]. This
ability differentiates from Feedforward Neural Networks,
which pass information through the network without cycles.
The RNN has cycles and transmits information back into
itself, which extends Feedforward Networks to account for
previous information. Despite this advantage, RNN suffers
from vanishing or exploding gradient in long-term depen-
dency [19]. This problem motivated the introduction of
long–short-term memory units (LSTMs) [20] for handling
the vanishing gradient problem. LSTM has become popular
in time series forecasting [20]. Compared to deep Boltz-
mann machines, graph-structured recurrent neural networks,
and convolutional neural networks, LSTM-NN-based deep
learning performs better [21] for time series forecasting. It
can extract robust patterns for an input feature space and
effectively handle Multiple Input Multiple Output System

(MIMO) systems in Deep Neural Networks (DNN). More-
over, the LSTM system can take nonlinear systems due to
their specialized LSTM cell that performs better after learn-
ing. However, LSTM has some drawbacks related to its
complicated unit andmore data necessary to learn effectively
[22]. Therefore Gated Recurrent Unit is proposed as a sim-
pler hidden unit to compute and implement [22].

Nonetheless, recent research on time forecasting shows
unforeseeable CNN [23–25] to solve time series problems.
However, this problem is still limited to the classification as
output, not time sequences which is the output of tides pre-
diction. In addition, the wide range variability of the data set
must also be experimented with for a solid model hyperpa-
rameter.

Based on all these studies, we select RNN as our model
foundation. Some factors that support this are as follows:

• Tides prediction is a univariate time forecasting problem
relevant to the efficacy of RNN [26, 27].

• The output of tides prediction is temporal-dependent
sequence data. RNN is suitable for sequence learning
from the features [28, 29].

• Though for the training phase, RNN still cannot take
advantage of parallel computation inGPU [30], RNN can
still achieve a closed real-time prediction in the inference
time, which is around one second or less, depending on
the GPU.

Thus, our work is considered novel since the unavailability
of tides prediction model and study in shallow water areas
for tsunami prediction purposes. Our contribution will be as
follows:

• Combination of multistage preprocessing and RNN-
based deep-neural network on tide data for solving tide
prediction modeling in shallow water cases. This model
is intended to get a better tide prediction and human inter-
pretation.

• The suitable tides preprocessing for shallow water cases
that can reduce the noise of the tides data and accommo-
date the neural networks input.

• Empirical insight of various RNN models, vanilla RNN,
LSTM, and GRU, approach on a case of tsunami detec-
tion based on tide prediction.

• Experimentations on defining look-back and forward
parameter scenarios on shallow water tides prediction
models.

• Z-score analysis toward variability of the synthetic
tsunami triggered by earthmagnitude. This analysis eval-
uates the sensitivity of the current model.

Finally, solving this near-field tsunami forecasting in the
coastal area is urgently required to reduce casualties. Indone-
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Fig. 1 General block diagram of designed system

Fig. 2 Preprocessing block diagram

sia experienced a tsunami caused by coastal volcano erup-
tions in 2018 [31]. Furthermore, Sumatra island’s coastal
region, especially Mentawai island, has considerable poten-
tial for megathrust earthquakes and landslides [32]. There-
fore, the RNN tides prediction model proposed in this paper
can become the required solution to mitigate this problem.

2 Related works

National oceanic and atmospheric administration (NOAA)
developed the tsunami detection algorithm under the deep-
ocean assessment and reporting of tsunamis (DART) project
using cubic polynomial [33]. While in [34], Beltrami tried
to find a more efficient alternative tsunami detection algo-
rithm by proposing an artificial neural network (ANN). Both
of these algorithms use the data from the bottom pressure
recorder (BPR) as a sensor to collect the sea level in the deep
sea. Based on the comparison [34], ANN methodology can
predict tide and other regular patterns in the wave better than
the DART.

