
Journal of Reliable Intelligent Environments (2024) 10:73–91
https://doi.org/10.1007/s40860-023-00202-y

ORIG INAL ART ICLE

Formal verification for security and attacks in IoT physical layer

Zinah Hussein Toman1,2 · Lazhar Hamel3 · Sarah Hussein Toman1,2 ·Mohamed Graiet4 ·
Dalton Cézane Gomes Valadares5

Received: 23 June 2022 / Accepted: 22 March 2023 / Published online: 6 May 2023
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023

Abstract
IoT devices are more important than ever. In a connected world, IoT devices have many uses. They are no longer merely used
at work; they are part of our everyday lives. Security concerns arise if the devices generate, collect, or process sensitive data.
Physical layer security controls are the cornerstone once the risk for humans increases when physical security fails. To achieve
security in IoT devices, preventing is better than detecting. Formal verification is an important and valuable tool for detecting
possible vulnerabilities and ensuring data security. Thus, this paper proposes an Event-B proof-based formal model of IoT
physical layer security and attacks from the requirements analysis level to the goal level. Our model is built incrementally
using a refining method during design and verification. We present a three-level formal approach: first, the construction of the
IoT physical layer; then, we check for IoT physical layer vulnerabilities by processing the lack of some characteristics that
cause these vulnerabilities, such as speed, typical bandwidth, and power consumption; lastly, we detect physical layer attacks
like jamming and MAC spoofing, which helps to build security proofs. Our approach uses an electrocardiogram (ECG) IoT
system as a case study, and as an additional case study to back up the proposed method’s generalizability, we used a fire alarm
system. Also, we use the proof obligations and the ProB animator in the Rodin model checking tool to check and validate our
approach.
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1 Introduction

The Internet of Things (IoT) is a term that refers to physical
things connected to the Internet and their virtual repre-
sentation. It includes not just human participation but also
“Things”. The IoT promises to bring new services to people
in all aspects of our society. It intends to deliver pervasive
connection and data collection capabilities across the home,
vehicle, and industrial environments. Hundreds of billions
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of physical objects are equipped with various sensors and
actuators and connected to the Internet through heteroge-
neous communication systems [1]. In a typical IoT scenario,
sensors collect data using smart devices, process these data
using controllers to make decisions, and then transmit this
information to devices or people for execution [2].

The difficult challenge in this context is verifying and
ensuring the functionality, security, and confidentiality of
the IoT despite the present and hidden vulnerabilities of
connected things and the expanded ineffectiveness of cyber-
security.

In the technology field, IoT security has become an essen-
tial topic of conversation [3]. Security weaknesses, technical
limits, and software vulnerabilities are among the signifi-
cant challenges for this technology to take hold in essential
applications. Whether innocent or malicious, human error
is the most common cause of security vulnerabilities [4].
Moreover, detecting online cyberattacks on IoT devices is
challenging due to their limited battery life and computa-
tional power. Therefore, we need an alternative method of
reducing the attack surface to decrease the threat of an attack.
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This method would necessitate more powerful security test-
ing on the device prior to deployment. For this reason, in this
paper, we focused on the attacks and security of the IoT’s
physical layer using formal methods.

In physical layer security for IoT systems, the secrecy
rate is the speed at which information can be sent secretly
from the source (an IoT device) to its intended destination
through communication channels [5]. Using its properties,
the physical layer may also provide information-theoretic
security, even if the attacker has infinite processing power
[6]. IoT devices and communication channels are easy tar-
gets for attackers because of their spread-out nature. Many
of these devices and protocols also have limited resources,
which makes them even more vulnerable. Because they do
not get updated often, many of these devices can be hacked
or attacked in other ways [7].

The attacker must have physical access to the device or
cause a fault in it to stop it fromworking and get secret infor-
mation from its side channels, such as how much power and
energy it uses, how much radiation it puts out, and how long
it takes to run. An attacker may cause a competing action to
be performed on the same item or feature of the environment.
This is called a cascade attack [8]. Attackers could use these
problems and vulnerabilities to gain physical access to IoT
devices.

