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Abstract
In the last years, there has been a growing interest in the emerging concept of digital twins (DTs) among software engineers
and researchers. DTs not only represent a promising paradigm to improve product quality and optimize production processes,
but they also may help enhance the predictability and resilience of cyber-physical systems operating in critical contexts. In
this work, we investigate the adoption of DTs in the railway sector, focusing in particular on the role of artificial intelligence
(AI) technologies as key enablers for building added-value services and applications related to smart decision-making. In this
paper, in particular, we address predictive maintenance which represents one of the most promising services benefiting from
the combination of DT and AI. To cope with the lack of mature DT development methodologies and standardized frameworks,
we detail a workflow for DT design and development specifically tailored to a predictive maintenance scenario and propose
a high-level architecture for AI-enabled DTs supporting such workflow.

Keywords Digital twin · Railway · Artificial intelligence ·Machine learning · Cyber-physical system · Internet of things

1 Introduction

A Digital Twin (DT) is an accurate model of a physical
entity which is kept alive at run-time and updated with real-
time data collected from monitoring devices. DTs can be
framed into general conceptual models including, among
others, data collection management, model execution, and
re-configurations planning [27]. The importance of the DTs
is witnessed by the increasing number of ongoing standard-
ization activities, such as the ones carried on by the ISO/IEC

1 https://www.iso.org/committee/6483279.html.
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Technical sub-committee on IoT and DT,1 and the ISO/IEEE
11073 (Standardized DT Framework for Health and Well-
Being in Smart Cities) [37]. In the railway sector, DTs can
be used at different stages of the system life cycle and for
different assets, including rolling stock (e.g., trains, trams,
metros), signalling systems, infrastructures and manufactur-
ing systems. They can be used to monitor physical assets,
supervise train movements, provide information on passen-
ger behaviour onboard trains, and detect or predict failures.2

Several surveys are available in the literature covering
different aspects of DTs. Semeraro et al. [57] conduct a
systematic review on the DT paradigm in manufacturing
enterprises. The authors discuss questions such as what a
DT is, where it is used, when a DT has to be used and
why, and what the challenges are when implementing a DT.
Perno et al. [49] perform a systematic review of the enabling
technologies and barriers of DTs in the process industry.
Kaewunruen et al. [35] discuss DTs for railways with a
focus onBuilding InformationModelling (BIM) applications
highlighting that BIM demonstrates a strong DT potential
for railway maintenance and resilience. Bao et al. [6] first
discuss the relationship and differences between DTs and

2 https://www.globalrailwayreview.com/topic/digital-twins.
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traditional traffic simulation, then, they propose a three-layer
technical architecture and analyse important technologies
of DTs in traffic scenarios for intelligent transportation
systems.

In a previous work [19], we provided the identified chal-
lenges and opportunities for DTs in the rail sector with a
particular focus on maintenance applications and their com-
bination with artificial intelligence (AI) techniques due to the
potential that this combination can bring to railway digital-
ization [28, 58]. For example, DTs could be used to safely
generate (synthetic) data related to assets’ failures, by means
of, for example, fault injection techniques [46], to improve
the performance of AI systems oriented at detecting possi-
ble defects/faults [1]. On the other hand, AI could help to
build more intelligent DT models [41] that could be used,
among other applications, to understand how the physical
asset would behave when parameters change. In summary,
in our view, DT and AI have the potential to shift the current
maintenance and inspection activities from scheduled and
corrective to continuous and predictive. However, realizing
an AI-assisted DT (i.e., a DT in which some components are
enhanced by AI methodologies) is not a trivial matter, as its
design, as well as its implementation and characterization,
need to be aware of benefits and side effects that the use of
AI can bring. Thus, in this paper, we want to make a step for-
ward by introducing a preliminary guideline and reference
architecture to be used when realizing an AI-assisted DT. In
particular, with respect to our previous work we:

• Extended the review by adding themost relevant recently
published papers. All schemes and charts have been
updated accordingly;

• Improved the guidelines by introducing decision and task
nodes taking into account factors like the aim of the DT,
the decisions it has to make, which functionalities it has
to provide, etc.;

• Realized a preliminary reference architecture to support
the design of AI-Assisted DTs with a particular focus on
predictive maintenance applications.

The remainder of this paper is organised as follows. Sec-
tion2 briefly summarizes the needed background on the DT
paradigm and related technologies as well as onmaintenance
and smart maintenance approaches. In Sect. 3, we provide an
overview of the adoption of DTs and AI in the railway sector.
Challenges and open issues are discussed in Sect. 4. Section5
provides our guidelines for the design and development of
DTs with a specific focus on a predictive maintenance sce-
nario. Section6 sketches the proposed high-level conceptual
architecture for AI-enabled DTs and, finally, Sect. 7 contains
some final remarks and ideas on future works. Please note
that as the number of analysed aspects resulted in themassive

Table 1 List of acronyms used in this paper

Acronym Description

AI Artificial Intelligence

AR Augmented Reality

B5G Beyond Fifth Generation

BIM Building Information Modelling

CNN Convolutional Neural Network

CNs Connections

DD Digital Twin Data

DL Data Layer

DT Digital Twin

gDT Geometrical DT

HMI Human–Machine Interface

IEC International Electrotechnical Commission

IEEE Institute of Electrical and Electronics Engineers

IIoT Industrial IoT

IoT Internet of Things

ISO International Organization for Standardization

IT Information Technology

KNN K-nearest Neighbour

MAE Mean Absolute Error

ML Machine Learning

MQTT Message Queue Telemetry Transport

PCD Point Cloud Data

PD Primary Data

PdM Predictive Maintenance

PL Physical Layer

PLM Product Lifecycle Management

PS Physical Space

PT Physical Twin

RANSAC Random Sample Consensus

RMSE Root Mean Squared Error

RUL Remaining Useful Life

SD Secondary Data

SL Service Layer

Ss Services

VL Virtual Layer

VR Virtual Reality

VS Virtual Space

use of several technical terms and acronyms, for the sake of
readability we reported in Table 1 the list of the acronyms
we adopted throughout the whole manuscript.