Before [34], Barman et al. [35] utilized non-linear regres-
sion inANN to calculate the estimation time arrival (ETA) for
predicting the tsunami travel time in the Indian Ocean. The
ANN model could perform the rapid computation for ETA.
The model proved its robustness in developing a real-time
tsunami warning system for the Indian Ocean.

These efficacies of ANN encourage data-driven forecast-
ing tsunami [36]. Romano et al. [36] utilized spatial values of
maximum tsunami heights and tsunami arrival times (snap-
shots) computed through the TUNAMI-N2-NUS model.
They achieved good accuracy and near-instantaneous fore-

casting of the maximum tsunami heights and arrival times
for the entire computational domain.

Another variant of ANN is also adapted to estimate
tsunami inundation [37]. Fauzi and Mizutani applied two
machine learning models, a convolutional neural network
and amultilayer perceptron, for real-time tsunami inundation
forecasting in theNankai region of Japan. They experimented
using the hypothetical future Nankai megathrust earthquake
with Atashika and Owase Bays in Japan as the study cases.
The results show that the proposed methods are high-speed
(less than 1s) and comparable with nonlinear forward mod-
eling.

Besides tsunami mitigation, another natural disaster, such
as an earthquake, is also predicted usingANN [38–40]. In the
most recent [41], Kishore et al. used the LSTM to model the
sequence of earthquakes. They used the trainedmodel to pre-
dict the future trend of earthquakes and compared the LSTM
with an ordinary Feed Forward Neural Network (FFNN)
solution for the same problem. The result showed that the
LSTM neural network was found to outperform the FFNN
in the task of modeling the sequence of earthquakes.

Compared to all the previous work, our study regarding
tsunami detection in shallow water case is considered a pre-
miere. The challenging part of BPR data in shallow water
areas is the muddled ambient noise, which requires signal
processing to filter these out from the expected features. Var-
ious RNNnetworks are evaluated, serving as context learners
that forecast the upcoming tides. Finally, the z-score will
identify the tsunami spikes from the set of predicted tides.

3 Methodology

3.1 General algorithm design

This project defines the primary solution through a block dia-
gram comprising preprocessing, training model architecture,
and tsunami identification. Preprocessing sequences involve
feature scaling, vector shape matching, and denoising. The
training model architecture consists of the RNN stacked
model and the dense layer, which map the features into a
serial data prediction. Finally, the system will identify the
tsunami from the prediction sequence of tides by smoothed
z-score methodology, as shown in Fig. 1.
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Fig. 3 Butterworth filter
frequency response on 0.01Hz
cutoff frequency

Fig. 4 Model network layers design

3.2 Preprocessing

The first part of the section (Fig. 2) is a scaler based on a
percentile that will improve distribution data scaling. The
process is unaffected by significant marginal outliers, which
commonly occur in a noisy data environment. From this sec-
tion onward, 0–1 normalization is required tomatch theRNN
input layer. Eventually, the processing system applies a low-
pass filter to reduce ambient noise. TheLPFdesign parameter
follows [42] Oceanographical Engineering Textbook allow-
ing tsunami data to be captured with a frequency less than
or equal to 0.01Hz. The order of the filter is also set to 9 to
reduce stopband ripple maximally, as shown in Fig. 3.

On the other hand, based on the general block diagram sec-
tion (Fig. 1), we can write the system in pseudocode. Before

utilizing the function, training data are fitted into the scaler
to capture data traits (mean, variance, interquartile range,
etc.). This trait can be saved into.bin format and loaded in
the function.

Algorithm 1 Preprocessing
data ⇐ tides
N ⇐ f ilter_order
C ⇐ cuto f f _coe f f icient
trai t1 ⇐ robust_trai t
trai t2 ⇐ normal_trai t
robust_data = trai t1.trans f orm(tides)
normal_data = trai t1.trans f orm(robust_data)

f ilter_data = f ilter(N ,C, normal_data)

3.3 Model architecture

The target of the design model (Fig. 4) is a vector of future
predictions. This mechanism can be achieved by applying a
stack of RNNs, followed by a dense layer. A drop-out layer
shall be attached to the sequence to reduce overfitting cases.

