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Abstract
This paper evaluates the impact of battery charging and discharging times on the availability of mechanical respirators in the
Intensive Care Unit (ICU). The availability of these life-saving devices is crucial for ensuring optimal patient care in critical
situations. This study aims to assess how the duration of battery charging and discharging cycles affects the availability of
mechanical respirators and explore potential strategies to optimize their maintainability. We analyze the system’s behavior
in eight scenarios that consider changes to optimize repair times, battery charge and discharge times, and power system
redundancy. The results showed 98% improvements in availability and reduced system downtime. The outcomes of this
research contribute to understanding the critical factors impacting the availability of mechanical respirators in the ICU. By
addressing the issues related to battery charging and discharging times and maintaining these devices, healthcare facilities
can enhance the availability and reliability of respiratory support systems. Ultimately, this study aims to improve patient
outcomes and promote efficient resource utilization in the ICU setting.

Keywords Availability · Intensive care unit · Modeling · Performability · Respirator lung · Service quality

1 Introduction

Patients’ admission to Intensive Care Units (ICUs) can be
a challenging and stressful experience for patients and their
families. Several concerns are associated with ICU hospi-
talizations, including physical and emotional stress, risks of
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medical complications, and communication challenges, for
instance, [1]. Essential variables concerning reducingmortal-
ity in ICUs are the number of beds, availability of respirators,
and the qualification of health professionals [2].

Mechanical ventilation is an essential component for treat-
ing critically ill patients in ICUs. It involves using a machine
to support the patient’s breathing when they cannot continue
independently due to respiratory failure or other conditions.
MV also helps to maintain oxygenation and carbon dioxide
levels within safe ranges and avoid invasive procedures, such
as tracheostomies. In addition, MV is critical during surgery
and other procedures that require anesthesia to maintain the
patient’s airway and ensure adequate oxygenation. Finally,
MV also allows healthcare providers to closely monitor the
patient’s respiratory status to support early warning of poten-
tial complications, such as oxygen desaturation or airway
obstruction [3].

The respirator has proven tobe theprimary tool for treating
critically ill patients, especially those with respiratory fail-
ure [4]. For example, it has played a crucial role in treating
patients with COVID-19 who developed severe respiratory
symptoms, providing respiratory support by enabling proper
ventilation, precisemonitoring, andmanaging treatment pro-
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tocols [5]. However, the lack of regular maintenance services
may expose the patient to more significant risks [6].

Batteries are essential for the functioning of Respirators’
Lung. RLs are usually used in critical care situations, such as
power outages or other disruptions to the electrical supply.
In such cases, batteries play a crucial role in ensuring that the
mechanical respirator continues functioning and delivering
oxygen to the patient. They also allow the transportation of
patients between hospitals or within a hospital [7].

Redundant batteries are additional sets of backup batteries
for a mechanical respirator. These batteries provide an extra
layer of protection against power outages or other disruptions
to the electrical supply. Redundant batteries are essential in
critical care situations where the patient’s life depends on the
continuous operation of the mechanical respirator. Without
redundant batteries, any disruption in the power supply could
have life-threatening consequences for the patient [8].

The authors of [9] studied the batteries in respirators used
in the operating room to keep the patient breathing dur-
ing general anesthesia. They discuss the importance of the
availability of batteries in respirators and anesthesia devices,
emphasizing the need for the batteries to be reliable, efficient,
and capable of providing sufficient power to these essential
medical devices often used in emergencies. In addition, the
authors argue that monitoring battery levels and replacing
them when necessary is crucial to ensure that the devices
remain operational. They also emphasize the importance
of the availability and reliability of batteries in respirators
and anesthesia devices. They also discuss if healthcare pro-
fessionals should be trained to monitor battery levels and
troubleshoot battery-related problems.

In this context, we highlight the importance of analyzing
the performance and availability of mechanical ventilators in
intensive care units. The proper functioning of these devices
is critical for saving the lives of patients with respiratory
failure. They are also essential for reducing further damage
to the health of critically ill patients, who require uninter-
rupted mechanical ventilation to maintain life. In addition,
we highlight the importance of the scenarios described in this
work, enabling tests about better system functioning with-
out incurring greater economic costs for hospital services.
In this work, we investigate the availability of a mechanical
respirator by considering the power utility, a power gener-
ator subsystem, and a two-module battery subsystem. The
proposed model is employed to evaluate the occurrence of
failures and repair activities on the power system. The model
encompasses the impact analysis of the battery charging and
discharging times on the mechanical respirator system avail-
ability.

Section 2 summarizes the works most related to our pro-
posal. Section 3 presents the theoretical basis to support
the understanding of the solution presented in this article.
Section 4 presents the methodology used in this article.

Section 5 presents the proposed model, with each system
component represented as a Stochastic Petri Nets represen-
tation. Section 6 presents the results obtained, with a detailed
description of each scenario. Section 7 presents the summary
discussion of scenarios. Finally, Sect. 8 presents conclusions
and highlights future research directions.

