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Abstract
Cyber-physical systems operate under changing environments and on resource-constrained devices. Communication in these
environments must use hybrid error coding, as pure pro- or reactive schemes cannot always fulfill application demands or have
suboptimal performance. However, finding optimal coding configurations that fulfill application constraints—e.g., tolerate
loss and delay—under changing channel conditions is a computationally challenging task. Recently, the systems community
has started addressing these sorts of problems using hybrid decomposed solutions, i.e., algorithmic approaches for well-
understood formalized parts of the problem and learning-based approaches for parts that must be estimated (either for reasons
of uncertainty or computational intractability). For DeepSHARQ, we revisit our own recent work and limit the learning
problem to block length prediction, the major contributor to inference time (and its variation) when searching for hybrid error
coding configurations. The remaining parameters are found algorithmically, and hence we make individual contributions with
respect to finding close-to-optimal coding configurations in both of these areas—combining them into a hybrid solution.
DeepSHARQ applies block length regularization in order to reduce the neural networks in comparison to purely learning-
based solutions. The hybrid solution is nearly optimal concerning the channel efficiency of coding configurations it generates,
as it is trained so deviations from the optimum are upper bound by a configurable percentage. In addition, DeepSHARQ is
capable of reacting to channel changes in real time, thereby enabling cyber-physical systems even on resource-constrained
platforms. Tightly integrating algorithmic and learning-based approaches allows DeepSHARQ to react to channel changes
faster and with a more predictable time than solutions that rely only on either of the two approaches.

Keywords Error control · Transport layer · Hybrid error coding · Machine learning

1 Introduction

The natural component of networked cyber-physical sys-
tems (CPS) is resource-constrained devices [1] and dynamic
communication channels that do not provide performance
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guarantees [2, 3]. As a result, fulfilling the application
demands in terms of tolerable delay and packet loss rate,
packet sizes, and sending data rate is a challenging task [1,
4–7]. A changing environment implies frequent changes to
communication parameters [8], such as end-to-end delay,
loss rate, or data rate, meaning that key control functions,
such as congestion [5, 6, 8–10], rate [9], or error control
[11–14], should be able to react quickly enough to adapt to
these changes.

Ensuring reliable and timely communication for these
demanding applications in changing environments is done
using hybrid error coding, often referred to as HARQ [15,
16] (HybridARQ).However, to applyHARQ, an appropriate
coding configuration must be computed based on the given
application and measured channel parameters [13, 17–19].
Under changing conditions, this computation must even be
repeated at regular intervals—incurring non-negligible com-
puting overhead on constrained devices. When applied to
the physical layer of cellular networks [20], typically only
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the code rate, as part of the selected modulation and cod-
ing scheme (MCS), is adapted. The incremental redundancy
follows a fixed schedule with a fixed number and sequence
of redundancy versions (RVs). However, on higher layers,
specifically the transport layer, this parameterization needs
to consider and fulfill application requirements and hence
it is a complex task. Finding this configuration has been
well-understood mathematically for the last decades [17,
18, 21, 22]—including finding optimal configurations that
fulfill application requirements and minimizing redundancy
overhead. However, this task does not allow for a closed-
form representation whose complexity is independent of the
channel parameters. Instead, it is a search problem with a
complexity dependent on its input parameters—e.g., a lin-
ear increase in round-trip time leads to a more than linear
increase of configurations to evaluate. Executing the search
for realistic channel parameters on realistic CPS computing
devices proved intractable [23].

Based on an efficient, but still intractable, reimplementa-
tion of the full search [21], we set out to bring hybrid error
coding to resource-constrained devices. In one branch, we
approached the problem using machine learning [23], in par-
ticular using supervised learning with deep neural networks.
In a second branch, we have been successful in decompos-
ing the search problem in stages and improving individual
stages algorithmically—achieving optimal redundancy effi-
ciency but shorter inference time [24]. In this article, we look
at the decomposed search and combine both algorithmic as
well as learning approaches to build DeepSHARQ: a search
with minimized run-time but high efficiency.

The contribution of this article is threefold:

(a) We describe a decomposition of the HARQ coding con-
figuration search, allowing for optimizations at different
stages.

(b) We implement the search algorithm DeepSHARQ that
leverages both algorithmic and learning-based approaches
to infer efficient coding configurations in real time.

(c) We evaluate DeepSHARQ and compare it against exist-
ing solutions—showing its usability on resource-constr
ained devices.

The remainder of this article is structured as follows:
first, we describe related approaches to our work (Sect. 2)
and give background on error control at the transport layer
of packet networks (Sect. 3). How optimal HARQ config-
urations can be determined is explained in Sect. 4. Our
approach, DeepSHARQ, is described in detail in Sect. 5.
This is extended by a description of the model training
process (Sect. 6) and an evaluation of the search (Sect. 7).
Section8 outlines directions for future research and Sect. 9
concludes the paper.

2 Related work

The end-to-end design paradigm [25] has led to many pro-
posals to complement error coding in the lower layers with
coding at the transport layer in order to improve reliability
without prohibitively increasing the delay [11, 12, 21, 22,
26–30]. Maximum Distance Separable (MDS) block codes
ensure that the number of correctable losses equals the num-
ber of transmitted parity packets. MDS codes have been used
to provide predictable reliability under time constraints [21],
reduce delay in multimedia communication [28], and avoid
feedback implosion in multicast [16, 31]. Despite their high
loss rate floor, and hence a redundancy transmission overhead
to achieve the same performance asMDScodes, binary codes
have also been a mechanism of choice due to their reduced
coding complexity [11, 29, 30]. Finally, making the end-to-
end delay independent of the block length is possible with
windowed Random Linear Codes (RLC), which evenly dis-
tribute the parity packets over the source packets. RLC codes
have proved to reduce the in-order delay, and hence the tail
delay in fully reliable protocols [15, 32]. However, this delay
reduction in RLC codes comes at the cost of lower code rates
than block codes [33], and the run-time complexity of their
matrix inversion function hinders their deployment in pack-
etized layers [29, 34, 35]. Michel et al. [12] have extended
QUIC with the three aforementioned code families, show-
ing that RLC codes achieve the lowest delay. Although, in
this paper, we have opted for block codes, which in principle
have a larger delay, we have done so because i) we imple-
ment a delay-aware scheme, which ensures that the delay
of no packet exceeds the application’s target delay, and ii)
we target code configurations that approach the theoretical
minimum under timing constraints [36] and windowed RLC
codes are limited from the code rate standpoint [33].

Like in almost any other field, the significant advances in
Deep Learning (DL) have made their way into networked
communications [37]—e.g., adaptive video streaming [38,
39], channel state information prediction [27, 40], conges-
tion control [6, 8, 10], and protocol optimization [26, 27,
41]. In the context of error control, Chen et al. [26] use rein-
forcement learning to select the code rate of an FEC scheme
in order to improve the quality-of-experience in the context
of real-time video streaming. Cheng et al. [27], implement an
LSTM network that predicts the future loss pattern in a block
of data packets, and based on it, selects the amount of redun-
dancy to transmit. Hu et al. [19] also use LSTM networks
to predict loss patterns, but propose a model compression
method to enable fast inference and compensate for the large
complexity of LSTM networks.