Some variables define each of the functions. The input
x needs to be in three-dimensional size, in which the vector
should be reshaped into (height×weight×1). The n_units
represents the number of hidden units denoting the number
of dimensional output space while the n_samples symbol-
izes the number of data input that becomes the previous data
context. Finally, the predicted output is an array with time
sequence size mapped using a dense layer.
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Fig. 5 Computational graph
representation of RNN basic
form, including training loss
computation

Fig. 6 General block diagram
of A LSTM and B GRU

3.4 Model prediction algorithm

This part (Algorithm 2) defines the basic algorithm to train
and test the model prediction. The windowing LSTM with
look-back variation value becomes the core of the algorithm.
The program’s first segment defines the number of look −
backs, the number of predictions and reshapes input x into
three-dimensional input (samples, timesteps, f eatures),
and y into two-dimensional information. The look − back
parameter is the number of data points in prior timesteps,
which become part of this project analysis. Finally, themodel
predicts the tide, then data_input and predictions vari-
ables are updated.

Algorithm 2 Prediction
data_input ⇐ [number_of _lookback]
index ⇐ 0
model ⇐ load(′model ′)
while true do

index + +
if index < number_of _lookback then

data_input .append(new_data)

else
prediction ⇐ model.predict(data_input)
predictions.append(prediction)

data_input .pop(0).append(new_data)

end if
end while
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Fig. 7 Component of OBU Sipora

Fig. 8 Periodic tide data acquisition

4 Technical background

4.1 Recurrent neural network

In most of the literature, a hidden unit in RNN can be formu-
lated as follows [43]:

h(t) = f (h(t−1), x (t); θ) (1)

Referring to the (1) equation, h is a hidden unit function, x (t)

is the current input, and θ is the parameter of the function f .
This equation is recurrent because h at time t refers to the
samedefinition at time t−1.There are several examples of the
design pattern of RNN, yet to ease the exposition, we focus
on the basic form of recurrent networks, hidden-to-hidden
recurrent connection, which refers to Fig. 5 [44]

From Fig. 5, we can see that the idea of RNN is to pass or
connect previous information to the present task. This pro-
cess is beneficial because it needs sequence information to be
processed, such as a video frame.However, in this “long-term
dependencies” case, Hochreiter [45] and Bengio [46] found
some fundamental reasonswhy it is difficult. Therefore, basic
RNNs fail to learn “long-term dependencies”. Nevertheless,
the variants of RNN architecture called gated RNNs, includ-
ingLSTMandGatedRecurrentUnits (GRUs), are introduced
to tackle this problem. Especially, LSTM, which was intro-
duced by Hochreiter and Schmidhuber [20], has been quite
popular nowadays, as many researchers use it because of the
efficacy in many different applications [44].

LSTM introduces a new element called cell state c, which
comprises the forget gate ( ft ), input gate (ut ), and output gate
(ot ). According to its name, forget gate determines whether
the previous data is diminished. In contrast, the input gate
evaluates the information to be carried over in the sequence,
and the output gate decides the next hidden state value from
the previous data. We can define each of the gates in the
following equation:

ut = σ(Wuht−1 + Iuxt + bu) (2)

ft = σ(W f ht−1 + I f xt + b f ) (3)

ot = σ(Woht−1 + Ioxt + bo) (4)

Each of the formulae at the time step t, W f , Wu , Wo, I f ,
Iu and Io are weight parameters on the corresponding gate,
while variables, b f , bu and bo, are bias alongside the gate.
Thus, the cell candidate (c), current hidden state (ht ), and
current cell state (ct ) can be formulated as below:

c̃t = tanh(Wcht−1 + Icxt + bc) (5)

ct = ft � ct−1 + ut � c̃t (6)

ht = ot � tanh(ct ). (7)

yt = σ(Wyht + by) (8)

where variables, Wc and Ic, represent weight parameters on
the cell and variable bc is bias alongside the cell.