2 Background

To better frame the proposed guidelines and reference archi-
tecture, in this section we provide a brief background on DTs
(Sect. 2.1) and onPredictiveMaintenance 2.2, highlighting in
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Fig. 1 Illustrative schema of the Digital Twin (DT) five-dimensional
model according as described in Qi et al. [51]. CN_XX_YY indicates
the connection that holds between the components XX and YY

both cases the connection existing with artificial intelligence
(AI).

2.1 Digital twins

The Digital Twin is a dynamic and self-evolving virtual
replica of a physical object and/or process, characterized by a
bi-directional seamless communication that allows real-time
data sharing between physical and digital world [7, 21, 63].
With DT technology, it is possible to implement several ser-
vices (e.g., simulation, monitoring, prediction).

Despite DT informal introduction can be dated back to
2002 during Michael Grieves’s presentation about product
lifecycle management (PLM), at present there is still a lack
of a formalized definition and a standardized architecture for
DT implementation [7, 38, 59]. Nonetheless, one of the most
recurring definitions in academia and industry is the five-
dimensional model [51, 59], reported in Fig. 1, according
to which a Digital Twin Model (MDT ) is described by the
following quintuple:

MDT = (PS, V S, Ss, DD,CN ) (1)

where the Physical Space (PS) includes systems and/or pro-
cesses and their internal and external interactions; the Virtual
Space (VS) contains the digital replica fed withDigital Twin
Data (DD), i.e., operational, environmental or historical data;
the Services (Ss) are the applications that can be realized
leveraging the DT technology (e.g., predictivemaintenance);
Finally, there are the Connections (CN) that create the com-
munication link (data and control) between the four parties.

A DT is often depicted as a “mixture” of Industry 4.0
technologies, as it owes its industrial and academic diffu-
sion to the massive exploitation of innovative information
and communication technologies [49, 51]. For example,

Internet of Things (IoT) and Industrial Internet of Things
(IIoT) are among the enablers of the seamless communication
between physical and virtual replicas: sensors capture events
or environmental changes that can be further processed and
analyses; actuators allow the physical system to respond to a
set of inputs or commands received from the virtual replica.
Data exchange is clearly achieved through communication
technologies, such as MQTT, 5G/6G networks and so on.

Recently, artificial intelligence is more and more playing
a key role in DT design and implementation, not only for
data analytics purposes but also for the development of data-
driven DT-based services (e.g., predictive maintenance). It is
worth noting that AI and DT can leverage each other in two
main different ways (not necessarily mutually exclusive): AI
can be used to support DT modules (and this is what we will
analyze in this paper) or a DT can be used to generate data
to train an AI model.

Finally, Virtual and Augmented Reality technologies
(VR/AR) better allow users to interface with the digital
replica, thus enabling the human–machine interfacing with a
computer-generated 3D visual environment.

2.2 Maintenance approaches

As pointed out in Yokoyama [67], 21st-century innovation in
terms of services for customers and technology supporting
railway operations have enabled the shift from time-based
maintenance to condition-based maintenance, leveraging
large volumes of data directly acquired from monitoring to
predict deterioration and failures of rolling stock and electri-
cal equipment. The main maintenance paradigms and related
actions can be distinguished in the following three cate-
gories [73]: corrective maintenance occurs when the fault is
detected; preventivemaintenance programs the repair actions
at specific times according to past experiences; predictive
maintenance (PdM) schedules the repairing activities pre-
dicting the failure occurrence through asset data analysis.
According to Errandonea et al. [22], predictive maintenance
also provides plans or strategies for taking action when the
fault is predicted. Major benefits of PdM are maintenance
costs and downtime decreasing, productivity and quality
increasing.

The approaches used for prediction and thus for predictive
maintenance are [22, 73]: (i) physical model-based, in which
mathematical modelling reflexes component conditions; (ii)
data-driven, relying on statistics-based, pattern recognition
or AI models based on large amounts of data collected from
the asset; (iii) knowledge-based approaches, aimed at reduc-
ing the complexity of physical modelling (typically used as
a hybrid strategy).