In this paper, we focused on the attacks on the IoT physi-
cal layer, such as jamming and MAC spoofing [9]. Jamming
is a type of denial of service (DoS) attack in which hostile
nodes interfere on the networks to stop legal communication
fromhappening. For instance, an enemy can use the same fre-
quency as the IoT device to stop the communication between
IoT devices and gateways. Spoofing is another sort of assault
that sends out a false signal. A MAC spoofing attack can
make a node appear legitimate. MAC spoofing is the modi-
fication of a network interface controller (NIC) card’s MAC
address.

Preventing security breaches in IoT devices is an alterna-
tive to detecting them [10]. This prevention necessitates a
reduction in the number of possible attack paths. Promising
design approaches, secure coding, static analysis, and com-
prehensive testing have traditionally been used to accomplish
this. However, the security of these methods cannot be guar-
anteed, and hence, more robust techniques are required. The
formal verification application to ensure security is a promis-
ing direction, making sure that a design is correct using some
mathematical and logical methods.

In the IoT, formal methods are used to do many tasks
that directly relate to our everyday lives. They also validate
security guarantees and real-time attributes for a givenmodel.
Through formal methods, mathematics and logic can be used
to check and specify the accuracy of designs. The correct
code can be created or implemented from the design once a
suitable design has been established [11].

So, this paper proposes a new formal model of IoT
physical layer security and attacks based on the Event-B
proof-based formal model. Event-B offers rigorous math-
ematical reasoning that aids in developing software with
greater confidence. This model goes from the abstract to the
target level incrementally using the refinement method. We
outline the paper’s major contributions below:

• Wepropose a formal approach to representing the physical
layer of an IoT system.

• We verify the lack of IoT physical layer vulnerabilities as
they are essential for formal verification due to their crucial
use in conjunction with security-sensitive features of the
device. As a result, complete testing of devices and attack
detection becomes realistically difficult.

• We use formal verification to detect physical-layer attacks
like jamming andMAC spoofing. Formal verification is of
great assistance in establishing security proofs.

To verify that the IoT physical layer model is both func-
tional and accurate, we incorporated an electrocardiogram
(ECG) IoT system into our model and we tested the model’s
events to prove there is no problems at any level. The fire
alarm system is used as another case study to prove that the
proposed method can be applied to a wide variety of situa-
tions. We made use of the Rodin model checker and proof
obligations. This paper’s remaining sections are structured as
follows: Sect. 2 introduces related works; Sect. 3 describes
the concept of IoT, Physical layer security and attacks and
gives an outline of Event-B theories; Sect. 4 Offers apropsed
model and motivating examples; Sect. 5 presents the formal-
ization of IoT physical layer in the Event-B model; Sect. 6
proposes a verification and validation of our approach and
Sect. 7 concludes this paper.

2 Related work

For a number of years, a considerable amount of work
has been spent on studying IoT technology. However, the
majority of contributions focus on using formal methods
in IoT physical layer security. This subsection provides a
chronologically ordered literature evaluation of someof these
publications. In this study [12], the authors suggested a
safety protocol to address the security weaknesses inmedical
IoT communication. The suggested software-based commu-
nication protocol utilized inter-device cross-authentication
and encryption to prevent a variety of attacks, and it was
validated with Casper/FDR, a formal verification tool for
processes. The results of the test showed that the proposed
protocol makes sure that wireless connections between med-
ical devices are safe. In [13], the authors came up with a new
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Table 1 The comparison of existing research studies with our approach

References year IoT topic Formal methods method/tool

[12] 2019 Security and attacks Model checking Casper/FDR

[13] 2016 Security Model checking SPIN tool and PROMELA language

[14, 15] 2017 Security and attacks theorem prover Isabelle

[16] 2017 Security Process algebra AVISPA proves

[17] 2017 Security Model checking SMV language and the NuSMV model checker

[18] 2017 Security Model checking Alloy Analyzer

[19] 2017 Security Model checking PRISM

[21] 2017 Security Model checking Z3 SMT solver

Our approach Security and attacks Model checking Event-B

way to combine the security parts of IoT devices while tak-
ing into account their non-functional properties. A technique
and a software tool were used to check the information flow
security policy. Attention was paid to certain types of differ-
ences between the rules, sensors were tested for strange data,
and a few types of security component conflicts were found.
The SPIN tool and the PROMELA language were used to
check the data flows in a network, verify the security policy,
and prove that the method was sound.