In comparison with LSTM (shown in Fig. 6), GRU
replaces the three’s LSTM gates into two gates: the update zt
and reset rt gates. The update gate helps themodel control the
new state’s number from a copy of the previous state, while
the reset gate intuitively controls howmuch past information
to forget. The GRU unit is defined as the set of the equation
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Fig. 9 Tsunami caused by an earthquake with the variability of magnitude

Fig. 10 Block diagram process of tsunami injection

Fig. 11 Training data set
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Fig. 12 Robust scaler input
transformation

Fig. 13 Min–max scaler input
transformation

below:

zt = σ(Wzxt +Uzht−1 + bz) (9)

rt = σ(Wr xt +Urht−1 + br ) (10)

h̃t = tanh(Whxt + (rt � ht−1)Uh + bh) (11)

ht = (1 − zt ) � ht−1 + zt � h̃ (12)

yt = σ(Wyht + by) (13)

From empirical insight [47], GRUs overcome LSTM net-
work performance for low complexity sequences and vice
versa. This performance [47] corresponds to the size of the
learning rate for each complexity rate (low and high) of seed
strings. LSTM networks perform better for similar forecast-
ing on higher complexity of seed strings.
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Fig. 14 Low-pass filter
Butterworth output

Fig. 15 Data set composition

Fig. 16 Model train versus
validation loss (from LSTM
training process)
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Fig. 17 Data test

Fig. 18 Sequence prediction
test on tsunami data injected
induced by earthquake on mag.
7.8

4.2 Data acquisition

INA CBT Sipora consists of two sensors on Ocean Bottom
Unit (OBU) and an optical cable under the sea (Fig. 7). One
sensor is the Bottom Pressure Recorder (BPR), a pressure
transducer measuring tide periodically. Three parameters are
captured per second, DateTime, water column height, and
temperature (Fig. 8).

4.3 Testing data

The testing data preparation consists of modelling shallow
water tsunamis using the Tunami-F1 model [48] and inject-
ing the tsunami model into actual capture data. The work of
InfrastructureTechnologyCenters Ports andCoastalDynam-
ics BPPT Indonesia helped the tides prediction model for
tsunami identification by providing shallow water tsunami
data tests. They simulate dummy tsunamis generated by an
earthquake ranging from 6.4 to 8.2 magnitude (Fig. 9).
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Fig. 19 Error distribution of
tides prediction of Vanilla RNN
model

After the tsunami-generated by earthquake variabilities
are produced, the modeled tsunami is injected into the test
data. Some steps are to follow for injecting tsunami data
into data tests and real-time captured tide data. The process
starts by interpolating the tsunami-generated data by match-
ing the model time sampling. The resulting wave will have
zero paddings conforming to the array dimension. Finally, the
modeled tsunami superposes test data, which yields injected
tsunami waves, as presented in Fig. 10.

4.4 Tsunami identification

Because of the low amount of the actual shallow water
tsunami data set (only one was generated), the model can-
not be expected to solve the classification problem. Instead,
the generated data prediction will use a smoothed z-score to
determine the tides as a tsunami or not. Z-score is a standard
methodology used in forecasting problems to identify the
trend from the prediction. This score indicates how many
standard deviations an observation on each i is above or
below the mean:

Zi = (xi − x̄)/σ (14)

5 Result and analysis

All test procedures are performed through Python 3.8 with
Keras, Tensorflow, numpy, pandas, scikit-learn, and mat-
plotlib third-party library. On top of that, these program
specifications are supported by GPU Nvidia A6000 as part
of the computer platform in Artificial Intelligence Labora-

tory Kanazawa. After obtaining the results, we performed
two analyses to evaluate our designed performances. Those
are look−back prediction and z-score tsunami identification
analysis.