The DT ecosystem provides a great opportunity for incor-
porating predictive models to evaluate the current state of
a physical asset, analyse historical and operational data
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Fig. 2 Distribution of studies
over the years and by
publication type (please note
that some papers in 2022 might
be still missing for indexing
reasons)

Table 2 Mapping DT references to relevant AI categories

AI category Literature works

Machine learning Liu et al. [40], Gan et al. [30], Boscaglia et al. [11], Zhang et al. [69], Consilvio et al. [14]

Ikeda [33], Sahal et al. [53], Milosevic [45], Yang et al. [66], Wang et al. [62], Zhou et al. [71]

Lumban-Gaol et al. [42], Zhang et al. [68], Dimitrova and Tomov [17], Chen et al. [13], Wu et al. [64]

Ariyachandra and Brilakis [4], Febrianto et al. [24], Peng and Zheng [48], Patwardhan et al. [47]

Flammini et al. [28], Yang et al. [65], Zhang et al. [70], Torzoni et al. [60], Ferdousi et al. [25]

Intelligent Sensor Data Integration Errandonea et al. [23], Jiang et al. [34], Bustos et al. [12], Zhou et al. [72], Gürdür Broo et al. [31]

Data mining Malek et al. [44], Du et al. [20]

Adversarial search Ambra and Macharis [2]

Computer vision & Image Processing Avizzano et al. [5], Futai et al. [29]

Evolutionary computing Ricondo et al. [52]

Operations research Magnanini and Tolio [43]

Other Boockmeyer et al. [9]

obtained from the sensors of the physical asset, and finally
predict the degradation of a specific component.

3 An overview of DTs and AI in railways

We performed a literature review including 100 papers
addressing DTs in railways. The selected papers obtained via
the literature review are categorised by year in Fig. 2.We then
reduced the set to 38 papers specifically addressing DTs in
combination with AI.We refer to the AI categories presented
in reference [8], which are reported in Table 2. In the next
sections, we will report some consideration on the analysed
papers, grouped according to the main topic into Machine
Learning, Intelligent sensor data integration, Data Mining,
Computer vision and image processing. It isworth noting that
the aim is not to provide a systematic literature review but
just to describe the most relevant recently published papers,
based on the experience we matured working on the topic.

3.1 Machine learning

Machine Learning (ML) applied to railway DTs mainly
focuses on predictive maintenance [14, 40, 53] as a nat-
ural application of the former to the latter. Liu et al. [40]
propose a framework enabling the application of industrial
AI technologies for a Prognostic Health Management sys-
tem for high-speed railways. The authors discuss the use
of dynamic clustering of historical data for the identifica-
tion of health conditions. Specifically, in a case study on
traction motor condition monitoring, they discuss the use
of an Artificial Neural Network for modelling the vibration
between sensors that are close to the four wheels. Simi-
larly, Consilvio et al. [14] propose a generic framework and
build a Decision Support System by combining ML, data
analysis, and simulation techniques for analysing real-time
data to make automated decisions. The manuscript takes
into account two case studies, one at the strategic level and
the other at the operational level. At the strategic level, the
authors describe a data-driven model based on the K-means
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clustering method, Petri net models, and Monte Carlo simu-
lations for decision support in order to evaluate a sustainable
mix of interventions, such as renewals and refurbishments.
On the other hand, at the operation level, they describe a data-
driven model based on a one-class support vector machine,
the Bayesian network approach, and a linear programming
model in order to improve maintenance operations and min-
imise costs caused by sudden failures and service disruptions.

Sahal et al. [53] introduce a conceptual framework to ful-
fil the DTs collaboration requirements and to enhance an
intelligent DT based on blockchain technology and predic-
tive analysis. By using distributed ledger technology, several
DTs can be connected through the blockchain network and
provide data analytics and management across the railway
sector. To minimise maintenance costs, the authors explain
that the framework consists of predictive models that use
data-driven ledger-based historical DT operational data and
a distributed decision-making algorithm for improving the
DTs collaboration. The authors argue that the framework can
predict potential failures from rail-based operational data by
applying ML algorithms and training the offline predictive
model with this data. Then, an online predictivemodel can be
evaluated to predict the failures in railways. The outcome of
these models serves as input for the consensus algorithm to
make the best decision for data anomalies or to help decision-
makers.

One of the most important issues in DTs development is
their design and generation. Ariyachandra and Brilakis [4]
argue that generating a DT of an existing railway from its
Point Cloud Data (PCD) is a time-consuming and tedious
task. Automation processes of this task face the challenge
of detecting masts from air-borne LiDAR data since masts
when scanned from above, are visible as thin lines. Thus, it
is difficult to differentiate objects of similar shapes, such as
signal poles, from masts. The authors propose a method that
begins with tools that clean the PCD and identify its position-
ing, then, the resulting data sets are processed and masts are
detected using the RANSAC algorithm. To summarise, the
article focuses on DT generation to save time and modelling
costs and proposes a method to enable the rapid adoption of
a geometric DT.

Lastly, Zhou et al. [71] introduce a DT framework for
automatic train regulation and control with the goal of reduc-
ing train delay times and energy consumption. The authors
achieve this goal by using a Convolutional Neural Network
(CNN) tomap the relationship between the train running time
and the energy consumption of the speed profile and switch
points.

3.2 Intelligent sensor data integration

Jiang et al. [34] discuss the railway industry’s demand
for on-site data collection, control, and management. The

authors propose a monitoring platform design and archi-
tecture for intelligent high-speed railways. Then, they also
discuss the DT architecture including aspects such as the
collection of real-time data from the sensors and the integra-
tion of sensor monitoring data to provide optimal solutions
for failure handling. The aim of the DT is to develop a
high-intelligence stage to intervene during abnormal work-
ing conditions through automatic monitoring and to prevent
accidents.