Non-learning-based approaches have also been proposed
to implement adaptive error control [13, 17, 18, 22]. Tickoo
et al. [22] implement loss-tolerant TCP that uses an adap-
tive FEC scheme based on MDS codes that, similar to our
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approach, adjusts the transmitted redundancy to the channel
characteristics. Adaptive, RLC-based error control is pro-
posed in [17], and the authors show that the proposedmecha-
nism is onparwith pureARQin throughput- anddelay-bound
scenarios. [13] proposes a new code construction for low-
delay stream codes and presents an adaptive algorithm that
outperforms MDS codes. Michel at al. [18] implemented
adaptive FEC in QUIC, and evaluated the algorithm’s perfor-
mance for applications with different requirements, showing
the benefit of FEC over QUIC’s purely reactive error control.

3 Background

Error control is a key function in the most common transport
protocols, as it compensates losses in the lower layers in order
to provide the desired reliability level. This section introduces
the different building blocks in error control.

3.1 Transport layer error control

Networked systems experience packet losses for multiple
reasons, e.g., buffer overflows in congested links, channel
noise, and fading, and medium access collisions. PHY/MAC
layers already implement error correction mechanisms that
transmit some form of redundancy that allows for loss recov-
ery. However, these mechanisms fail to provide predictable
reliability and end-to-end guarantees [20]. Therefore, error
control in the upper layers must complement them [25].

Automatic Repeat reQuest (ARQ) has traditionally been
the scheme of choice in the most widely deployed transport
protocols—i.e., TCP and QUIC. ARQ requires a feed-
back mechanism to signal either the reception of packets
with acknowledgments (ACK) or packet losses with nega-
tive acknowledgments (NAK). TCP implements cumulative
ACKs referring to the last, correctly received byte, whereas
QUIC implements a selective packet-based mechanism in
which every received and processed packet is ACKed.
Although an ACK could be issued for every packet, both
TCP and QUIC implement ACK aggregation mechanisms
that reduce the receiver-side traffic—e.g., see delayed ACKs
in TCP [42] and ACK aggregation in QUIC [43]. On the
other hand, NAKs have been typically implemented for
multicast [44, 45] to avoid the feedback implosion problem—
i.e., the sender in a multicast group is overwhelmed by the
ACKs from all receivers, both in terms of received traf-
fic and processing time [16]. When packet retransmissions
are triggered depends on the implemented loss detection
algorithm [14, 46–48]. TCP was originally designed with
a purely time-based retransmission mechanism. However,
more recent algorithms use duplicate ACKs/NAKs as packet
loss signals as well, which provides faster reactions than
timers at the risk of wrongly deeming a packet as lost due to

Fig. 1 Comparison of the different redundancy transmission schemes
for error control

packet reordering in the network. Regardless of the imple-
mented algorithm, retransmissions are never triggered before
the round-trip time (RTT) that is required to collect feedback
for a packet, and hence we say that ARQ’s delay is RTT-
dependent.

Obtaining feedback is not always possible if i) the applica-
tion’s target delay is not large enough to wait for feedback, or
ii) a feedback channel does not exist (e.g., television broad-
casting). In such cases, Forward Error Coding (FEC) is more
suitable for the task. Unlike ARQ, FEC proactively trans-
mits redundancy information (RI). As no information about
lost packets is available at the time of transmitting the redun-
dancy, FEC must encode parity packets, which are a linear
combination of data packets, so that losses can be recov-
ered by solving a linear equation system at the receiver (see
Sect. 3.2 for a detailed description of how these packets are
encoded). As a result, the loss recovery delay is no longer
RTT-dependent, but it is proportional to the source packet
intervals that the sender must wait to collect packets before
encoding.

As the ARQ and FEC delays differ in nature, it stands to
reason that both approaches should be combined to provide
optimal predictable reliability under delay constraints.When
combined, the optimal balance between proactive (FEC) and
reactive (ARQ) can be found such that the transmitted RI is
minimized. Hybrid ARQ (HARQ) implements precisely that
behavior: parity packets can be transmitted in the proactive or
reactive cycles, and the sender stops transmitting redundancy
when the receiver signals it has enough to recover the losses
or until it is too late to recover them in time. Figure1 provides
a graphical comparison of the three aforementioned schemes.

3.2 Packet coding

When implemented in the transport layer, HARQ trans-
mits parity packets—or, more generally, parity symbols—to
recover the losses. A block code C(n, k) : Fk

q → F
n
q trans-
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forms a message vector �m into a code word �c ∈ C. The finite
field Fq has size q. Typically, the field is selected from the
family of Galois Fields GF(2m) for binary representation,
where m is the number of bits per symbol in the alphabet.
Here, k is the block length—number of symbols in �m—,andn
the codeword length—number of symbols in �c. The symbols
are encoded by performing a matrix–vector multiplication
with the generator matrix G (�c = �m · G). At the receiver,
the original message vector is recovered by performing the
inverse operation ( �m = �̂c · Ĝ−1). Ĝ is a k × k submatrix of
G, whose columns have been selected based on the position
of the received symbols �̂c. Figure2 shows how the encod-
ing operation is performed. We assume a systematic code is
used—i.e., the k × k identity matrix is part of G, and thus
the code word contains a verbatim copy of the message vec-
tor. Systematic codes reduce the coding complexity as only
p = n − k symbols are encoded instead of n, achieve better
error correction capabilities: if the linear system cannot be
solved—e.g., it is undetermined because fewer than k packets
were received—, they can still forward the received verbatim
data without decoding, and they also allow for data transmis-
sion before all the k packets are collected for encoding,which
reduces the end-to-end delay.

While the physical layer performs the coding operation
at the symbol level—i.e., directly in bits—, IP networks are
packetized erasure channels, meaning that full packets are
lost in the network because packets with uncorrectable bit
flips are not forwarded to the upper layer, or full packets
are dropped due to buffer overflows. As a result, HARQ at
the transport layer must be capable of recovering full pack-
ets. Assume an IP packet is MTU 1 bytes long. With virtual
interleaving the packets can be split into smaller symbols
of m bits, k packets are grouped in the interleaver buffer,
and the coding operations are iterated throughout the com-
plete packet length. In [29], we showed that the packetization
directly impacts the complexity of the system: while the
matrix inversion has typically dominated the run-time com-
plexity of coding in the physical layer, the matrix–vector
multiplication dominates the packetized layers. As a result, a
different code constructionmay be the best option depending
on the channel conditions and platform the protocol runs on.

3.3 Code construction

Three different families of codes have been proposed for
the transport layer: MDS [21, 22, 31], binary [11, 29, 30],
and RLC codes [18, 34, 35]. They vary in error correction
capabilities, underlying field size, and generator matrix con-
struction, and they have different algorithmic tools at their
disposal for efficient implementation [31, 49].

1 MTU is the network’s maximum transmission unit of the underlying
medium, e.g., 1,500 bytes in Ethernet.

Maximum Distance Separable (MDS) codes [31] guaran-
tee that the minimum distance between codewords is dmin =
e + 1—i.e., they meet the Singleton Bound with equality—,
where e = n − k is the number of correctable erasures [50].
For this property to hold true, any k×k submatrix of G must
be invertible. The Cauchy and Vandermonde matrices fulfill
this same property, and thus they are frequently used to con-
struct this type of code, usually in GF(28) so that symbols
are one-byte long.

The matrix inversion is, at the symbol level, the main con-
tributor to the run-time complexity. Binary codes [51–53]
overcome this limitation by decoding without an explicit
matrix inversion. However, operating in GF(2) does not
guarantee the invertibility of every square submatrix. As
a result, the loss rate floor is lifted from MDS codes—
conversely, binary codes require excess parity packets to
achieve the same loss rate asMDS codes. It can be shown that
the excess portion of the transmitted redundancy reduces for
very large block lengths [52]. Hence, binary codes have dom-
inated physical layer deployments—e.g., LDPC [51] in 4G
and 5G, or polar [53] codes in 5G—, where such large block
lengths are common. However, they can also perform well
in the transport layer when running on resource-constrained
devices. Since most CPUs do not directly support opera-
tions in high-order Galois Fields, binary codes, which can
be implemented with simple XORs, can significantly reduce
the run-time complexity [29].