2 Related works

The utilization of hierarchicalmodeling to enhance availabil-
ity has been extensively investigated over the years. In this
section,we consolidate a selection of relevantworks focusing
onmodeling and performance evaluation in hospital technol-
ogy.

In a study conducted by Blakeman et al. [8], the authors
evaluated the performance of batteries in four respirators
equipped with volume and pressure-controlled ventilation,
along with end-expiratory pressure (PEEP) values ranging
from 0 to 20 cm H2O. The findings indicate that battery
duration did not exhibit significant changes among respira-
tors of the same model, even with variations in PEEP levels.
The observed battery durations ranged from 5 to 69 min,
with a mean period ± standard deviation of 80.4 ± 49.3.
The authors concluded that utilizing a compressor dimin-
ishes battery duration and that no correlation was found
between battery age and operating time. They emphasize the
importance of the medical community being aware of these
differences in scenarios involving power failures.

Araujo proposed a model with reliability analysis for
multi-parameter monitoring systems in Intensive Care Units
(ICU), measuring parameters, such as heart rate, respiratory
rate, and temperature [10]. The study initially performed a
reliability analysis, developing a parametric and modular
model using the CHESS State-Based Analysis (CHESS-
SBA) tool.

In another investigation by Sandelic et al. [11], the authors
compared the reliability of a DC-coupled and an AC-coupled
PVbattery system.Through a case studyof a 6 kWPVsystem
integrated with a 3 kW/7.5 kWh battery system, they demon-
strated that the DC-coupled configuration achieved superior
reliability. The analysis presented provides a reference for
evaluating the lifetime and reliability of power conversion
units in such systems, emphasizing the necessity of conduct-
ing reliability assessments on these critical components to
ensure the high efficiency and longevity of PV battery sys-
tems.

Nguyen et al. [12] conducted a study involving reliability
and availability analysis for the infrastructure of the Internet
of Medical Things (IoMT) in a healthcare system, utilizing
hierarchical models such as Fault Tree (FT) and Continuous
Time Markov Chain (CTMC). The study incorporated fail-
ure modes for systems, including cybersecurity attacks on
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software subsystems. This research contributes to enhancing
the design and implementation of real-world IoMT infras-
tructures, comprising cloud, fog, and edge computing, and
assists in securing autonomous operations in the healthcare
domain.

In our study, we employ reliability and dependability anal-
ysis using anSPN(Stochastic PetriNet)model to examine the
behavior of ICU respirators, their power supply system, and
the operational dynamics of battery modules. Our objective
is to identify potential bottlenecks that may impede avail-
ability and, based on this analysis, propose improvements to
enhance overall availability.

3 Background

This section reviews some concepts from mathematics and
statistics regarding availability, performance, and models
[13], [14]. Moreover, we conceptualize aspects of an inten-
sive care unit.

3.1 Availability and performability

Availability is the probability that a system is ready to work
satisfactorily. This metric is used as an evaluation parameter
in the operational environment and has been studied over the
years. Critical systems do not tolerate extended periods of
inactivity, requiring a higher availability [15, 16].

System availability can be represented by the ratio
between Mean Time to Failure MTTF and Mean Time to
Repair MTTR of the system [14]. The corresponding nota-
tion is expressed in Eq. (1):

A = MTT F

MTT F + MTT R
(1)

We can calculate MTTF using the reliability R(t) as a func-
tion of time. We can also assess MTTR based on the values
ofMTTF, availability, and UA [17]. The corresponding nota-
tions are expressed in Eqs. (2) and (3):

MTT F =
∫ ∞

0
R(t)dt (2)

MTT R = MTT F × U A

A
(3)

Performability is used to evaluate more complete models
composed of reliability and performance measures. The per-
formabilitymeasure is best suited for systems that may suffer
a failure due to the passage of time or exhaustion [18].
According to [19], performability analysis aims to capture
the dynamics between failure behavior and repair and per-
formance provided by the system.

3.1.1 Redundancy

Adopting redundant mechanisms is a strategy used to
improve the reliability and availability of a system by repli-
cating critical components or data. Such an approach involves
creating backups or duplicates of essential elements, so that
if one fails, the system can continue to operate without inter-
ruption [20].

Redundancy can be implemented at different system lev-
els, including hardware, software, and data, involving the
duplication of physical components, such as processors,
memory, or storage devices. For example, the replication of
software components, such as servers or applications, across
multiple machines, creating copies of critical data, such as
databases or files, and storing them in different locations to
prevent loss or corruption [21].

One of the main benefits of redundancy is increased reli-
ability and availability; by creating backups or duplicates
of critical components, the system can continue to operate
even if one or more components fail. This ability is essential
in critical systems such as aviation, healthcare, or financial
services, where downtime or outages can have serious con-
sequences [22].