It was introduced in [14, 15] new formalmodeling by inte-
grating previous formal methods to model actors, devices,
and policies of human-centric infrastructures for IoT health-
care systems to investigate security and safety threats. The
authors utilized Isabelle, an interactive theorem prover that
provides modeling and evaluation of human-centric infras-
tructures by means of attack path analysis.

The primary contribution made by the authors of this
research [16] was the proposed multi-factor remote user ver-
ification protocol. Passwords, smart devices, and biometrics
are all used in this scheme to ensure the safety of user iden-
tities. The authors then presented a formal and informal
security analysis of the protocol. Finally, other protocols’
computational and communication abilities were compared.
The research in [17], presented a method that employs time-
aware computations to allow the controller to assess the
quality of the entered data. In industrial automation appli-
cations, the Cyber-Physical Agnosticism (CPA) property of
the Internet of Things (IoT) is verified through formal ver-
ification. To simplify the structure of the SMV model, an
abstract model of the facility was developed, consisting of
four instances of state machines, one elevator car, and three
doors. The model of an abstract plant is turned into the SMV
language and the NuSMV model checker.

The Secure Swarm Toolkit (SST) was introduced in this
paper [18], the authors create to facilitate the development
of an IoT authorization service infrastructure. As a result
of SST’s flexible security options, we anticipate that a wide
variety of IoT devices, from sensor nodes to electric power
grid control systems, will be able to be integrated into the

authorization infrastructure. This research used the auto-
mated verification tool Alloy Analyzer to conduct a formal
analysis of the system’s security.

To automate verification and probabilistically quantify
attack probabilities against standard IoT system configu-
rations, the study in [19], introduced a novel IoT Risk
Analyzer framework. One can accurately assess the root
cause and severity of security risks with the help of a formal
model-driven verification approach, which checks all possi-
ble behaviors of the reference model in a finite state space.
The proposed framework generates MDP models, which are
then used by the PRISMmodel checker to performautomated
analysis of system-level risk profiles.

In this work [20, 21], centered on utilizing the Shibboleth
protocol for secure data access and outsourcing in a cloud-
IoT network. This research proposes the Shibboleth-based
Fog-IoT network, which includes Shibboleth to ensure secu-
rity between Fog Client and Fog Node. The authors formally
validated Shibboleth using High Level Petri Nets (HLPN),
a mathematical and graphical modeling tool, to demonstrate
the correctness of Shibboleth with respect to specific secu-
rity properties. In addition, the Z3 SMT solver was used to
analyze the rules of data flows, proving the system’s correct-
ness versus the three security properties. The purpose of this
paper is to present a new method that uses the Event-B mod-
eling approach to overcome these verification limitations by
modeling systems with abstraction. In comparison to earlier
works, while there is a dearth of research to verify the IoT
systems that deal with the physical architecture of IoT layers
with security and attacks.

Our proposed model integrates modeling and verification
of physical layer security and attacks in the IoT, to the advan-
tage of working in both fields, thus contributing to their
development. In this paper, we present new work in four
ways: we propose a formal verification of the IoT physical
layer; we check that the IoT physical layer does not have any
security holes; we find physical-layer attacks, and our work
is based on a formalmodel. Table 1 compares existing studies
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to our methodology based on a similar topic, methodology,
and domain.