Finally, random linear codes (RLC) follow a random code
construction— similar to some binary codes [51, 52], which
actually are a sub-family of RLC codes—, in high-order
Galois Fields to have a high probability of obtaining linearly
independent rows and hence decrease the loss rate floor of
random codes. However, these codes need many resources
for matrix inversion [34, 35], and it is still an open research
question as to whether they can be efficiently used on embed-
ded devices, the natural component of CPS.

In the following, this paper assumes systematic MDS
codes are used. However, the presented algorithms are
code-agnostic as long as the probability of losing a packet
and triggering retransmission rounds (see Eqs. 8 and 2 in
Sect. 4.1) are adapted to model other code’s properties (e.g.,
random binary, polar or RLC codes, and non-systematic
codes).

4 Predictably reliable, delay-aware error
control

Providing predictably reliable, delay-aware error control is
only possible with precise models of the communication
channel, which must be used to find the optimal configu-
ration subject to application and network constraints. In this
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Fig. 2 Encoding process of a
systematic code with a block
length k, p parity packets and a
generator matrix G. Symbols
are packets of MTU bytes

section, we introduce SHARQ, an algorithm that finds the
optimal configuration in polynomial time.

4.1 Problem statement

The performance of every HARQ scheme is governed by two
parameters: the block length k, or howmany data packets are
encoded, and the repair schedule NP , which dictates how the
p parity packets2 are distributed among the NC repair cycles
(see Fig. 3). The objective is to find the HARQ configuration
that minimizes the transmitted RI (see Eq. 1) while meet-
ing the application and network constraints at the same time.
Minimizing the RI is essential for any communication sys-
tem, otherwise resources—i.e., energy and bandwidth—are
wasted due to the throughput increase, which is unfair to
the other systems the communication channel is shared with.
Formally,

k∗, N∗
P = argmin

k,NP

RI (k, NP )

such that : DHARQ(k, NP ) ≤ DT

PLRH ARQ(k, ‖NP‖1) ≤ PLRT

RH ARQ(k, NP ) ≤ RC

which considers three constraints: (i) every data packet
must be received within the application target delay, (ii) the
average number of loss packets cannot be greater than the
application target loss rate, and (iii) the transmission data
rate should not increase beyond the bottleneck data rate of
the communication channel.

The redundancy information is a weighted sum over the
entries of the repair schedule NP (see Eq. 1). The weight is
the probability of that cycle being required:

RI (k, NP )

= 1

k
NP [0]+ 1

k

NC∑

c=1

wR[p[c − 1]] · NP [c] (1)

where p[c] = n[c] − k is the cumulative number of parity
packets until round c and wR[c] the weight for NP [c]—i.e.,

2 The number of parity packets is the 1-norm of the repair schedule
vector (p = ‖NP‖1).

Fig. 3 HARQ delay budget. We analyze the impact of the repair sched-
ule NP on the achievable capacity of HARQ in the transport layer

the probability of cycle c to be triggered in a multicast group
with R receivers.3 Formally,

w[i] =
k−1∑

j=max(0,k−p+i)

(
k + i

j

)
(1 − pe)

j pk+i− j
e (2)

and consequently wR[i] = 1− (1−w[i])R . It can be shown
that, for sufficiently large block lengths, the probability of
triggering a new retransmission in a binary erasure channel
decreases exponentially with the number of cycles. In such
a case, the optimal repair schedule can be straightforwardly
built: NP is an all-ones vector except for the last entry, which
is p − NC + 1. However, in the short block length regime,
such a naive repair schedule construction may be suboptimal
[24]: if the probability of cycle NC − 1 to fail is sufficiently
high, accumulating packets in later rounds approaches FEC
behavior—i.e., all parity packets are transmitted with very
high probability. In such cases, parity packets should be
brought forward to reduce the probability of latter cycles in
the schedule—see Sect. 4.3 for an algorithm that efficiently
finds the optimal schedule.

While the FEC delay Eq. 3 depends on the source packet
interval Ts to collect k data packets before encoding, the
ARQdelayEq. 4 isRTT-dominated due to theACK-triggered

3 For this paper, we limit ourselves to the unicast scenario and therefore
R = 1. Extending the models to consider multiple receivers is left as
future work, for which transfer learning may be an excellent candidate.
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Table 1 Model parameters

Parameter Definition

PLRT Target packet loss rate

DT Target delay

pe Channel erasure rate

RT T Round trip time

Ts Inter-packet time

DPL Loss detection delay

DRS Processing delay

Dtx Transmission delay

RC Channel data rate

PL Packet length

k Block length

p # of parity packets

n Codeword length

NC # of repair cycles

NP Repair schedule

retransmission process.4 The HARQ delay Eq. 5 can be rep-
resented as the combinationof its FECandARQcomponents,
as depicted in Fig. 3. DRS is the response delay of the system
and models operating system delays—e.g., packet manage-
ment or scheduling. Although a more precise adaptation can
be achieved by feeding dynamic response delays into the
algorithm [54], we have opted for a rather conservative con-
stant value (DRS = 1 ms) to reduce the dimensions of the
input dataset—see Sec. 6.1. The model also considers the
upper bound to the time required to detect that a packet is
lost (DPL ), which is the maximum time the system needs to
mark a packet as lost after its transmission and hence deter-
mines when a new retransmission round is triggered. DPL

solely depends on the loss detection algorithm implemented
in the transport protocol [14, 46–48]. For the remainder of
the paper, DPL = 4.5 · Ts , which assumes the mechanism in
[46] is implemented (see Sect. 5.4 for more details on why
this is the case):

DFEC (k, NP ) = RT T + DRS

2
+ k · Ts
+ NP [0] · Dtx (3)

DARQ(NP ) = RT T

2
+ NC (RT T + DRS + DPL)

+ (‖NP‖1 − NP [0]) · Dtx (4)

4 The FEC and ARQ delay expressions here defined assume a symmet-
ric RTT and hence the RT T

2 components. For non-symmetric channels,
more precise timing information can be obtained e.g., by making the
transport protocol time-aware. See [54] for an example of such a trans-
port protocol.

DHARQ(k, NP ) = DFEC (k, NP )

+ DARQ(NP )

− RT T

2
(5)

The error control presented in this paper assumes some
periodicity in the application data arrival—i.e., video stream-
ing with a constant frame rate or sensors in CPS with a
constant sampling rate. Equation5 accordingly considers that
the inter-packet time is constant for the optimization time
window DT . However, the proposedmechanisms can also be
applied to bursty, time-aware traffic: the Ts estimation func-
tion must detect a burst—e.g., when the application does not
provide further data after one Ts—, in which case a new con-
straint is added that caps k to the maximum achievable block
length for such a burst. The model also considers symmetri-
cal network delay for simplicity. However, in the future, we
intend to integrate DeepSHARQ in the time-aware protocol
introduced in [55] to also provide predictable error control
over networks with asymmetrical delays.