3.1.2 Stochastic petri nets

Stochastic Petri Nets (SPN) is a term that denotes a family of
stochastic models that is part of a more prominent family of
behavioral models named Petri nets. The first stochastic Petri
net extensions were proposed independently by Symons,
Natkin, and Molloy [23–25]. These models formed what
were then named Stochastic Petri Nets. Subsequently, many
other stochastic extensions were introduced. First, Marsan
et al. extended the basic stochastic Petri nets by consider-
ing stochastic timed transitions and immediate transitions
[26]. This model was named Generalized Stochastic Petri
Nets (GSPN) [27]. Later on, Marsan and Chiola proposed
an extension that also supported deterministic timed transi-
tions [28], which was named Deterministic Stochastic Petri
Nets (DSPN) [29]. Many other extensions followed, includ-
ing eDSPN [30] and SRN [31].

3.1.3 Sensitivity analysis

When conducting sensitivity analysis, there are multiple
techniques available, such as sensitivity measures one at
a time, the relative deviation method, the relative devia-
tion rate, the partial rank correlation coefficient, differential
sensitivity analysis, and the Sensitivity Index [32]. For our
research, we will be utilizing the Sensitivity Index.

The Sensitivity Index (Sy(A)) evaluates the effect of alter-
ations in the input parameter (y) on a particular availability.
It is expressed as a percentage difference. To calculate the
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sensitivity index for the metric y, we use Eq. 4. maxy and
miny represent the maximum and minimum output values
achieved by adjusting the parameter y up to the maximum
value maxy :

Sy(A) = maxy − miny
maxy

. (4)

Whendetermining Sy(A), keeping the othermodel param-
eters constant is essential. This step is crucial for calculating
all parameters and constructing the classification of sensi-
tivity analysis. This classification enhances the accuracy of
predicting increased availability.

3.1.4 Mechanical ventilation system

The intensive care unit is a hospital with specialized care for
critically ill individuals who need life support [33]. The ICU
is an environment with technical, human, and technological
needs to provide adequate care. The need for an intensive care
unit arose in the 50s with the polio outbreak, where patients
needed mechanical help to breathe.

Mechanical ventilation is the most common intervention
in the ICU, providing respiratory support to thosewho cannot
manage it independently. According to [34], it has become
clear that mechanical ventilation can attenuate lung damage
and increase patient survival.

The operational process in an ICU using a mechani-
cal ventilator involves the following steps: Assessment and
preparation of the patient, where necessary preparations are
made, such as securing the airway, checking the mechanical
ventilator, and installing the necessary equipment. Start of
mechanical ventilation, where the respirator lung is set up to
deliver oxygen to the patient’s lungs and is programmedwith
the appropriate settings such as tidal volume, respiratory rate,
and (PEEP) to ensure proper ventilation [35].

The mechanical ventilation system in an intensive care
unit is a sophisticated and crucial life support system that
assists patientswho cannot breathe adequately independently
or have respiratory failure. It comprises interconnected com-
ponents that work harmoniously to deliver controlled and
assisted ventilation tailored to each patient’s requirements
[36]. When weaning and extubation, after the patient’s con-
dition improves, the respirator lung settings are gradually
reduced, and the patient is weaned from the Respirator. If
the patient can breathe independently and maintain ade-
quate oxygenation, the endotracheal tube is removed, and
the patient is extubated [37].

Let us explore each element of the respirator lung in more
detail:

The respirator is the central device in the mechanical
ventilation system. It delivers a precise mixture of oxygen
and air at controlled pressures and volumes to maintain

appropriate oxygenation and ventilation. Modern respirators
have advanced features, such as multiple ventilation modes
(e.g., volume control, pressure control, and pressure sup-
port), adjustable inspiratory and expiratory times, and breath
synchronization capabilities [38]. These functionalities allow
healthcare providers to customize ventilation settings to suit
the patient’s condition and optimize respiratory support.

The breathing circuit is the component that connects the
ventilator and the patient’s airway. It consists of various com-
ponents, including tubing, connectors, and filters. The circuit
transports the pressurized gases from the ventilator to the
patient’s lungs and allows for the removal of exhaled gases.
It may incorporate additional features like heat and moisture
exchangers or active humidifiers to provide optimal humid-
ification of the inspired gases, ensuring patient comfort and
maintaining the health of the respiratory tract [39].

Endotracheal tube or Tracheostomy tube establishes a
secure airway for ICU patients requiring mechanical ven-
tilation. Patients often have an endotracheal tube (inserted
through the mouth) or a tracheostomy tube (inserted through
a surgically created opening in the neck). These tubes deliver
ventilator gases directly into the patient’s lungs, bypassing
upper airway obstructions or other respiratory limitations
[40].

The humidification system adds moisture to the deliv-
ered gases. Proper humidification is crucial to prevent drying
and damage to the respiratory tract, particularly during
prolonged mechanical ventilation. Humidifiers provide con-
trolled humidification to maintain optimal lung function and
reduce complications associated with dry airway passages
[41].

Monitoring system assesses the effectiveness of ventila-
tion. Oxygen saturation monitors (pulse oximeters) continu-
ously measure the patient’s blood oxygen levels. In contrast,
end-tidal CO2 monitors provide real-time monitoring of
exhaled carbon dioxide levels, allowing for accurate assess-
ment of ventilation adequacy. Pressure and volume sensors
integrated into the breathing circuit monitor the applied
pressures and delivered tidal volumes, helping healthcare
providers optimize ventilator settings and detect potential
issues promptly [42].