3 Background

3.1 IoT concept

The term “Internet of Things” (IoT) is currently a hot topic.
Kevin Ashton, whoworked for Procter and Gamble, came up
with the term in 1999 to describe how he put RFID tags and
sensors on items in the supply chain [22]. Since then, RFID
has gotten a lot of attention in academia and business. IoT
is primarily concerned with the idea of connecting things to
a network without human involvement, which facilitates the
exchange and gathering of data throughout the network. This
is done by connecting gadgets and “things” to the Internet and
other networks in different ways. Many things are connected
to each other through their built-in actuators and sensors,
which can sense their surroundings and gather data, which is
then sent to the next IoT layer. This section provides a basic
overview of the various IoT layers [23, 24].

1. Physical layer: Sensors, actuators, and devices make
up this layer. Sensing systems detect IoT environment
parameters. It turns sensing technologies’ physical data
into digital signals for communication and transmission.
When some objects are not perceived, embedded sensors
can help. So, embedded sensors help the perception layer
by processing data at end devices.

2. Transport layer: Sensor data from the perception layer
can be transferred to the middleware layer via wired or
wireless communication routes, and the reverse is also
true.

3. Middleware layer: Functions in a critical way. An enor-
mous amount of data is received by this layer from the
transport layer and processed by this layer. This layer can
also be used to manage and control access to the devices
and to find new ones.

4. Application layer: Application service delivery, which
originates from the middleware layer and is delivered
to various applications, is the responsibility of this layer.
Smart cities, smart homes, smart healthcare, etc. are only
a few examples.

As a basis for our work, we retrieved the physical layer
in this paper (see Fig. 1). So, to construct an efficient and
dependable IoT physical layer formal model, we must first
extract the appropriate architectural criteria for this layer. The
Table 2 illustrates the functional needs that will be utilized
in our formal model:

Fig. 1 The IoT system layers architucture

Table 2 The physical layer requirements

Phy-Req1 There is a name, a type, a location, and properties
associated with each thing

Phy-Req2 Sensors, actuators, and devices connected to the IoT
system are the physical layer components

Phy-Req3 All of the sensors produce data

Phy-Req4 We are able to add data from any IoT device in the
physical layer of our system

Phy-Req5 Within the physical layer, we have the ability to add a
single or several sensors

Phy-Req6 Within the physical layer, we have the ability to add a
single or several actuators

Phy-Req7 The physical layer is responsible for collecting data
from various sensors and devices

3.2 Physical layer security and attacks

3.2.1 Physical layer security

The physical layer is the foundation of all security controls.
Other security measures can fail without causing a disaster,
but when physical security fails, people are usually left com-
pletely open to danger [4]. Physical layer security in the IoT
has only recently emerged as a solution for enhancing IoT
system security. For the first time, privacy is achieved using
the physical layer of the network system instead of tradi-
tional cryptographic methods like interference and channel
security, as well as thermal noise and other things.

Physical layer security in the IoT has only recently
emerged as a solution for enhancing IoT system security.
Since many sensors and actuators are resource-restricted, it
is difficult to incorporate security in IoT systems. This kind
of security does not rely on encryption but on the physical
aspects of wireless channels, such as fading, noise, inter-
ference, and so on [4]. Security is guaranteed by Physical
layer security, regardless of the eavesdropper’s computa-
tional power. So, it is becoming a good alternative or addition
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IoT physical layer 
vulnerabilities

assign administrator

Use strong and 
unique password 

monitoring baseline 
of devices

Regular check for 
update

Fig. 2 The proposed characteristics that cause the IoT physical layer
vulnerabilities in our model

to hard-to-understand cryptographic algorithms for secure
communications in the IoT [25].

In the physical layer, vulnerabilities are directly related to
physical access to networks and devices, such as unautho-
rized network access, data damage, and keystroke logging.
An attacker may use one or more of the following physi-
cal layer security vulnerabilities to compromise IoT devices
[26]:

1. Theremay be a flaw in a device’s functionality. For exam-
ple, an operation that was supposed to be there but was
either left out or only partly done.