5.1 Preprocessing procedural testing

In Fig. 11, the training data set comprises input data, a
periodic tidal wave captured continuously every second for
5days. Later, these data go into two scalers, robust , and
min–max scaler. A robust scaler transforms the data input by
removing the median and scaling the data according to the
interquartile range (IQR) (Fig. 12). The IQR ranges between
the 1stquartile and 3rdquartile. This process makes the
distribution of data robust to outliers. A min−max scaler is
then applied to adjust the value range from 0 to 1, which is
required for LSTM input data.

After that, the Butterworth filter refines the normalized
waves to reduce data noise form (shown in Fig. 13). From
Fig. 14, data noise is decreased heavily into a smoother
appearance.

5.2 Model and validation data set

We sample six daily Sipora tides log data from Sipora OBU
and divide them into a 5:1 ratio of a data set for training and
testing. This testing data become the basis of dummy data for
the superposition of tsunami-generated earthquake variation.

There are 401,696 data points for the training set and val-
idation. These data are split into 0.8 training and 0.2 test data
(Fig. 15). Arbitrarily, we choose a configuration from a par-
ticular model to represent the “Training loss VS Validation
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Fig. 20 Density distribution
normalized graph of MSE
distribution on L1000-P250

Fig. 21 Error distribution of
tides prediction of LSTMmodel

loss” output. The training process uses Mean Squared Error
(MSE) as a loss function. It converges with a training loss of
1.11 × 10−4 and a validation loss of 2.23 × 10−4. The dif-
ference in these numbers indicates that the model is neither
underfitting nor overfitting because of its small margin in the
region 10−4 (refer to Fig. 16).

This model training is finished with 100 epochs and batch
size 256-this process executes 100 units of the RNN stacked

model. Adam optimizer is also applied with the learning rate
1e−3 and decay rate 1e−5 to improve convergence speed.

5.3 Testing data preparation

After we collect the necessarymodel data, the trainingmodel
is saved into .h5 format. Then, the model is tested with an
external data set referred to as the B section. Before the
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Fig. 22 Error distribution of
tides prediction of GRU model

Fig. 23 Vanilla RNN VS LSTM
VS GRU training time for one
epoch distribution

prediction, the data test embedded tsunami synthetic are pre-
pared by using the explained algorithm in the methodology
part, section 5 (Fig. 17).

When all necessary data tests are gathered, the upcoming
process will be a prediction. From this prediction, we can
compute the error rate for performance evaluation.Moreover,
prediction and data input are also plotted to know how well
the RNN model filters out the ambient noise (Fig. 18).

5.4 Look-back variation analysis

A set of look-back and prediction parameter configurations is
tested.Moreover, to choose the look-backparameter,weneed
to empirically assess the computer’s capability to execute
multiple arrays related to GPU resources. In this experiment,
the composition number of look-back and prediction points
that can be executed maximally is 1000 nodes of look-back
and 1000 predictions. Higher configuration points can raise
Out of Memory (OOM) errors caused by insufficient mem-
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Table 1 Median of MSE
distribution for each of model
configuration