Similarly, Errandonea et al. [23] propose an IoT approach
for intelligent data acquisition to generate DTs in the rail-
way industry with the goal of creating an onboard system
for maintenance prediction in trains. The authors detail the
architecture of the approach in three aspects: (1) The commu-
nicationmodule for near-real-time communication and batch
information transfer; (2) The functional design of the system,
where the processing and integration of the sensor data are
done in modules so that the system remains independent;
(3) Data ingestion technologies, where the authors make use
of Apache NIFI since it allows different data sources and
parallel executions.

3.3 Datamining

Du et al. [20] introduce a DT framework and its implementa-
tion method for urban rail transit. The proposed implementa-
tion method for the DT consists of four components, where:
(1) the sensor network collects data; (2) onboard data is saved
to a ground data storage device; (3) an analysis process is
performed for mining and visualising data; and (4) AI algo-
rithms are used for data mining, evaluating and predicting
faults. The authors point out the necessity to pre-process the
data by cleaning, integrating, transforming and reducing the
data before the actual data mining process. For the analysis,
the authors suggest using k-means when the labels belong
to an unknown category, and for the classification of known
data, they suggest using KNN, regression classification, neu-
ral networks, or naive Bayes.

3.4 Computer vision and image processing

Avizzano et al. [5] introduce an algorithm for reconstruct-
ing rolling stocks from a sequence of images into an image
model. The aim is to be able to generate DTs for com-
plete rolling-stock vessels to serve for monitoring, diagnosis
and failure prediction. The authors combine Kalman Filters,
Gaussian mixture models and specific algorithms to track
images of a train, which were taken by a fixed camera, so to
provide a light and robust tracking system for image stitch-
ing.
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4 Challenges and open issues

In this section,we summarise themost significant open issues
and challenges to be tackled in the context of intelligent DT
in railway applications in order to reach their full potential.
For each listed issue and open challenge, we report at least
one paper from a European initiative that, in our opinion,
addresses the point or provides an interesting view of it.

4.1 Interoperability

To enable DT to analyze and exchange data from hetero-
geneous systems in real time, interoperability is essential.
Dimitrova and Tomov [17] argue that current railway net-
works are managed by different tools and devices, resulting
in too heterogeneous and non-integrated data, which makes
interoperability and decision-making especially challenging.
Sahal et al. [53] discuss theDT interoperability challenge and
propose a data-driven ledger-based predictive model, which
ensures intelligent and secure interoperability.

4.2 Connectivity

Despite the large adoption of IoT sensors in different sectors,
connectivity challenges still exist especially when dealing
with real-time monitoring. When trying to connect all of the
sensors in a railway system at the same time, it could face
some obstacles and difficulties in obtaining data due to the
variety and mutability of (harsh) environmental conditions
including, among others, storms, freezing, and extremely
high temperature which may disrupt connectivity and/or
cause loss of data. To tackle this obstacle, Sahal et al. [53]
discuss communication technologies such as Beyond Fifth
Generation (B5G) and 6G as opportunities for handling con-
nectivity among the increasing number of smart devices in
intelligent transportation systems.

4.3 Lack of standards and frameworks

To be efficient, DTs require well-defined frameworks taking
into account the IoT paradigm, data analytics techniques, and
many other enablers. Furthermore, within all forms of DT
development, also the modelling seems to be still an open
issue given that, to the best of our knowledge, there is no
standardized approach to model DTs. Standardized proce-
dures enable domain and user comprehension, as well as
information flow between phases of a DT’s development and
implementation. In a such view, Gan et al. [30] discuss the
main challenges to developing standards for Industry 4.0 and
achieving agreements with the goal to connect the entire sup-
ply chain and stakeholders. In Borjigin et al. [10], the authors
discuss the evolution of BIM towards an international stan-
dard. BIM is described as a method using a shared digital

representation of a built asset, which progresses to become a
DT. In that context, the authors stress the need for collabora-
tion and shared information among different stakeholders at
various stages, so that more accurate decisions can be made.

In the railway sector, DTs can improve operational effi-
ciency, reduce costs, and enhance the passenger experience.
However, the lack of standardized frameworks andguidelines
for implementing DTs in this sector can make it challeng-
ing for railway operators and manufacturers to adopt and
implement DT solutions. Therefore, it is crucial to develop
standardized frameworks and guidelines to ensure consis-
tency, interoperability, and security when implementing DT
solutions in the railway sector. Krishna et al. [36] tackle
the lack of frameworks by introducing a train-track multi-
body simulation model to assess long-term rail surface
damage evolution in accordance with European standards.
The framework can be turned into a DT and provide guid-
ance for infrastructure managers regarding the condition
of the rail surface. Moreover, Shift2Rail3 and CENELEC
WG4 are initiatives that recognize the significance of DT
in this sector and aim to promote the development and
implementation of innovative solutions in a coordinated and
standardized way. Shift2Rail focuses on integrating new
technologies and solutions into the railway sector, including
those related to DT, while CENELEC WG has developed
standards related to railway applications, signalling, and
telecommunications, providing a framework for DT solu-
tion development and implementation. Collaborating with
these initiatives to develop and implement DT solutions in
accordance with established standards can help ensure inter-
operability, consistency, and effectiveness in the adoption and
implementation of DT solutions in the railway sector.