The packet loss rate is given in (6), where P(Ik = i)
is the probability of being unable to decode exactly i data
packets—i.e., the loss rate as seen by the application—when
a systematic MDS code is used and b = max(p + 1, i).
Although we have already applied the framework here pre-
sented to channels with memory, such as the Gilbert–Elliot
channel [21], in this paper, we limit ourselves to the more
tractable i.i.d. channels in order to support intuition and plau-
sibility for the reader. This is motivated by the fact that, if the
protocol reacts to channel changes fast enough, the underly-
ing channel can be modeled as a binary erasure channel with
packet loss probability pe:

PLRH ARQ(k, p) = 1

k

k∑

i=1

i · Pr(Ik = i) (6)

Pr(Ik = i) =
p+i∑

e=b

(
n

e

)
· pee · (1 − pe)

n−e · pd
(
e

i

)

(7)

pd

(
e

i

)
=

(k
i

)(n−k
e−i

)
(n
e

) (8)

While the previous two constraints deal purely with appli-
cation constraints, the data rate constraint avoids network
congestion by ensuring that the transmitted data rate (9) is
below the bottleneck data rate of the network RC :

RH ARQ(k, NP ) = (1 + RI (k, NP )) · PL
Ts

(9)

Once the formal model is defined, an algorithm must be
implemented that finds the optimum fast enough to react to
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Algorithm 1 SHARQ
Require: kmax , pmax
Ensure: k∗, N∗

P = argmin
k,NP

RI (k, NP )

p ← pmax
for k = kmax → 1 do

while PLRH ARQ(k, p − 1) ≤ PLRT do
p ← p − 1

end while
NC ← NC,max (k, p)
if NC < 0 then

continue
end if
(NP , RI ) ← graph_search(k, p, NC )

if RI < RI (k∗, N∗
P ) then

(k∗, N∗
P ) ← (k, NP )

end if
end for
return (k∗, N∗

P )

changes within the channel coherence time—i.e., the time
the channel properties remain unchanged.

4.2 SHARQ

ScheduledHARQ (SHARQ) is a search algorithm that, given
the application delay and loss rate constraints, and the chan-
nel state information, finds (k, NP ) that minimizes the RI.
SHARQ’s algorithm—see Alg. 1—takes as input the maxi-
mum block length (kmax ) and the number of parity packets
(pmax ). Given the maximum block lengths allowed by the
delay and loss rate constraints, kmax is the minimum of the
two: kmax = min(kDT

lim , kPLRT
lim ), where

kDT
lim =

⌊
DT − RT T+DRS

2

Ts

⌋

kPLRT
lim = max{k | PLRH ARQ(k, 255 − k) ≤ PLRT }

Given popt (k) = min{p | PLRH ARQ(k, p) ≤ PLRT }
the optimal number of parity packets for a block length k
to fulfill the packet loss rate constraint, it can be shown
that it is a monotonically increasing function. The loss
rate constraint solely depends on k and p—see Eq. 6.
Therefore, as the block length increases, the RI decreases
if p is kept constant: RI (k, p) > RI (k + 1, p). Con-
versely, the PLR increases because the same number of
parity packets carries information from more data packets:
PLRH ARQ(k, p) < PLRH ARQ(k + 1, p). As a result,
popt (k − 1) ≤ popt (k)∀ k ∈ [1, kmax ], with the equality
holding true if the PLR increase is not large enough to sur-
pass PLRT . It directly follows that the maximum number
of parity packets is pmax = popt (kmax ). Due to the mono-
tonically increasing nature of the PLR, kmax and pmax can
be found with a binary search with a run-time complexity
O(m · CPLR), with m the number of bits per symbol in the

Galois Field, and CPLR = O(k + log(p)) the complexity of
obtaining the PLR (see Appendix A for more details on the
PLR complexity).

If (k, p) is known, NC can be directly obtained: as long as
there are enough p’s to fill later cycles and the delay budget
allows it, this cycle can only reduce the RI because every
newly transmitted parity packet reduces the probability of
later cycles. Therefore, NC can be directly obtained as the
maximum number of cycles that fit in the remaining of the
delay budget:

Nc,max (k, p) =
⌊DT − k · Ts − p · PL

RC
− RT T+DRS

2

RT T + DRS + DPL

⌋

SHARQ clearly decouples the delay and PLR constraints,
resulting in a more structured and efficient exploration of the
search space. For every block length, p solely depends on
the PLR constraint, whereas NC solely depends on the delay
constraints. Finally, the graph search in Sect. 4.3 is used to
find the optimal NP . The graph search has run-time complex-
ity CGS = O(p2NC ), and hence the run-time complexity of
the SHARQ search algorithm is inO(NC,max · kmax · p2max ).

4.3 Graph search

Algorithm 2 Graph Search
Require: k, p, NC
Ensure: N∗

P = argmin
NP

RI (k, NP )

obtain wR

initialize D[x, y] to ∞ for 0 ≤ x ≤ p and 0 ≤ y ≤ NC
lower ← 0; upper ← (p − NC )

for x = lower → upper do
D[x, 0] ← x ; Parent[x, 0] ← x

end for
for y = 1 → NC do

increase lower and upper by 1
for x = lower → upper do

for x ′ = (lower − 1) → x − 1 do
step ← x − x ′
current ← D[x ′, y − 1] + step · wR[x ′]
if current < D[x, y] then

D[x, y] ← current
Parent[x, y] ← step

end if
end for

end for
end for
x ← p
for y = NC → 0 do

step ← Parent[x, y]
N∗
P [y] ← step

decrease x by step
end for
RI = 1

k · D[p, NC ]
return (N∗

P , RI )

123



290 Journal of Reliable Intelligent Environments (2023) 9:283–301

The objective of the graph search algorithm is to find the
schedule NP with minimum RI, given a (k, p) pair and NC .
As seen in Eq.1, the RI is a weighted sum over the entries
of NP . Each weight is the probability that the correspond-
ing retransmission round is required. This structure creates
a trade-off: packets in the later rounds are less likely to be
transmitted and hence have a lower cost in terms of RI. How-
ever, putting fewer packets into the early rounds increases the
probability that the later rounds are needed.

The key observation to efficiently find the optimal sched-
ule is that the weight for round c only depends on the number
of packets in rounds before c, but not how they are scheduled.
In other words, if we have already scheduled x packets into
y rounds, the cost of assigning dx packets to the next round
is the same regardless of how the x packets were scheduled
before. This structure can be expressed as a graph Eq. 10:

G = (V , E, wE )

V = {start} ∪ {
(x, y) | 0 ≤ x ≤ p, 0 ≤ y ≤ NC

}

E = {
(start, (x, 1)) | 0 ≤ x ≤ p − NC

}

∪ {
((x ′, y), (x, y + 1)) | 0 ≤ y < NC − 1

∧ x − x ′ ≥ 1 ∧ y ≤ x ′ ≤ p − NC + y
}

∪ {
((x, NC − 1), (p, NC )) | NC − 1 ≤ x < p

}

(10)

with edge weights reflecting the RI cost Eq. 11:

wE (((x ′, y − 1), (x, y))) = 1

k
· wR[x ′] · (x − x ′),

wE ((start, (x, 1))) = 1

k
· x

(11)

The edges are chosen to enforce that every retransmission
round (i.e., NP [c] for c > 0) is assigned at least one packet.
Consequently, we also need to ensure that we do not assign
toomany packets to one round, as we need at least one packet
for every following round. An example of the resulting graph
is shown in Fig. 4.

Each path through the graph from the start node to
(p, NC ) corresponds to a schedule. Since the edge weights
are equal to the required RI, the schedule achieving the min-
imal RI corresponds to the shortest path. This graph can be
computed using a dynamic programming approach, shown in
Alg. 2. For each layer, we relax the nodes between the lower
and upper bound for the number of packets admissible for
the corresponding round as per the restriction above.We store
both the minimum distance in D and a parent pointer, allow-
ing us to reconstruct the shortest path in the end.