Model L50-P50 L100-P50 L100-P100 L250-P50 L250-P100

Vanilla RNN 1.02 × 10−2 4.69 × 10−3 4.15 × 10−4 2.54 × 10−2 8.28 × 10−4

LSTM 6.91 × 10−3 2.42 × 10−3 2.33 × 10−4 2.35 × 10−3 1.6 × 10−4

GRU 6.35 × 10−3 2.54 × 10−3 2.82 × 10−4 2.25 × 10−3 1.65 × 10−4

L250-P250 L500-P50 L500-P100 L500-P250 L500-P500

Vanilla RNN 1.88 × 10−4 3.1 × 10−3 1.95 × 10−4 1.78 × 10−3 2.28 × 10−4

LSTM 8.29 × 10−5 2.35 × 10−3 1.62 × 10−4 7.96 × 10−5 1.13 × 10−4

GRU 8.36 × 10−5 2.25 × 10−3 1.59 × 10−4 7.92 × 10−5 1.2 × 10−4

L1000-P50 L1000-P100 L1000-P250 L10000-P500 L1000-P1000

Vanilla RNN NaN 2.03 × 10−3 1.14 × 10−4 NaN NaN

LSTM 2.36 × 10−3 1.58 × 10−4 8.14 × 10−5 1.18 × 10−4 3.01 × 10−4

GRU 2.26 × 10−3 1.57 × 10−4 7.8 × 10−5 1.17 × 10−4 3.09 × 10−4

Fig. 24 GRU VS LSTM time
prediction

ory. Initially, vanilla RNN networks are implemented to see
how classic RNN work in the tide prediction application. In
this experiment, as the input data will be continuous tides
with temporal dependent, we apply a stateful setting on the
RNN networks. Consequently, the network can learn the pre-
vious batches. Mini batches are also done for the input to
ensure all the sequences are processed.

Vanilla RNN shown in Fig. 19 can achieve a median from
MSE score distribution of 1.14 × 10−4 on Look-back 1000
and Prediction 250 configuration. The median of the MSE
score distribution is used as a pointer because the mean of
the MSE score is skewed as a result of outliers, as shown
in Fig. 19. It also can be seen that each ratio L250-P250,
L500-P100, and L500-P500 has the same range of 10−4 as
the most minimum median in the MSE distribution. On the
other hand, the other’s ratio shows MSE scores in the range
of 10−2 and 10−3. Besides its performance, from Fig. 19,

L1000-P50, L1000-P500, and L1000-P1000 configurations
are missing because “NaN” errors occur during prediction.
We consider this instability to be caused by vanilla RNN’s
insufficient representability for capturing the complexity of
the tides.

Surprisingly, according to Fig. 20, LSTM has a similar
MSE distribution on our tides prediction with vanilla RNN
on the ratio of L1000-P250. However, compared to vanilla
RNN, the LSTM model tremendously improved the median
MSE score (Fig. 21) by reaching 7.96 × 10−5 on a ratio
of L500-P250. On the same ratio, L1000-P250, it also shows
improvement to 8.14×10−5.Other ratios denote better scores
than the vanilla RNN model.

Finally, the GRUmodel shows the best performance com-
pared to the others. It can pull off themedian in the error score
distribution to 7.8 × 10−5 on the L1000-P250 configuration
(Fig. 22), which is also smaller than the other two mod-
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Fig. 25 Z-score tsunami spike identification on the data test with magnitude 7.8

Table 2 Tsunami tides
identification for each model

Magnitude Ground Truth Det Vanilla RNN Det LSTM Det GRU Det

7.2 2 2 2 2

7.4 5 3 5 5

7.6 6 6 6 6

7.8 7 7 7 7

8 6 6 6 6

8.2 6 6 6 6

els (vanilla RNN and LSTM). Overall performance, GRU
exhibits a higher but close error score to the LSTMmodel (9
configurations higher than the LSTMmodel (Table 1)). This
improvement in error score indicates that the tides predic-
tion problem has a low complexity sequence which, in this
case, GRU has better performance and efficiency (Table 1
and Fig. 23).

This efficiency refers to the training and prediction time.
As for the context of tides prediction in the tsunami applica-
tion (Fig. 22), our model should predict as fast as possible to
ensure enough time for the information to be conveyed on the
shore. Nonetheless, the training time for one epoch depends
on the layer type, number of hidden units, network depth,
input data dimension, and model hyperparameter. From our
experiments, GRU shows remarkable efficiency in training
and predicting time. All GRU model configuration accom-
plishes the training process for under 90 s per epoch (Fig. 23).
This result is also directly proportional to the prediction
time of one sequence output which set off all the configu-
rations under 0.1 s (Fig. 24). Second best in efficiency, The
LSTM model finishes the training process for one epoch up

to 302s and prediction of 0.352s (Fig. 24). This performance
evaluation is relevant to the [47] for less complex sequence
problem. The last model, vanilla RNN, is the palest in time
performance compared to others. It takes up to 1490s to fin-
ish one epoch training and 1.14 s to predict the sequence of
tides. Nevertheless, this performance showcases validation
on RNN model comparison, which is relevant to the previ-
ous research [19, 22, 44, 47].