Alarms and safety features alert healthcare providers in
case of abnormalities or emergencies. High or low-pressure
alarms notify caregivers of significant changes in the patient’s
lung mechanics, while disconnection alarms alert them to
any unintentional disconnections between the patient and the
ventilator. Additionally, apnea alarms can detect a lack of
spontaneous respiratory efforts, triggering immediate inter-
vention [43].

The control panel and user interface allow healthcare
providers to adjust ventilation parameters, monitor patient
parameters, and review trends. These interfaces are designed
to be intuitive and user-friendly, providing visual displays
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Fig. 1 Baseline Infrastructure

of vital information such as respiratory rate, tidal volume,
and oxygen saturation. Through the control panel, health-
care providers can make precise adjustments to ventilation
settings, ensuring the delivery of optimal respiratory support
[44].

The respirator lung system discussed in this paper pro-
vides mechanical ventilation for patients in intensive care
units. The system consists of several components that facili-
tate breathing for critically ill patients, as shown in Fig. 1.We
present a detailed system structure overview, including the
power supply system, battery modules, and breathing cir-
cuit. In addition, we provide proposals for increasing the
system’s availability, which could improve patient outcomes
and reduce healthcare costs.

The power supply systemof the lung respirator is an essen-
tial component of the system. The system consists of an
electrical power supply, a power generator, and a switch, all
maintained on hot standby. The battery modules are a safety
feature when the power is interrupted, and the patient needs
to continue treatment. Using hot standby ensures the system
is always ready to provide ventilation during a power failure
or other emergencies.

4 Methodology

This section presents the methodology used to evaluate the
given model based on previous work by [45, 46]. The pro-
posed methodology presented in Fig. 2 has four phases
divided into Understanding the system, where a detailed
analysis of the individual components that constitute the
mechanical respirator will be carried out; Acquiring the
parameters is obtaining the specific values of the parts of the
ventilator system; model-building, with the implementation
of parameters aimed at developing an availability model that

comprehensively represents the mechanical ventilator sys-
tem and finally providing recommendation, which presents
the results of the analyzed evaluations to identify potential
improvements, and measures such as modifications design,
operational procedures and redundancy implementations and
in each of the mentioned phases will be detailed in the sub-
sequent subchapters.

4.1 Understanding the system

In designing the mechanical ventilator system, conducting
an in-depth analysis of the system itself is crucial. For this,
it is necessary to understand each component that makes up
the mechanical ventilator. This means thoroughly exploring
the characteristics, functionalities, and inbuilt properties of
each element that comprises the system.

Furthermore, it is necessary to examine how these differ-
ent components interrelate. Understanding the connections
and interactions between the parts is critical to forming a
complete picture of the system’s dynamics, including its bat-
teries and power supply systems.

As this phase is built into the assessment methodology, it
is critical to document each aspect addressed to establish a
foundation for the subsequent assessment. The detailed anal-
ysis of the components, interrelationships, and parameters
will be crucial for the overall understanding of the mechan-
ical ventilator system and, thus, for the accurate and careful
evaluation of its performance and effectiveness, considering
its energy supply system.

4.2 Acquiring the parameters

Obtaining the parameters constitutes a critical step in the
evaluationmethodology of themechanical respirator system.
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Fig. 2 Methodology flowchart

In this phase, the focus turns to getting the specific val-
ues associated with each system component. This search for
accurate values can encompass a variety of methods, includ-
ing hands-on experimentation, empirical data collection, or
even the search for specialized knowledge in the field. The

accuracy of these parameters is important because they affect
the overall behavior and performance of the system.

These parameters help us ensure ourmodel accurately rep-
resents the actual system. Each captured value contributes to
building amodel and ensures that subsequent assessments are
reliable and grounded. By incorporating these values directly
from the reality of the mechanical ventilator system, we pro-
vide that the evaluation methodology is functional and that
the results faithfully reflect the practical operation of the sys-
tem.

During the get parameters process, the approach taken to
capture the specific values of the components must be care-
fully selected. Direct experimentation, through practical tests
and measurements, can be an effective approach to obtaining
actual data from the system in operation. Furthermore, col-
lecting data from real operating environments can provide
valuable insights into system behavior in real situations. On
the other hand, the specialized knowledge of professionals in
the field also plays a crucial role in obtaining reliable infor-
mation about the parameters.Whichevermethod you choose,
getting these values accurately is essential to ensure that the
resulting model is a faithful representation of the system and
that subsequent evaluations are reliable to guide informed
decisions.

4.3 Model-building

After the obtaining the parameters step, the model construc-
tion phase proceeds. An availability model is developed
based on previously collected information at this stage.
This model plays a crucial role in representing the system
comprehensively, capturing its essential characteristics and
behaviors.

The model-building process requires careful selection of
an appropriate modeling technique, considering the nature
and complexity of the mechanical ventilator system. In addi-
tion, it is essential to clearly define the system’s boundaries,
delimitingwhich elementswill be included andwhichwill be
excluded in the model. The specification between the com-
ponents is another critical aspect, as this guarantees that the
model faithfully represents the relationships between the dif-
ferent elements of the system.