The edge weights can be obtained in O(p). Each layer
has O(p) nodes with O(p) predecessors each. Since there
are NC layers, the time complexity is O(p2NC ).

Fig. 4 Graph for p = 6 and NC = 3. Each path represents a choice
of NP . The edge weights are set such that the NP with the lowest
RI corresponds to the shortest path. The highlighted edges represent
NP = [0, 3, 1, 2]

5 DeepSHARQ

Based on SHARQ’s search structure, DeepSHARQ applies
learning algorithms to estimate the block length and imple-
ments a simple schedule construction to reduce the run-time
complexity compared to algorithms that use purely learning
and algorithmic solutions.

5.1 Design principles

DeepSHARQ is designed with two main principles in
mind: i) in contrast to purely learning-based approaches,
DeepSHARQ exploits SHARQ’s search structure to sim-
plify the learning problem, thereby requiring smaller neural
networks to achieve similar inference accuracy, and ii)
DeepSHARQ relaxes the optimality constraint to achieve
predictably low inference times.

SHARQ quickly finds p with a binary search and NC

with a closed-form expression. Thanks to SHARQ’s struc-
tured search, it becomes apparent that the iteration over all
possible block lengths and the graph search are responsi-
ble for most of the inference time. DeepSHARQ tackles the
problem by inferring the block length with a neural network
and using a simple repair schedule construction that, despite
being suboptimal, does not produce significant RI increases.

5.2 Output space regularization

The quantization of the output space makes small variations
in the input produce significantly different block lengths in
the output—e.g., how to use an increase in the delay budget?
It is possible that the extra time is enough to use yet another
retransmission cycle, which may significantly drop the max-
imum block length that fits in the remaining time. Figure5
shows how significant the block variations are. For each of
the figures, a different input parameter is linearly increased,
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Fig. 5 Optimal block length as a function of the input parameters show-
ing the output space does not react smoothly to small changes in the input
space. A different input parameter is linearly increased in each figure,
while the baseline is kept constant (PLRT = 0.0001, DT = 400 ms,

RC = 6 Mbps, pe = 0.001 and Ts = 5 ms). Particularly, it can be
observed how linearly increasing pe produces a quasi-random behavior
in the output

while the baseline is kept the same (PLRT = 0.0001,
DT = 400 ms, RC = 6 Mbps, pe = 0.001 and Ts = 5 ms).
Changes in DT , PLRT , and Ts produce relatively smooth
variations in k that could be easily learned. However, a linear
increase in pe results in a quasi-random behavior in the opti-
mal block length. Although the block length variations may
differ for other application and channel models, Fig. 5 clearly
illustrates how difficult learning the output space can be.
We propose a different training mechanism that tackles this
problem by simplifying the output space via regularization.
Instead of predicting the optimal label for each configura-
tion, we train networks that predict any block length out of
a set of valid block lengths. The set of valid k’s is selected
so that the RI deviation from the optimal RI is within certain
limits. Formally, given the set Kv of all block lengths that
fulfill the requirements—see Sect. 4.1—, the neural network
is allowed to predict any block length in the set Kδ

v ⊂ Kv

such that RI (k, popt (k)) ≤ (1 + δ) · RIopt ∀ k ∈ Kδ
v .

5.3 Repair schedule construction

It can be proved that, when error control is provided without
any timing constraints, the probability of decoding failure
decreases exponentially with every newly transmitted par-
ity packet. The repair schedule in such a case is an all-ones
vector so that the contribution of every new packet to the
RI decreases exponentially as well—see Eq. 1 in Sect. 4.

SHARQ’s simple schedule is based on this theoretical opti-
mum: for NC = 0, p packets are transmitted in the FEC
cycle, whereas for NC ∈ [1, p] the FEC cycle is set to 0,
followed by the all-ones and p − NC + 1 in the last cycle.
Despite being suboptimal [24], such a naive repair schedule
has the advantage that it can be constructed in O(1) and, as
we prove in Sect. 7.3, theRI increase it produces is negligible.

5.4 System architecture

DeepSHARQ’s pipeline is depicted in Fig. 6, where the neu-
ral network has 4 hidden layers with 150 neurons and leaky
ReLU activation function, and a softmax output layer (see
Fig. 7). DeepSHARQ inherits some of its algorithmic com-
ponents from SHARQ [24], namely the binary search for p,
the closed-form expression for NC , and the constraint fulfill-
ment check once the configuration is found in order to notify
the application that the channel supports its requirements. On
the other hand, the graph search in Sect. 4.3 is substituted by
the simple repair schedule construction in Sect. 5.3, so that
the run-time complexity of finding the schedule is reduced
from O(p2max NC,max ) to O(1), and the block length selec-
tion goes from a full search for k ∈ [1, kmax ] in SHARQ to
neural network prediction with run-time complexity O(1)
in DeepSHARQ. As a result, the major contributors to
DeepSHARQ’s complexity are the binary search for p, with
O(m · (kmax + log(pmax ))), and the RI calculation, with
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Fig. 6 Architecture and Information Flow for the different SearchAlgorithms. Each column represents one algorithm implementation.M represents
a data structure that includes the application constraints and channel model

O(kmax + pmax ). Here m is the maximum number of steps
in the binary search, which directly depends on the num-
ber of elements in the employed Galois Field GF(2m)—see
Sect. 3.2. In the transport layer, m = 8 so that symbols
are one-byte long and kmax = pmax = 2m ,5 resulting in
DeepSHARQ’s run-time complexity O(m · kmax + pmax ).
Table 2 shows how the run-time complexity of the search
has been reduced with every newly proposed algorithm.

Although DeepSHARQ has not been designed for a spe-
cific transport protocol, it assumes the implemented transport
layer functions fulfill certain requirements. In the following,
we describe such assumptions and how DeepSHARQ inter-
acts with the other transport functions.

Loss detection

DeepSHARQ triggers the repair cycles in the schedule NP

if losses are detected in a block. This paper assumes the
algorithm presented in [46] is implemented, which main-
tains a packet loss count at the receiver that is increased if

5 Given a systematic code in GF(2m), it is theoretically possible to
construct a (kmax , pmax ) with kmax = pmax = 2m . However, the MDS
coder implementation considered in this paper enforces the code (k, p)
to fulfill that k + p ≤ 2m . Therefore, both variables must be indepen-
dently treated in the complexity analysis.

Fig. 7 DeepSHARQ’s neural network architecture

(i) an out-of-order packet arrives, or (ii) a packet timeout
expires. The timeout is configured between 1 and 2 times
the inter-packet time (Ts). A new cycle is triggered when the
loss count reaches a configurable threshold. The higher the
threshold, the higher the algorithm’s robustness against in-
network packet reordering. For time-bound scenarios with
target delays in the same orders of magnitude as the RTT and
Ts (see Table 3), packet reordering is equivalent to packet
losses if the packets arrive outside of the time budget—i.e.,
DT milliseconds after the transmission of the first packet in
the block. Therefore, packet reordering has little impact in
such scenarios. We consider a low threshold of three loss
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Table 2 Search algorithms
run-time complexity

Algorithm Complexity

Fast Search O(N 2
C,max k

2
max · max(kmax pmax , p2max , NC,maxkmax , NC,max pmax ))

DeepHEC O(NC,max kmax · max(kmax pmax , p2max , NC,maxkmax , NC,max pmax ))

SHARQ O(NC,max kmax p2max )

DeepSHARQ O(m · kmax + pmax )

counts and a packet timeout of 1.5 × Ts , which results in
DPL ≤ 4.5 · Ts . The delay model in Sect. 4.1 considers
the worst-case detection delay to ensure the parity packets
arrive at the receiver in time. Recently, new algorithms have
been proposed that perform better in channels with signifi-
cant packet reordering [47, 48]. In future work, we plan to
integrate more recent algorithms into our model for faster
and more accurate loss detection.