4.4 Data privacy and security

Data privacy and security are other relevant challenges when
it comes to railway systems, especially safety-critical ones.
The main reasons are related, but not limited, to the fact that
data exchanged (e.g., between trains and a zone controller)
are extremely critical and any intrusion could potentially
cause considerable damages both in terms of costs and human
lives. Hence, to overcome this issue, DT-enabling technolo-
gies must meet existing security and privacy policies and
legislation. Along this line, Boockmeyer et al. [9] point out
the importance of IT security and suggest the use of appro-
priate encryption techniques and software update strategy.

3 https://shift2rail.org/.
4 https://www.cenelec.eu/.
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4.5 Scalability

Scalability refers to the possibility of integrating and man-
aging multiple DTs at the same time since (within manufac-
turing systems, as an example), it may happen that there are
multiple DTs deployed each of which virtually represents
a specific machine or workstation. In this context, Sahal et
al. [53] identify in the blockchain technology a suitable solu-
tion for scalability since large amounts of DTs can work
together in a hierarchical and granular manner.

5 Guidelines for DT design and development

Although all the issues presented in the previous section are
of paramount importancewhen it comes to efficiently design-
ing and implementing DTs, in this work, we mainly focus
on the lack of guidelines and frameworks as, in our view,
these aspects form the basis for the realisation of DTs. To
that aim, as mentioned in the introduction, this section pro-
vides some guidelines thatwould be hopefully useful to assist
the realisation of DTs, while Sect. 6 proposes a preliminary
reference architecture for AI-assisted DTs, i.e., DTs encom-
passing intelligent functionalities to improve services and/or
data analysis.

Even if the DT concept has been around for almost 20
years now, there is still a lack of mature methodologies to
lead the process from the design to the implementation of an
operating DT [56]. Starting from our review findings and the
analysis of state-of-art DT literature concerning the design
methodology of a virtual replica [3, 7, 50, 55, 56], we provide
some guidelines for DT design and development with a focus
on data-driven predictive maintenance. We decided to focus
on this application as, in our opinion, it represents one of the
most promising applications for DTs in railways.

As shown in Fig. 3, the workflow is structured in twelve
different tasks: requirement specification, process planning,
architectural design, digital representation, digital twinning,
service planning, data flow, conversion, training process, pre-
diction process, decision process and evaluation. The first six
tasks are grouped in a blue box as they represent the design
guidelines of the DT and the service (i.e., predictive mainte-
nance) upon theDT. The remaining indicate the development
and deployment guidelines. It is worth noting that each task
involves different steps, eachmodelled by a node in thework-
flow diagram. The next paragraphs describe each, detailing
functionalities and the rationale.

5.1 Requirement specification

The first task lays the groundwork for the design and the
implementation of a DT, providing the primary information
upon which the rest of the steps will be based. First of all,

it is needed to identify for which industry the DT will be
developed [50] and this is significant as some industries (e.g.,
railway, aerospace) have to follow some regulations. Step
two aims to extract DT functional requirements and thus to
define its purpose, such as optimization, prediction, monitor-
ing, security assessment, development improvement and so
on [56]. The following step is the identification of the process
or asset to digitally replicate: it may occur that the Physical
Twin (PT) does not already exist; in this case, a prototype of
the PT can be built to guide the construction of the actual DT
[56]. For example, in the railway context, in the design phase
engineers can start the creation of theDT of a train to produce
an accurate computer model of every single part (inside and
out), but also to carefully plan the sensing layer (e.g. sensors,
IoT devices, and asset and facility management system). In
general, using a DT in the asset’s design stage helps design-
ers and engineers to model, simulate, and conduct what-if
scenarios analysis to improve and optimise the asset design.
Once the physical counterpart leaves production, the DT can
also help engineers to monitor it, increasing not only produc-
tion management and work performance but also the health,
safety, and wellbeing of workers and materials [56].

Once the global goal of the DT-based application has been
identified, it is needed to define what kind of use the DT is
expected to deal with [50]. Indeed, we should at least define
the DT usage frequency, i.e., if the DT will be used when
needed or continuously or even in hybrid mode, and the DT
nature, i.e., static or dynamic, and thus if the DT will adapt
to initial conditions alterations or not. In fact, even if the DT
definition that we presented in Sect. 2.1 describes the DT as a
dynamic and self-evolving virtual replica, a DT can execute
in two modes:

• simulation mode, namely it simulates/emulates the
behaviour of the physical system and thus it executes
in a static way. For instance, when the DT is used in the
design stage, it is not connected to a physical counterpart
(that can not even exist), therefore it has no capability
to evolve as the physical system changes with respect to
time;

• Replication mode, i.e., the DT is used online and its
models are fed with real-time data, so the virtual replica
evolves along with its physical counterpart throughout
its life cycle. This means that any changes in either the
physical or Digital Twin are reflected in its counter-
part, creating a closed feedback loop (that it’s not true
in the simulation mode execution) Segovia and Garcia-
Alfaro [56], Ferko et al. [26] and Eramo et al. [21].

Further steps are the identification of technologies needed
for DT development and specification of input and output
parameters of the PT and so of the DT, according to each use
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Fig. 3 Proposed guidelines to
implement a DT in a predictive
maintenance example, based on
the references Ariansyah et
al. [3], Du et al. [20], Liu et
al. [40], Segovia and
Garcia-Alfaro [56],
Psarommatis and May [50],
Schroeder et al. [55] and
Barricelli et al. [7]
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case. Thiswill increase theDTunderstandability by a broader
audience and the re-usability of DT in other scenarios [50].