The model evaluation is conducted considering a variety
of scenarios of interest. These scenarios can cover operating
conditions differing, external influences, and potential sys-
tem failures. Simulating these scenarios in the model allows
you to assess systemperformance, reliability, and availability
under various circumstances. The results of this assessment
allow identifying possible areas for improvement, optimiz-
ing configurations, and supporting decisions on the viability
and improvement of the model for practical implementation.

In summary, the Model Building phase is essential to
translate the collected data into an objective representation

123



Journal of Reliable Intelligent Environments (2024) 10:137–150 143

of the mechanical ventilator system. This permits a thorough
examination of the system’s behavior in various circum-
stances, enabling a coherent course of action based on actual
and pertinent scenarios.

4.4 Providing recommendations

The ending phase of the process is to Provide Recommen-
dations to improve system availability. In this context, a
careful analysis of the evaluation results is carried out, high-
lighting gaps or areas that could be improved. From this,
appropriate measures are proposed to address these points,
aiming to optimize the availability of the mechanical venti-
lator system. These recommendations can cover a range of
actions, depending on the deficiencies identified. In some
cases, changes in the system design can be suggested, aim-
ing to improve specific aspects that impact its availability.
In addition, modifications to operating procedures can be
proposed to ensure the system’s most efficient and stable
operation in varied scenarios.

Another approach is to implement additional redundancy
measures. By introducing redundant components or backup
systems,mitigating the impact of possible failures is possible,
improving overall system availability. These other security
measures ensure the system can operate reliably, even in
unexpected events.

The recommendations aim to optimize system availabil-
ity, ensuring it is aligned with established performance and
reliability objectives. By implementing these measures, we
seek to ensure that the mechanical ventilator system is pre-
pared to meet operational demands effectively, minimizing
potential risks and maximizing its effectiveness.

5 Performability model

This section presents a performability (availability and per-
formance) model. This model is the SPN depicted in Fig. 3.
The architecture comprises the Power Source system, corre-
sponding to one utility, generator, and switch, representing
a standard power architecture for hospitals. The Respirator
Lung system shall have one respirator, two internal battery
modules, and one breathing circuit. The system is available
when the respirator lung represented by NR and the backup
respirator lung characterized by M is greater than or equal to
N. Moreover, the breathing circuit must be greater than zero.
The following notations correspond to the metrics for avail-
ability, downtime, and number of 9’s expressed in Eqs. (5),
(6), and (7).

A = P((RLU + RLBU ) ≥ N ) ∧ (BCU � 0)) (5)
DT yh = (1 − P(((RLU + RLBU ) ≥ N ) ∧ (BCU � 0))) × T(6)

N9s = −LOG(1 − P(((RLU + RLBU ) ≥ N ) ∧ (BCU � 0)))

(7)

Expression 5 refers to system availability. The expression
shows that the system will be available when the probabil-
ity of the default respirator RLU plus the backup respirator
RLBU is greater than or equal to N, AND the breathing cir-
cuit exceeds zero.

Expression 6 refers to the time the system spends inactive.
We use (1-)probability that the standard respirator RLU plus
the backup respirator RLBU is greater than or equal to N,
the breathing circuit is greater than zero, times the time (h)
as Table 3.

Expression 7 refers to the number of “9” contained in the
system availability calculation. This expression starts with
the negative logarithm, 1 - (the probability of system avail-
ability), included in Expression 5.

The model corresponding to the Power Source is com-
posed of: UT (Utility), represented by NUT, which can be up
(UTU) or down (UTD);G (Generator), which can be up (GU)
or down; or offline (GO); and the SW (Switch) which can be
Up (SWU) or down (SWD). Only the guard corresponding
to the UTU has service type ISS (infinite service semantics).
The other guards of the power source system have service
type SSS (single service semantics).

The model corresponding to the Respirator Lung is com-
posed of the following components:

• Two Battery (BT) modules represented by NB, which
can be Discharged (BAUC); In charging (BALI) and we
assume that from this stage, it can present defects and go
to the Down state (BALID); Charged (BAC) and Down
(BACD); and available for use (BAU) or Down (BAD);

• The RL (Respirator Lung), represented by NR, can be
Up (RLU) or Down (RLD) when there are defects due to
machine maintenance, or it can be Down due to power
source failure (RLDE);

• And the BC (Breathing Circuit), a silicone circuit con-
necting the patient to the Respirator Lung, can be either
Up (BCU) or Down (BCD). All guards of the respirator
lung system have service type ISS. All transitions have
the same priority 1.

In Fig. 3, we present a model depicting the initially
suggested improvement for the system under study. This
enhancement was identified following scenario evaluations
to pinpoint the bottleneck. Subsequently, we successfully
increased systemavailability by implementing aColdStandby
Respirator [47].