Congestion control

DeepSHARQ ensures the transmitted data rate does not
exceed the channel data rate (see Eq.9 in Sect. 4.1). How-
ever, it does not implement any mechanisms to sample the
bottleneck data rate and ensure it is not exceeded but relies
on congestion control for that. Congestion control is avail-
able in most transport layer protocols because it is key for
a fair share of the available network resources. Although
DeepSHARQ is congestion-control-agnostic and it could in
principle coexist with any of the many proposed algorithms,
we recommend BBR-like algorithms [9, 54] that try to oper-
ate at the Bandwidth-Delay Product (BDP). Operating at the
BDP is crucial for CPS as it keeps network buffers empty,
thereby minimizing the end-to-end delay while the data rate
is close to the bottleneck data rate.

Channel estimation

DeepSHARQ’s ability to fulfill the application requirements
depends on the precision of the estimated channel model.
Another benefit of implementing BBR-like congestion con-
trol is that it provides an estimate of two of DeepSHARQ’s
input parameters: RT T and RC [56]. An estimation of the
remaining parameter, the channel loss rate, is proposed in
[21], which uses gaps in the data stream to estimate pe. In
addition, the tolerated delays in CPS are so small that they are
typically in the sameorder ofmagnitude as the channel coher-
ence time, or even smaller. In other words, the channel can be
considered constant during the time budget and [21, 56] pro-
vide an estimation precise enough for most IP deployments.
Nevertheless, fast-changing, dynamic channels can have a
coherence time in the single-millisecond range which pose
a more challenging scenario. Machine-learning-based solu-
tions seem promising for such a small granularity as well [26,

27]. We believe this is an interesting parallel research path
that could enable DeepSHARQ even in the most demanding
channels.

6 Model training

Finding the right hyperparameters is essential to achieve
good performance in data-intensive tasks. This section ana-
lyzes the different components used in the learning process
to shed some light on the model selection process, as well as
to ensure the results are reproducible.

6.1 Dataset generation

We have designed the dataset with two objectives in mind:
i) it must represent current deployments faithfully, and ii) it
must generalize for any of the included deployments. The
model uses six input parameters:

• Application parameters: target erasure rate PLRT , target
delay DT , and source packet interval Ts .

• Network parameters: channel data rate RC , channel era-
sure rate pe, and round-trip time RT T .

We have considered traces obtained in the wild for the
most common network deployments—i.e., broadband,6 4G
[57], 5G [58, 59], and WiFi [60, 61] deployments. For
application-related parameters, we have used delay and
reliability constraints of traditional [62]7 as well as more
demanding applications still under deployment [7, 63]. For
eachof the parameters, an order ofmagnitude is selected from
Table 3 with equal probability, and a randomly selected num-
ber between 1 and 9 is prepended to that order of magnitude.
Finally, Alg. 1 is executed for the input with a slight mod-
ification: not only the optimal block length kopt is logged,
but kmin and kmax are also obtained, which respectively are
the minimum and maximum block lengths that ensure the
RI only deviates δ from the optimal RI (see Sect. 5.2). The

6 Federal Communications Commission, “Raw Data - Measur-
ing Broadband America”, https://www.fcc.gov/oet/mba/raw-data-
releases, 2020.
7 Youtube, “Recommended upload encoding settings”, https://support.
google.com/youtube/answer/1722171?hl=en, 2021.
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Table 3 Selected orders of magnitude for the generation of the param-
eter dataset

Parameter Orders of Magnitude Unit Reference

PLRT 10−3, 10−4, 10−5 Rate [62]

DT 100, 101, 102 ms [7, 62, 63]

pe 10−1, 10−2, 10−3, 10−4 Rate [59, 60]

RT T 100, 101, 102 ms [59, 61]

RC 10−1, 100, 101, 102, 103 Mbps [57, 59, 61]6

Ts 10−1,100, 101 ms 7

complete dataset consists of 2.5 million inputs, 42.4% of
which do not have an empty solution space—i.e., there is
at least one configuration fulfilling all the constraints at the
same time, see Sect. 4.1. The neural networks have only been
trained with these 1,060,527 inputs without an empty solu-
tion space, split into training (60%), validation (20%), and
test (20%) sets. Such a dataset simplification reduces the time
and resources spent in training without a negative impact on
the system’s performance, as DeepSHARQ nevertheless dis-
cards any predicted k that does not meet the constraints.

The models in Sect. 4 consider other three parameters that
are not included in the dataset: the packet length PL , the pro-
cessing delay DRS , and the loss detection delay DPL . We
assume the packet length is fixed to the MTU, and hence
PL = 1, 500 bytes. We also considered a rather conserva-
tive constant value for the processing delay DRS = 1 ms to
reduce the dimensions of the dataset. Finally, DPL is linearly
dependent on Ts , and hence it adds no new information as an
input.

6.2 Loss definition

Unlike common classification problems, in which the neural
network learns the mapping from the input to a single valid
output, DeepSHARQ’s neural network is trained to accept
as correct any label within a range. Therefore, we propose
a new loss that accounts for the fact that the true label is
a set and not a single value. Given the true label ki , and
the neural network prediction k̂i , the proposed loss is based
on the binary cross-entropy H(ki , k̂i ), which is defined as
follows:

H(ki , k̂i ) = p[ki ∈ Kδ
v] · log(p[k̂i ∈ Kδ

v])
+ (1 − p[ki ∈ Kδ

v]) · log(1 − p[k̂i ∈ Kδ
v])

where p[k̂i ∈ Kδ
v] is the probability that the neural network

predicts any block length that belongs to the accepted range,
and p[ki ∈ Kδ

v] = 1 because the true label always belongs
to that range by definition:

L(k, k̂) = − 1

N

N∑

i=1

log(p[k̂i ∈ Kδ
v]) (12)

The loss L(k, k̂) in Eq. 12 is evaluated for every batch of
size N . In Sect. 7, we show that this loss allows the model
to correctly learn the mapping from input parameters to any
label in the set of valid labels.

6.3 Ablation study

Tuning the learning rate hyperparameter is instrumental to
successfully training neural networks. PyTorch implements
various learning rate policies that can be configured to sched-
ule the learning rate, such as plateu8 or super-convergence9

[64]. Both policies benefit from large maximum learning
rates that allow for a longer exploration phase and low
learning rates to fine-tune the model weights. The super-
convergence scheduler begins with a rising phase that goes
from start_lr to max_lr , after which it decays towards
end_lr , which is substantially lower than start_lr . The
plateau learning rate policy monitors the validation loss
to estimate the effectiveness of the current learning rate
(i.e., if after patience epochs the validation loss did not
decrease by at least threshold amount, it decays the learn-
ing rate by a constant f actor until the min_lr has been
reached). The super-convergence policy requires an opti-
mizer with momentum, and hence we trained all the models
with momentum-enabled stochastic gradient descent. Super-
convergence varies the momentum between 0.85 and 0.95,
while it is constant at 0.9 for plateau.