5.2 Process planning

As the DT is typically a virtual replica of only a part of
the physical process/asset [7, 38], the purpose of process
planning is to determine the functionalities and properties of
the physical twin to bemodelled in the DT. In some cases, the
DT may be an identical copy of the PT, but this one-on-one
replication could most probably bring more complexity and
redundancy [56].

In this task, the other two objectives are: i) the definition
of the comprehensive set of data that suitably describes the
physical twin [56] (e.g., environmental, historical, real-time
or near real-time operational data) and that are used to tune,
validate and eventually update the DT; and ii) the design of
the DT and PT communication infrastructure. Depending on
requirement specifications, for example, a 5G, B5G, or 6G
communication technology could be taken into account.

5.3 Architectural design

As pointed out in Sect. 4, there is no consensus about DT
components and corresponding architecture, but software
architectures are cornerstones for the set-up and engineer-
ing of software complex systems such as DTs [15, 26]. For
this reason, it is crucial to perform the architectural design
task by focusing on both the architectural pattern choice and
DT components identification steps.

Although there is a lack of a widely accepted architectural
solution for DTs, according to Ferko et al. [26], the major-
ity of the academic and industrial proposals are built using
the layered architectural pattern or the combination of lay-
ered and service-oriented patterns. Furthermore, regardless
of DT-based application, it is possible to identify a set of
strictly needed DT components [55]: i) theModels that digi-
tally represent the physical process/asset; ii) an Even Source
whose objective is to send information and/or commands to
the PT; iii) a set of algorithms (e.g., AI) provides the reason-
ing capability that aims to extract useful information which
feeds DT models and the event source element.

Finally, if DT nature is dynamic, the architecture is
expected to evolve over time to integrate system changes
(e.g., new components), to adapt the system behaviour, and
also to support the interconnection with other DTs [18, 56].

5.4 Digital representation

This task is entirely dedicated to themodelling activity since
PT models are the core elements of the virtual replica. It is
mandatory to reproduce the physical properties, geometry,
behaviours, and rules of the physical system as faithfully

as possible. According to Segovia and Garcia-Alfaro [56]
and Schroeder et al. [55], it is possible to distinguish two
modelling techniques:

1. Behavioral modelling, which expects to characterise
the system behaviour through mathematical or compu-
tational descriptions of how the variables of interest are
related to each other. This category includes:

• control models that, based on control theory, apply
physics laws and compare simulated results with
known information, i.e., mathematical models;

• data-dependent models, which can leverage AI and
use data structures that store all the variables describ-
ing reality at a predefined abstraction level;

• hybrid control-data models, which combine con-
trol and data-dependent models to obtain advantages
from both of them;

2. Structural modelling, which is oriented at identifying
the relationships between the parties undertaking certain
activities in a structured description. This class compre-
hends:

• physicalmodels, representing physical properties and
phenomena (e.g., deformation);

• geometrical models, mirroring the geometry, shapes,
sizes, positions, logic, and interfaces of the real sys-
tem.

5.5 Digital twinning

The objective of this task is the set-up of the whole DT infras-
tructure, starting with the generation, tuning and validation
of PT models [50, 56]. Indeed, in order to obtain a compre-
hensive view of the physical system, DTs are characterized
by different kinds of models previously listed. Thus, in this
task, it is required to integrate hierarchically or collabora-
tively models and other DT components (which and how
many depend on the use case). It is worth underlining that
decidingwhether to automate the building of theDT or rather
to construct it manually are both feasible choices: for exam-
ple,Ariyachandra and Brilakis [4] generates a geometric DT
(gDT) from its Point Cloud Data.

5.6 Service planning

This task aims to design a service that leverages DT technol-
ogy. Thus, after DT design, in our work, we suggest defining
the predictive maintenance model and choosing whether to
perform it with supervised or unsupervised learning. Notable
implementations relying on supervised learning algorithms
exploit Neural Networks [71], Support Vector Machines or
Naive-Bayes [14]. Similarly, unsupervised learning (such as
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the K-means algorithm) has been used for anomaly detection
[14]. Regardless of the chosen learning algorithms, this task
will lay the basis for the implementation of the DT-based
predictive maintenance service.

5.7 Data flow

Once the set-up of DT is completed, the virtual replica has to
be connected to the physical twin through the seamless bidi-
rectional connection that describes theDT itself, with respect
to the communication infrastructure previously designed.
Thus, the sixth task aims to create the data flow, i.e., the
stream of environmental and operational data coming from
the physical world combined with historical data. For exam-
ple, in a railway context, operational data are the position of
the railway [20], the temperature of the motor [11], or the
vibrations [17], environmental data are the different weather
conditions or humidity. All data will be collected and stored
using one or more storage solutions, such as cloud services
or a local server with Internet access.

5.8 Conversion

The objective of the conversion task is to process, clean and
eventually fuse and reduce data due to their multi-temporal,
multi-dimensional, multi-source and heterogeneous nature
[7, 15, 39].