As a result, we can see an increase in availability and
a reduction in downtime. When the system identifies an
unavailable RL by maintenance failure, the backup RL takes
over RLB (Respirator Lung Backup) represented byMwith-
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Fig. 3 Performability model

out paralyzing the mechanical ventilation service in the ICU.
To do so, we suggest 1 RLB (M=1) for every 10 RLs. We
also recommend increasing the number of battery modules
to optimize the service in cases of RL unavailability due to
problems from the power source; in this sense, we suggest
for each 1 RL, 2 NB, totalizing 20 batteries for 10 Respira-
tor lungs. We use a variable represented by N to determine
the minimum number of respirators in operation. Table 1
presents the guard of transitions.

The SPN comprises 22 places, 22 timed transitions, and
seven immediate transitions. A token at place UTU indicates
that a power supply is available. The firing of the UF transi-
tion represents the failure of a power utility. The firing of this
transition removes a token from the UTU place and stores a
token in the UTD place. This new token activates the TI6
transition, and its firing adds ten tokens to the RLED transi-
tion. The RLED transition indicates that the respirator is not
functioning due to a power system failure. This place enables
the TI2 transition, and its firing stores twenty tokens in the
BAU place. The BAU place indicates that the battery mod-
ules are in usermode. Therefore, theTI7 transition is enabled,
and when the TI7 transition is fired, ten tokens return to the
RLU place. The RLU place indicates that the respirator is
available.

Moreover, when a power grid failure occurs, the respirator
can resume operation via the power generator. The GO place
indicates that the generator is offline, whereas the GU place
indicates that the generator is available. The GSO transition
between theGOandGUplaces represents the time to activate
the generator.

When the power system resumes operation, a token returns
to the UTU place. With the return of power utility, the tran-
sition TI8 is enabled. When enabling the TI8 transition, the
20 tokens previously in the BAU place return to the BALI
place.With the tokens in the BALI place, the TE10 transition
is enabled, and when fired, the tokens from the BALI place
to the BAC place individually until the total of 20 tokens.
The firing of the RLF transition represents the failure of a
respirator due to usage-related problems. The firing of this
transition removes one token from the RLU place and stores
one token in theRLDplace. This new token enables transition
TE18; its firing removes a token from place RLB and adds
one at place RLBU. The RLB place represents the backup
respirator in Cold Standby. The RLBU place represents the
available backup respirator.

A token at the BCU place indicates that a breathing circuit
is available. Firing theBCF transition represents the failure of
a breathing circuit. Starting the BCF transition adds a token
at the BCD place. Once again, this place enables the RLF
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Table 1 Transitions and Guard

Name Transitions Guards

TI1 Immediate Transition (UTU � 0) ∨ (GU � 0) ∧ (SWU = 1) ∧ (UC � 0)

TI2 Immediate Transition (UTU = 0) ∧ (GU = 0) ∨ (SWU = 0) ∧ (C � 0)

TI6 Immediate Transition (UTU = 0) ∧ (GU = 0) ∨ (SWU = 0) ∧ (U = 0) ∧ (RLU � 0)

TI7 Immediate Transition (UTU � 0) ∨ (GU � 0) ∧ (SWU = 1) ∨ (U � (N R) ∧ (RLED � 0)

TI8 Immediate Transition (UTU � 0) ∨ (GU � 0) ∧ (SWU = 1) ∧ (U � 0)

TI10 Timed Transition (UTU � 0) ∨ (GU � 0)) ∧ (SWU = 1)

RLR Timed Transition (UTU � 0) ∧ (GU � 0) ∨ (SWU = 1) ∧ (BAU � 0)

Table 2 Sensitivity ranking

Parameter Ranking Sensitivity index

MTTRR 1st 0.001051545684527313

MTTFBC 2nd 6.66003495161826E-4

MTTFSW 3rd 5.560367112183119E-4

MTTRBC 4th 4.441375347201817E-4

MTTRSW 5th 4.2970025997271716E-4

MTTFR 6th 1.6000518210035488E-4

TTDCB 7th 8.559621081971589E-5

MTSO 8th 8.489200280144378E-5

MTTFUT 9th 2.80561510854408E-5

MTTRUT 10th 1.3448492559060387E-5

MTTFG 11th 1.1775273075204157E-5

MTTRG 12th 3.5025045371888093E-6

TTLB 13th 1.7501734900155456E-6

MTTFBAT 14th 1.3527315280625157E-6

MTTRBAT 15th 1.0356301423500126E-6

transition, which, when fired, adds a token at the RLD place
because a respirator is only available when the breathing cir-
cuit is available. This place again enables transaction TE18,
which, when fired, adds a token at place RLBU. Transition
TI9 returns the token from the RLBU place to the RLB place.

6 Results

The following section offers a sensitivity analysis of the
system’s components using the percentage differentiation
technique described in Eq. 4. We also present a sensitivity
ranking highlighting each parameter’s impact on the system
availability metric, as indicated in Table 2. These rankings
guide in identifying components that require improvement
and will inform the case studies to be conducted.