Figure8 shows both policies’ accuracy and learning rate
evolution with DeepSHARQ’s neural network limited to
1,000 epochs. The plateau policy reaches lower learning rates
faster than super-convergence resulting in higher initial accu-
racy, but convergence towards lower accuracy in the second
half of the training. On the other hand, super-convergence
surpasses plateau in accuracy for the last hundred epochs
due to its extended high learning rate exploration phase.
We selected super-convergence with max_lr = 0.04, as it
achieves the best performance.10

Training themodels for 1,000 epochs takes approximately
24h on a PC with an Intel Core i7-7700 CPU at 3.6 GHz
and 8 cores, with an average core load of approximately
50%. The main bottleneck is the calculation of the loss func-
tion in Sect. 6.2, which, unlike the traditional cross-entropy
loss, must be independently evaluated for every sample in

8 https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.
ReduceLROnPlateau.html.
9 https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.
OneCycleLR.html.
10 Results for max_lr = 0.05 or higher are not included, as such large
learning rates overshoot and achieve worse performance.
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Fig. 8 Validation accuracy and learning rate evolution for different
learning rate policies. Three maximum learning rates have been used
for super-convergence (i.e., 0.02, 0.03, and 0.04), whereas patience (10
and 15) and learning rate reduction factors (0.7 and 0.8) have been used
for plateau

the batch because every input may consider a different Kδ
v

set. However, the significantly smaller models (see Sect. 7.2)
counteract the impact of the longer training phase when
DeepSHARQ is deployed at scale on a significant number
of end devices. In addition, thanks to the broad set of chan-
nels and applications considered in Sect. 6.1, DeepSHARQ is
readily deployable on the most common networks nowadays
without a lengthy re-training for fine-tune adaptation.

Table 4 presents the ablation study we performed to select
the final hyperparameters. All the presented results are for
models trained for a range of valid labels for δ = 0.3 (see
Sect. 6.2). The regularization factor is a key parameter for
super-convergence, as high learning rates already act as a
formof regularization [64] and, combining itwithL2 regular-
ization with a high factor can be detrimental for performance
(see Table 4 rows 2 and 6). We also tested multiple epochs

Table 4 Ablation study. The super-convergence learning rate policy
with max_lr = 0.04 has been used for all the models. The accuracy is
calculated for a range of valid labels and δ = 0.3

# of Parameters Layers Neurons Epochs Reg. Factor Accuracy

56,856 4 100 1000 10−5 99.24

56,856 4 100 1000 10−4 97.21

107,656 4 150 1000 10−5 99.57

107,656 4 150 1000 10−4 97.20

107,656 4 150 500 10−5 98.99

107,656 4 150 1500 10−5 99.77

213,656 5 200 1000 10−5 99.9

317,006 5 250 1000 10−5 99.94

and selected 1,000 as it strikes the right balance between
good performance and training time.

For DeepSHARQ, we have selected the model with 4 hid-
den layers and 150 neurons because, for the selected δ, it
achieves a good compromise between accuracy and model
size. However, the method here proposed is flexible enough
to allow for different model selections: while a large model
with close-to-optimal accuracymaybe a goodoption onpow-
erful PCs, smaller models—e.g., using larger δ’s, and hence
at the cost of an RI increase—may be desirable for resource-
constrained platforms.

7 Evaluation

In the following, we evaluate the newly proposed neural net-
work approach, as well as DeepSHARQ’s real-time response
to channel changes.

7.1 Methodology

All the models evaluated in this section have been trained
following Sect. 6 and PyTorch 1.12.1. Only the test dataset
has been used to generate the accuracy and Cumulative Dis-
tribution Functions (CDF) here presented, and the algorithms
have been executed on a PC running Ubuntu 22.04 LTS on
an Intel Core i7-7700 CPU at 3.6 GHz and 32 GB RAM. For
inference time evaluation, the PyTorch-trained models have
been ported to TensorFlow 2.11 using the TensorFlow Back-
end forONNX11 and executedwith TensorFlowLitewith the
tflite12 Rust crate. Twodifferent neural networks are con-
sidered: i) kopt , trained to predict the optimal block length,
and ii) krange, trained to predict any block length in a range
of valid block lengths—see Sect. 5.

7.2 Model performance

Figure9 compares kopt and two krange versions (δ = 0.1
and δ = 0.3) in terms of validation accuracy and loss.
The models were trained for 1,000 epochs, using the super-
convergence learning rate policy configured with max_lr =
4 · 10−3, start_lr = 2 · 10−2, and min_lr = 2 · 10−9.
The smoother output space allows the models to faster con-
verge towards high accuracy—conversely, low loss–, and
experience a lower variance within the high learning rate
in super-convergence—see Sect. 6. This result is somehow
expected since more labels are accepted as “correct” for
krange models, and hence the accuracy as defined in the learn-
ing process is increased. However, extending the range of

11 https://github.com/onnx/onnx-tensorflow.
12 https://crates.io/crates/tflite.
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Fig. 9 Evolution of the validation accuracy and loss for a neural network with 4 hidden layers with 150 neurons each

Fig. 10 Model test accuracy as a function of the number of parameters.
Four models are depicted with different hidden layers and neurons:
(4,100), (4,150), (5,200), and (5,250)

valid labels also improves the model performance from an
information theoretical standpoint (see Fig. 10). If a valid
configuration is defined as any configuration with an infor-
mation rate below the time-bound channel capacity—i.e.,
any configuration meeting all the constraints—then krange
models are able to find more valid configurations over the
test dataset the larger the range of valid labels is. Such a
trade-off betweenRI optimality andmodel size is particularly

beneficial for resource-constrained devices, in which the bot-
tleneck is the CPU rather than the network, both in terms of
processing speed and energy consumption [29], especially
when connected to 5G networks [59]. In contrast, the Deep-
HEC model presented in [23] needs 5 hidden layers with
250 neurons each to reach 99.59% valid configurations in
the test dataset. Bear in mind the aforementioned DeepHEC
model predicts k, p and NC with 99.75%, 99.82%, 99.94%
accuracy, respectively. In other words, DeepHEC needs
3.54× more parameters than DeepSHARQ (i.e., 107,656
DeepSHARQ vs. 381,63 DeepHEC) in order to support the
same configurations.

7.3 The cost of optimality

DeepSHARQ slightly deviates from the optimization prob-
lem defined in Sect. 4.1, as it introduces two sources of
suboptimal configurations: i) the neural network, which can
either be directly trained to allow for suboptimal block
lengths, or produce misclassifications even when trained to
predict the optimum, and ii) the simple schedule construc-
tion. Figure11 compares kopt with 5 layers, 250 neurons, and
krange with 4 layers, 150 neurons, each model implementing
two different repair schedule constructions: the graph search

Fig. 11 Cumulative Distribution Function (CDF) of DeepSHARQ’s inference time (log scale), absolute data rate increase (log scale), and data rate
increase as a percentage of the optimum data rate (linear scale)
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Fig. 12 Cumulative Distribution Function (CDF) of the inference time.
DeepSHARQ’s neural network has 4 hidden layers and 150 neurons
per layer, and it has been trained with a dataset ensuring that RI =
(1 + δ) · RIopt with δ = 0.1

Table 5 Mean, median, standard deviation, and 99th percentile of the
inference time in microseconds for the different algorithms

Algorithm Mean Median SD 99th per.

DeepSHARQ 20.11 19.09 7.48 39.18

DeepHEC 57.40 48.63 233.21 151.34

SHARQ 462.8 363.74 388.07 1.88 × 103

Fast Search 111.09 × 103 50.287 528.94 × 103 2.5 × 106

in Sect. 4.3 (graph) and the simple repair schedule in Sect. 5
(simple). The results show that allowing for suboptimal con-
figurations reduces the tail and average inference time, and
increases its predictability. SHARQ’s graph search for opti-
mal repair schedules results in a long tail in the inference time
due to its quadratic complexity, while increasing the unpre-
dictability of the system at the same time. On the other hand,
krange reduces the average delay by 40% in comparison to
kopt due to the smaller NN.