5.9 Training process

After collecting data from the physical system for the ML-
based problem (i.e., predictive maintenance) and properly
treating them with AI techniques, it is possible to build the
predictive model training and deploying it. At the time of
writing this paper, the most used DT platforms for predictive
maintenance applications areOpenModelica andMathWorks
Simulink [61].

5.10 Prediction process

This task operates when ML-based predictive maintenance
model has been deployed. The algorithm executes using real-
time data continuously coming from the physical twin and a
visualisation of the prediction.

5.11 Decision process

Once the insight is obtained and a fault is predicted, the deci-
sion process task designs the set of actions to be performed
on the physical twin. The DT can be used to support human
decisions, perform automatic repair actions, or assign tasks
to the right personnel [40].

5.12 Evaluation

The last task is the evaluation which can be done through the
generation of a proof-of-concept. Indeed, although model
validation metrics for AI-based models are overall accuracy,
Root Mean Squared Error (RMSE), Mean Absolute Error
(MAE) and so on, different works [7, 26] have demonstrated
that evaluation of DT-based solutions must almost always be
carried out through examples. This is due to the lack of DT-
specific evaluation measures because of the heterogeneity of
its components and its dependency on the physical system.

6 An high-level architectural model for
AI-assisted DTs

As discussed in Sect. 4, one of the main challenges related
to AI-assisted DTs in the railway context is the lack of a
standardized andwidely accepted framework for their imple-
mentation. In this paper, we present a high-level architectural
model that can support the architectural design task of our
guidelines described in Sect. 5. Themodel, depicted in Fig. 4,
leverages and extends the conceptual architecture proposed
in De Benedictis et al. [15] by detailing the capabilities
needed to implement a predictive maintenance service.

As already said before, one of the most recurring architec-
tural patterns is the layeredone, as it enables better addressing
of the complexity of software-intensive systems such as DTs
[26]. Thus, recalling Tao’s dimensions [51], our architectural
model is structured into four layers, i.e., the Physical, Data,
Virtual and Services layers. Please, note that in the architec-
ture proposed by De Benedictis et al. [15] there are other two
levels, depicted vertically in relation to the other ones, and
they are called Security and Connectivity Layer(s): the first
one is taken into account in order to cope with DT security
issues (e.g., protection of data on which digital models are
constructed and/or that feed real-time model), while the sec-
ond one indicates the two kinds of connection that can be set
up in aDTenvironment.An in-depth analysis of these aspects
is beyond the scope of this paper, as it is strictly related to the
connectivity and data privacy and security issues identified
in Sect. 4. Therefore, the reference architecture discussed
below simply includes the necessary components that an
AI-assisted DT should involve, without taking into account
external threats or connections (besides those with the phys-
ical asset).

In addition to that, as in De Benedictis et al. [15], the pro-
posed architecture is quite general. Indeed, each layer groups
a subset of homogeneous DT core capabilities, which can be
implemented by one or more components. However, as our
focus is on DT usage in the railway context and in particular
for predictive maintenance services, we specify the service
layer and eventually modify the other levels with respect to
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Fig. 4 The proposed high-level architecture for AI-assisted DTs for
predictive maintenance of railway assets

functionalities needed for PdM, e.g., the necessity for data
pre-processing in lower levels due to criticality and complex-
ity of railway systems. Indeed, as far as we try to generalize
the architecturalmodel presented in this work, there are some
aspects and needed capabilities that are strictly related to
the application context and the kind of service implemented
through DT technology [21, 51, 56]. In the following para-
graphs, we will explain each layer of Fig. 4.

6.1 Physical layer (PL)

This layer interconnects the physical asset and its virtual
counterpart (theDTs) bymeans of suitable sensing and actu-
ating capabilities. The (IoT) sensors monitoring the physical
asset collect different kinds of operational datawhich are then
sent to the Data Layer for preliminary elaborations. Actu-
ators, on the other hand, physically execute the decisions
received from the upper layers.

6.2 Data layer (DL)

The Data Layer is in charge of managing both the row data
collected through sensors at the PL, and the information
retrieved through the elaborations performed at the upper
layers, i.e., the Virtual Layer (VL) and Service Layer (SL).

This is achieved through a fundamental knowledge man-
agement capability that leverages shared knowledge. At the
PL, depending on the asset and the choices made within the
Requirement Specification phase of the guidelines proposed
in Fig. 3, sensors may collect many heterogeneous data (e.g.,
vibration, acceleration, video, audio).We can subdivide these
data into Primary Data (PD) and Secondary Data (SD). By
PDwemean those data that, after some basic elaboration that
does not involve any AI application (e.g., cleaning, transfor-
mation), can be directly adopted at the upper layers to model
the DT and perform the necessary analyses. Differently, by
SD, we mean data that need to undergo an “advanced” pre-
processing to be used at the upper layers. As an example,
data captured by a camera may be processed by suitable AI
approaches to extract motion features (i.e., new data) that can
beused in theVLandSL formodelling and/or analysis.Capa-
bilities that enable to extract both PD and SD are referred to
as basic elaboration and AI pre-processing, respectively.
It is worth noting that the integration of AI pre-processing
capabilities is very helpful in a context such as a railway sys-
tem. Indeed, most railway assets are safety-critical systems
whichmust be compliantwith strict standards and regulations
to be deployed; intrusive modifications (e.g., the physical
installation of new sensors on the deployed system)may lead
to time-consuming and expensive (re)certification processes
[16]. New assets, recently deployed, may already include (by
design) all the sensors needed to produce their digitalized
version (i.e., a DT); however, issues may arise in the case of
legacy assets forwhich sensorization and digitalizationmight
not be viable. The possibility to adopt AI pre-processing
capabilities to elaborate data fromnon-intrusive sensors (e.g.,
cameras, microphones, LiDARs) and use these data to poten-
tially digitalize any kind of railway asset would avoid the
aforementioned issues. To conclude, the DL includes a pre-
sentation capability related to the HumanMachine Interface
(HMI), devoted to displaying information to human opera-
tors.