5.5 Z-score analysis

Z-score detects significant variations of the spikes from the
expected tides. This methodology can work using the means
and standard deviation of normal tides. Then, the threshold
value is applied to the standard deviation as a margin to the
expected tidal wave distribution.

This methodology is tested on the divergence of tsunami
synthetic. In this experiment, we empirically set the threshold
of 2.7 of standard deviation as it shows the test’s false error.
The fluctuation can be identified by “1” as a rising tide and
“−1” as a downward spike (Fig. 25).
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Fig. 26 Comparison of z-score processed
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Fig. 27 Tides embedded synthetic tsunami induced by earthquake with a magnitude of 6.4

Our experiment also evaluates the z-score on each model
prediction. Table 2 shows the performance of the tides pre-
dictionmodel processed in z-score to identify a surge of tides
or tsunami caused by an earthquake of various magnitude.
The shallow water tsunami of LSTM and GRU prediction
can be completely identified in corresponding to the num-
ber of peaks detected in ground truth prediction. Still, vanilla
RNN prediction misses two tsunami tides on magnitude 7.4
as shown in Fig. 26.

Furthermore, the z-score methodology cannot identify
tsunami spikes in themagnitude 6.4–7 range. This outcome is
supported by the fact that the waves embedded in the tsunami
on that range are blended exceptionally well; the waveform
is hardly noticed. The z-score can determine the number
of fluctuations caused by the synthetic tsunami in the other
magnitude span. The higher the magnitude cause, the easier
z-score can recognize the sudden change of tides. Moreover,
it can detect the tsunami’s initial surge on the majority of
magnitude except for magnitude 7.2 and 7.4 (only for vanilla
RNN), which is vital to knowwhen the tsunami starts (shown
in Fig. 27).

6 Conclusion and future works

Applying a time series model to tide prediction problems
on shallow water requires multiple mechanisms to identify
tsunami spikes. The procedures start from the preliminary
operation on the input waves. Two-step features scaling,
robust, and min–max scaler are applied to capture the wave’s

distribution and adjust to theRNNvariant input array require-
ment. Then, the Butterworth filter with 9 order and 0.01Hz
cutoff frequency work in the sequence to filter out the ambi-
ent noise. This process continues to the time series model
prediction of RNN and its variation. Finally, the z-score will
determine whether these waves are possibly tsunamis.

We find that tides prediction is a low-complexity sequence
problem corresponding to the performance evaluation of
GRU, which is better than the LSTM model. GRU score
lowestMSEmedian of 7.8×10−5 on theL1000-P250 config-
uration. It also exhibits the best efficiency by accomplishing
the training process for under 90 s per epoch and the pre-
diction process for under 0.1 s for all test configurations.
Besides, in z-analysis,GRUandLSTMprediction showcom-
plete identification of tides. This result indicates that theGRU
model suits the tides prediction problem.

Incorporating a z-score in the surge of tides identification
is due to the limitation of actual tsunami data in shallow
water areas on newly deployed CBT Sipora, in which the
model needs sufficient data for classification problems. In
the future, incorporating an accelerometer in time series data
input and prediction will improve the tides prediction model
and cover the lack of capability in determining tsunami spikes
caused by lower earthquake magnitude.

In addition, it is also worth mentioning recent develop-
ments of a deep transformermodel [49–51],which has shown
state-of-the-art performance in time series forecasting prob-
lems. This algorithm introduces the self-attention method,
which can overcome the “short-term memory” problem over
infinite long sequences [50]. This approach should also be
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included in the next study to find a better tides prediction
model to improve efficiency and accuracy.
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