Furthermore, we present results with eight different sce-
narios using the model shown in the previous section. The
values for the components of the Respirator Lung system

Table 3 Metrics and parameters

Components Metrics Values (h)

Time T 8760

Utility MTTF UT 687.24

MTTR UT 4

Generator MTTF G 1500

MTTR G 8

Switch MTTF SW 8000

MTTR SW 4

Battery MTTF BAT 1600

MTTR BAT 1687

TTDCBA 0.5

TTLBA 3

Respirator Lung MTTF RL 5000

MTTR RL 24

MTSO RLB 0.5

Breathing Circuit MTTF BC 8000

MTTR BC 4

were taken from the document [48]. Scenarios 1, 2, and 3
were generated by stationary analysis [49]. Although struc-
turally limited, scenarios 4, 5, 6, 7, and 8 were generated
by simulation by structural analysis after a 28-h wait with
over 380,000 states, within the confidence interval, and with
a margin of error of 2%. We used the Mercury tool for the
process [49]. Table 3 presents the parameters used to feed
the proposed model.

6.1 First scenario

This scenario describes the baseline system corresponding
to the usual model consisting of one utility, one generator,
one switch, two battery modules, one respirator lung, and
one breathing circuit. The model becomes a baseline with
the following parameters: NR=1, NB=2, and M=0. Each
battery module takes 3 h to charge (T T LB = 3) and has
half an hour of operation (T T DCB = 0.5). Batteries take
over when there is no utility and generator power supply,
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the switch is not working, and battery modules are charged.
In this scenario, we consider the repair time for the respi-
rator MTT RRL = 168hs. The corresponding notation is
expressed in Eq. (8):

(UTU � 0) ∧ (GU � 0) ∨ (SWU = 1) ∧ (BAU � 0) (8)

Once power is restored, they return to charging mode
automatically (BAUC). Availability of A = 0.9665821 and
downtime of DT yh = 292.740.

6.2 Second scenario

This scenario describes that the system works with the same
components: one utility, one generator, one switch, two
battery modules, one respirator lung, and one breathing cir-
cuit. We found that a change in the RL MTTRRL repair
time from 168 to 24 h promotes an increase in availabil-
ity by A = 0.9942876 and a reduction in downtime by
DT yh = 50.040569.

In this scenario, wemake a change toMTTRRL.We could
make the system availability higher by reducing theRL repair
time from 168 to 24 h. TheMTTR reduction can be achieved
through a preventive maintenance system, an efficient repair
service, and an adequate stock of spare parts. This means the
respirator will be able to run longer with fewer interruptions
in service.

6.3 Third scenario

This scenario describes the proposal of an additional RL,
working as a RLB backup in a cold standby system. RLB is
only available assumingmechanical ventilation once a failure
of the RL pattern is identified. We mean 1 RLB for every 10
RL’s represented byNR. We used the variableN to represent
the minimum number of respirators in operation. Suppose a
20-bed ICU environment has two RLBs, reducing service
downtime. With this scenario, we present an increase in sys-
tem availability for A = 0.9989537 and, consequently, a
reduction in downtime for DT yh = 9.164914. The corre-
sponding notations are expressed in Eqs. (5), (6), and (7).

6.4 Fourth scenario

This scenario describes the proposal of up to 5 lung respi-
rators represented byN with only one running, without the
backup Respirator, and we could observe an improvement in
the system’s availability. The availability results are shown
in Table 4.

In Fig. 4, it is possible to observe that from the fourth res-
pirator onward, there is a decrease in N9s. This reduction is
directly related to increased RL, which results in lower avail-
ability. In addition, it is important to highlight that the greater

Table 4 Scenario 4

N Availability Downtime/y/h N9’S

1 0.9991951 87.529.482 3

2 0.9990886 87.520.152 3

3 0.9991811 87.528.255 3

4 0.9988789 87.501.782 3

5 0.9749401 85.404.744 2

Fig. 4 Availability - Fourth Scenario

Table 5 Scenario 5

N Availability Downtime/y/h N9’S

1 0.9990667 87.518.234 3

2 0.9991978 87.529.718 3

3 0.9991978 87.528.807 3

4 0.9991874 87.530.822 3

5 0.9992104 87.457.912 2

the number of equipment, the greater the probability of fail-
ures. In this context, stochastic simulations play a crucial
role, allowing a development analysis with lower economic
cost. This way, it is possible to see that future articles can
benefit from this modeling to create new test environments.

6.5 Fifth scenario

This scenario describes a simulation of up to 5 lung respi-
rators represented by N with only one working; however,
this time with the backup respirator working. The obtained
results are presented in Table 5. In Fig. 5 it is possible to
observe that from the fifth respirator, there is a decrease in
N9s.

6.6 Sixth scenario

This scenario describes a simulation of 10 respirators lungs
represented by N, with at least 7 in operation. The backup
Respirator is not used. The results are shown in Table 6. In
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Fig. 5 Availability—fifth scenario

Table 6 Scenario 6

N Availability Downtime/y/h N9’S

7 0.9990667 87.523.288 3

8 0.9991978 87.536.682 3

9 0.9991978 87.397.547 2

10 0.9991874 83.427.147 1

Fig. 6 Availability—sixth scenario

Fig. 6, it is possible to observe that from the ninth respirator,
there is a decrease in N9s.