6.3 Virtual layer (VL)

This layer includes the core capabilities required to create
andmanage the virtual representation of a physical asset. The
core capability within the VL is modelling, which typically
encompasses the set-up andmanagement of differentmodels,
characterising the structure and/or behaviour of the different
parts of the asset. Besides “traditional models” (e.g., geomet-
ric, mathematical), AI can be adopted to build a behavioural
model leveraging learning processes capable of extracting
hidden information from data. In particular, system mod-
els may be built from historical data; for example, taking
into account an ML approach, a model may be trained, vali-
dated, and tested on historical data and then used (without any
modification) for simulations or predictions. An alternative
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approach may adopt, for instance, online machine learning
[32] to allow ML models to evolve in real-time with the
on-line stream of data. The latter approach, despite being
potentially more appropriate to keep the digital model con-
stantly updated, is quite more challenging especially when it
comes toDeepLearning applicationsmost ofwhich, notwith-
standing their potential, are opaque (i.e., it is not always
possible to understand their functioning andhow themapping
between input and output has been performed) and unstable
(i.e., to slight variations of the input may correspond heavy
variations on the output). It is worth noting that it is already
extremely challenging to demonstrate the dependability and
trustworthiness of Deep Learning models [28] built start-
ing from a specific and, if possible, reliable set of historical
data. On-line learning would introduce additional complex-
ity that would make this demonstration process even more
complicated to address. A suitable compromise would be to
periodically update the AI models (manually or automati-
cally) so as to have the possibility to properly integrate new
data and re-validate and re-test the new versions of the mod-
els.

Another core capability of the VL is that related to feed-
back, namely to the the propagation of decisions taken in
the upper Service layer toward the Physical layer. However,
given i) the safety-critical nature ofmost of the railway assets,
ii) the current maturity level of AI approaches, and iii) the
strict (yet necessary) standards regulating the rail sectors, it
is quite unlikely that these actions can be autonomously per-
formed by theDT itself. This is themotivation behind the fact
that the arrows representing the connection (by means of the
transmission of suitable control signals) between the feed-
back and the actuating capabilities provided by the PL are
dashed; actually, in our conceptual architecture, the whole
actuation capability is dashed to indicate the same limita-
tion. At this stage, it is reasonable to think that “self-healing”
features can be directly applied only if produced by certifi-
able functionalities. It is worth noting that, in any case, the
feedback capability can still be integrated to support human
operators (with proper messages generated for the HMI) or
to perform simulations.

Finally, the reasoning capability involves the processing
of data in order to extract useful information to feed DT
models and generate feedback.

6.4 Service layer (SL)

This layer implements the forecasting and decision-making
processes that can be attributed to DTs. In our proposal,
it includes some capabilities that are specific to predic-
tive maintenance, while additional capabilities may be
considered depending on the specific application (e.g., sim-
ulation, monitoring, anomaly detection, etc.). The infer-
ence/prediction capability represents the forecasting logic

based on the selected prediction models. In our conceptual
architecture, we have explicitly considered a RUL Pre-
diction Modelling capability to set-up the models for the
estimation of the remaining useful life (RUL) of an asset,
as it is a key indicator identified by the research com-
munity to determine the maintenance time [54]. Based on
the run-time prediction and other information stored in the
shared knowledge, the maintenance scheduling capabil-
ity is responsible for optimizing the maintenance operation
scheduling. Finally, alerting capabilities must be typically
considered to support maintenance.

7 Conclusions

In thismanuscript,weprovided anoverviewof the approaches
related to the usage of digital twins in railway applications,
with a focus on the role of AI and ML as enabling tech-
nologies together with the IoT paradigm. We highlighted
some promising applications, design guidelines, as well as
challenges to be tackled and future opportunities. Among
the identified main open challenges, we focused on the lack
of reference guidelines and architectural frameworks for the
development of digital twins. Thus, starting from the review
findings combined with the results of general DT literature
analysis, we provided a set of guidelines to support the design
and implementation of AI-AssistedDT. In conclusion, to fur-
ther support researchers and practitioners, we realised a first
architecture intended to serve as a skeleton for realising AI-
assisted DT matching the introduced and described design
guidelines in the context of predictive maintenance in rail-
ways.

Future studies will be oriented at analysing the remaining
challenges, with a particular focus on security and data pri-
vacy issues, with the aim of providing proper considerations
about (i) how the Security and the Connectivity Layers [15]
can be integrated within the proposed reference architecture
and (ii) the role AI could play to improve/support their func-
tionalities. We will also further investigate and enlarge the
proposed methodology, with the aim of fulfilling real-world
requirements in terms of interoperability and trustworthi-
ness. The aim is to realize a tool intended to support several
practical applications, especially for predictive maintenance,
operational optimisation, and proactive safety.
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