The faster inference time comes at the cost of a data rate
increase. As expected, kopt produces no increase in signifi-
cantly more cases than krange—69% vs. 32%. However, in
both cases, the increase is below 100 kbps in 87%of the cases
and below 1 Mbps for the 97th percentile, and thus they do
not seem prohibitively large when looking at the data rates
in current deployments [57, 59, 61]. When it comes to the
tail data rate increase, kopt performance is worse than krange,
which shows that learning a range instead of a single label
acts as a regularization mechanism that improves general-
izability. Finally, although the graph search makes a slight
difference for kopt , it does not make any significant differ-
ence for krange, which further supports the design decision
of opting for a suboptimal but faster scheduler.

7.4 Inference time

Figure12 comparesDeepSHARQ’s inference timewith three
previously published algorithms: SHARQ [24], Fast Search
[23], and DeepHEC [23]. Although Fast Search outperforms
any other model in 43% of the cases, it also has a tail delay—
i.e., the largest inference time experiencedby the algorithm—
6 orders of magnitude higher than DeepSHARQ’s. The three

other models trade some inference time in the lower per-
centiles to provide a much more predictable inference time
over the complete dataset.More precise statistics on the infer-
ence time are collected in Table 5, which shows that not only
DeepSHARQ outperforms the other algorithms in terms of
the mean and median inference time, but its standard devia-
tion is at least two orders of magnitude smaller.

SHARQshows that a purely algorithmic solution is able to
achieve high predictability. However, deep learning solutions
are the only ones able to consistently achieve low delay—see
DeepHEC and DeepSHARQ. DeepSHARQ outperforms all
other models in terms of tail inference time and predictability
thanks to i) its smaller neural network, which is the compo-
nent consuming most of the delay budget, and ii) its simple
schedule, which avoids spending precious time in finding a
better schedule that nevertheless produces no significant RI
reduction—see Sec. 7.3.

The results presented here show that modeling the prob-
lem purely with deep learning results in excessively large
models. DeepHEC learns (k, p, NC ), and hence needs larger
neural networks to achieve similar performance in terms of
supported coding configurations (5 hidden layers and 250
neurons per layer, see [23]). DeepSHARQ halves the infer-
ence time compared toDeepHEC, and its tail delay is an order
of magnitude smaller. The repair schedule construction is
the only algorithmic component that remains in DeepHEC.
Although it could be learned as well—e.g., applying rein-
forcement learning—, the neural network is expected to grow
even larger due to the increased complexity of the problem
to solve. Combining both approaches, which DeepSHARQ
does, simplifies the problem enough for small neural net-
works to learn it while minimizing the time spent to derive
the remaining parameters and the verification of the con-
straint fulfillment. DeepSHARQ’s average inference time
is an order of magnitude smaller than the end-to-end delay
requirements of tactile applications [7], so that it can react
to channel changes faster than they are detected even for
the most demanding applications delay-wise. Two orders
of magnitude until the target delay of the most demanding
applications is reached leaves plenty of room for increased
inference time when the algorithm is executed on more con-
strained devices.

8 Future work

While initial works have evaluated the coding configura-
tion search in a concrete transport protocol [21], this and
other recent articles looked at the search problem in isola-
tion. Future work would be to integrate DeepSHARQ into
existing transport layer protocols (e.g., QUIC [43] or CoAP
[65]) and evaluate the performance under changing channel
conditions. These practical evaluations would evaluate the
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ability of the protocol to meet the application constraints in a
changing environment, and they would also involve the use
of embedded devices—testing if they are capable to run the
search in real time. In addition, we intend to further integrate
DeepSHARQ with state-of-the-art loss detection algorithms
[47, 48].

In [29], we proved that a priori there is no single code that
is optimal in terms of energy efficiency, but this depends on
the hardware it is executed on, as well as channel conditions
and application requirements. Given the recently increasing
interest in energy-aware systems [66, 67], a further line of
research would involve making DeepSHARQ energy-aware
as well. This involves changing the search problem to incor-
porate energy as an input metric, i.e., an application-defined
energy limit per application packet, and an outputmetric, i.e.,
how much energy a coding configuration demands.

From a theoretical communication perspective, a further
line of research involves results on finite block coding [36].
These results allowcomputing the optimal block length based
on channel parameters. Central to this is, however, the com-
putation of the dispersion metric—something that has not
been done practically in network protocols.

9 Conclusion

In this article, we presented DeepSHARQ, an approach to
finding optimal hybrid error coding configurations in real
time. Coming from the (computationally complex) search
problem, we presented a decomposed search algorithm that
improves the complexity of the algorithm using algorith-
mic as well as learning-based methods. We propose a new
training methodology that, exploiting the quantized nature
of the HARQ configurations, improves the neural network
performance in learning (i.e., achieved accuracy) as well
as communication (i.e., yielded configurations supported
by the channel capacity) terms. Our evaluations show that
DeepSHARQ is delivering both on the efficiency of the
inferred configurations as well as on being fast in executing
the inference. To the best of our knowledge, this is the best
approach so far to finding coding configurations and makes
it possible to execute this demanding task on devices with
limited resources—a common trait of cyber-physical system
hardware.
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Appendix A

The run-time complexity of the HARQ packet loss rate in
Eq. 6 can be reduced to linear complexity if some optimiza-
tions are taken into account. Splitting the PLR into the two
components in Eq. A1, it can be shown that each of the
components can be calculated inO(kmax + log(pmax )) (see
Eq. A2 and Eq. A4). Bear in mind that the derivations here
presented do consider the alternative expression for the prob-
ability of i packet losses in systematic MDS codes presented
in Eq. A5:

PLRH ARQ(k, p) =
1

k

min(k,p)∑

i=1

i · Pr(Ik = i)

︸ ︷︷ ︸
PLR1(k,p)

+ 1

k

k∑

i=p+1

i · Pr(Ik = i)

︸ ︷︷ ︸
PLR2(k,p)

(A1)

PLR1(k, p) = pp
e (1 − pe)

k
min(k,p)∑

i=1

i ·
(
k

i

)
· PSp(p, i)

(A2)
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Algorithm 3 PLR
Require: k, p, pe
Ensure: PLR = 1

k

∑k
i=1 i · Pr(Ik = i)

psp ← 0
plr1 ← 0
for i = 0 → min(k, p) do

plr1 ← plr1 + i · (k
i

) · psp
psp ← pe

1−pe
· (( p

p−i

) + psp
)

end for
plr1 ← plr1 · pp

e · (1 − pe)k

plr2 ← 0
if p ≤ k then

pow ← pp
e · (1 − pe)k−p

for j = p + 1 → k do
pow ← pow · pe

1−pe

plr2 ← plr2 + j · (k
j

) · pow
end for

end if
return (plr1+plr2)

k

PSp(p, i) = pe
1 − pe

((
p

i

)
+ PSp(p, i − 1)

)
(A3)

PLR2(k, p) = 1

k

k∑

i=p+1

i ·
(
k

i

)
pie(1 − pe)

k−i (A4)

Pr(Ik = i) =
{(k

i

)
pie(1 − pe)k−i i > p(k

i

)∑i
f =1

( p
p−i+ f

)
pp+ f
e (1 − pe)k− f i ≤ p

(A5)

The complete algorithm to obtain the PLR is shown in
Alg. 3, where PSP (p, 0) = 0.
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