6.7 Seventh scenario

This scenario describes a simulation of up to 10 lung respi-
rators represented by N with at least 7 of them working with
the use of the backup respirator. The results are shown in
Table 7. In Fig. 7 it is possible to observe that from the 10th
respirator, there is a decrease in N9s.

6.8 Eighth scenario

This scenario describes a simulation with the same configu-
ration as scenario 3. However, we performed the stationary
simulation, keeping an error of 2% in scenarios 4, 5, 6,
and 7. We suggest changing the battery module timings,

Table 7 Scenario 7

N Availability Downtime/y/h N9’S

7 0.9992810 87.537.006 3

8 0.9992562 87.534.834 3

9 0.9990269 87.514.747 3

10 0.9969581 87.333.520 1

Fig. 7 Availability—seventh scenario

with an increase in run time and a decrease in charge time:
TTTLB from 3.0 to 0.5 h and TTDCB from 0.5 to 3.0 h.
We obtained an increase in availability for A = 0.9993363
with a confidence interval of C I = [0.999332, 0.999340]
and a reduction in downtime for DT yh = 5.813390 with a
confidence interval of C I = [5.780200, 5.846579].

However, in these eight scenarios, we observed a gradual
improvement in the performance of the service offered by
the lung respirator. We start the first scenario by describing
the usual functioning of the RL system. We suggest changes
throughout the other scenarios regarding the MTTRRL,
RLB, and timing of the battery modules. These changes
positively impacted the RL system’s performance, with an
increase in available time and a reduction in offline time.
From the first to the eighth final scenario, we got a zero
rise for three N9s. From the first scenario to the last one,
we obtained a reduction of more than 286 h. The respirators
spend less time unavailable, providing a safer hospital ser-
vice with fewer interruptions during mechanical ventilation
and increased patient survival probability.

Table 8 presents the number of components in each sce-
nario, represented by the X values, and the parameters
changed during the simulations.

The bar chart in Fig. 8 shows the availabilities of each
scenario. The highest availability is obtained when we use
more than one respirator.
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Table 8 All scenarios

Scenarios Utility Generator Switch Battery TTDCBA (h) TTLBA (h) Respirator MTTRRL (h)

1st X X X XX 0.5 3.0 X 168.0

2nd X X X XX 0.5 3.0 X 24.0

3rd X X X XX 0.5 3.0 XX 24.0

4th X X X XX 0.5 3.0 1/5 24.0

5th X X X XX 0.5 3.0 1/5 24.0

6th X X X XX 0.5 3.0 7/10 24.0

7th X X X XX 0.5 3.0 7/10 24.0

8th X X X XX 3.0 0.5 XX 24.0

Fig. 8 Availability of scenarios

7 Discussion of scenarios

When analyzing these eight different scenarios, a gradual
improvement in the performance of the service offered by the
lung respirator was evident. In the first scenario, we present
the usual operating equipment of the RL system. We adopt
parameters identified through a thorough analysis of docu-
ments, which serve as the basis for the scenario.

From the second scenario onwards, our focus shifts to
introducing strategic changes designed to improve the over-
all functionality of the ventilator system.Thesemodifications
include changing the respirator’s repair time, the backup
respirator’s introduction, and changes to the charging and
discharging times for the batteries. With the changes in the
baseline system, itwas possible to observe a growing increase
in system availability while at the same time reducing offline
intervals. It became clear that the length of time required for
ventilator repairs profoundly impacted the overall accessi-
bility and uptime of the system. As we delve into subsequent
scenarios, the ripple effects of these strategic adjustments
become increasingly pronounced, underscoring their key role
in optimizing system performance and ensuring its sustained
operational efficiency.

From the first to the eighth final scenario, we saw an
increase in availability from zero to three N9s. We reduced

more than 286hof downtime from thefirst to the last scenario.
Respirators spend less time unavailable, providing a safer
hospital service with fewer interruptions during mechani-
cal ventilation, more effective ventilatory intervention, and
longer patient survival.

8 Conclusion and future works

This study aimed to evaluate the availability of a crucial
life support system, specifically a lung respirator, within the
intensive care setting. The availability of such equipment is
vital in providing optimal care and treatment for critically ill
patients. To achieve this goal, we developed analytical mod-
els using Stochastic Petri Nets to gain insights into the system
and identify potential bottlenecks. These models served as a
basis for proposing optimizations to enhance system avail-
ability and minimize downtime.

We conducted an evaluation of eight different configura-
tions and observed a remarkable 98% improvement in system
availability. These findings hold significant implications for
healthcare facilities, including ICUs, emergency rooms, and
operating rooms, that rely on lung respirators. They can adopt
a similar approach to assess the availability of their own sys-
tems and identify areas for optimization.

In conclusion, our study showcases the effectiveness of
employing Stochastic Petri Nets for assessing the availability
of life support systems and proposing strategies to enhance
their reliability. Moving forward, we plan to explore alter-
native methods to optimize lung respirator usage time and
examine the availability of additional life support systems in
the intensive care setting.
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