2. Even if the necessary security actions have been imple-
mented in the device, implementation defects may exist.
Such a defect can be an issue with cryptographic algo-
rithms in particular.

3. Programming bugs like format-string vulnerabilities,
buffer overflows, and arithmetic overflows and under-
flows can be used to make malicious payloads that stop
execution and break security.

4. Attackers can trick other users or devices by putting fake
code or data into a fake IoT device that has been added
to the network.

5. IoT devices are subject to fault injection, differential
power analysis, and timing assaults. For these attacks
to work, the attacker must have physical access to the
device, cause a fault, or passively watch side-channel
measures like power and energy consumption [27], elec-
tromagnetic radiation, execution time, speed [28], and
bandwidth [29]. So, all these vulnerabilities are related
to IoT system efficiency and security.

The Fig. 2 show some proposed characteristics that cause
the IoT physical layer vulnerabilities in our model, Table 3
lists the formal model requirements that must be specified in
our model.

3.2.2 Physical layer attacks

Physical layer security studies fall into three categories [30].
The first is eavesdropping. Illegally receiving or listening to a
lawful signal, the transmitter or receiver cannot detect it since

Table 3 The physical layer security requirements

Sec-Req1 Administrator. a person monitoring IoT devices
and the network reduces security risks and
vulnerabilities

Sec-Req2 Every system has its own password

Sec-Req3 Ensure all of your passwords are strong and
unique

Sec-Req4 Checking updates for IoT systems on a regular
basis

Sec-Req5 The baseline monitoring of IoT devices allows
checking the functionality of any device

Sec-Req6 There is a typical bandwidth for each IoT device
(bandwidth_threshold)

Sec-Req7 Check the state of any devices that need less or
the same amount of bandwidth as the threshold

Sec–Req8 There is a typical power Consumption for each
IoT device (powerConsumption_threshold)

Sec–Req9 Check the state of any devices that need less or
the same amount of power Consumption as the
threshold

Sec–Req10 Monitoring the state of the speed of devices
connected to the IoT system

the eavesdropper is passive. The second is active attacks,
like jamming. A jammer disrupts the communication provid-
ing a signal to a receiver when a transmitter sends a signal.
Jamming prevents the receiver from decoding the legitimate
signal. The third type of attack is spoofing, in which a per-
son or program pretends to be someone else, getting access
to sensitive information, enter the systems, steal money, or
spread malware. Here, we categorize security attacks pri-
marily in IoT physical layer as jamming and MAC spoofing
attacks. They are listed below.

• a-jamming attack

Jamming attacks are a type of denial of service (DoS)
attack in which hostile nodes intentionally interfere with
networks to stop lawful communication. Attackers plant jam-
mers to interfere with wireless networks. Depending on how
they plan to attack, jammers can have the same or different
abilities as real network nodes. When a transmitter detects
a busy wireless medium or a damaged signal received at a
receiver, it will back off. A jammer can jam a network inmul-
tiple ways for maximum effectiveness. A jammer’s function
determines whether it’s basic or advanced [31]. It divided the
elementary jammers into proactive and reactive subgroups.
The advanced kinds are function-specific and smart-hybrid.
In the past, this method was used for both mobile frequency
jamming and RF frequency jamming for WSN nodes (see
Fig. 3).

IoT devices employ wireless connections to program,
receive user instructions, or transmit data to the cloud. An
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Sender Recever

Jamming

Path loss

Fig. 3 The jamming attack

adversary can jam communication between IoT devices and
gateways using a frequency that is identical to that of the IoT
device. IoT systems are vulnerable to jamming attacks that
can cause the batteries of target devices to deplete quickly by
disrupting their data transfer and forcing them to retransmit
repeatedly [32]. If the attacker believes that there will be a
successful transmission, they will jam the data transmission
in such a way that the receiver will not be able to decipher
the data that has been sent.

• b- spoofing attack

In an IoT access network, identity spoofing attacks can
be easily launched. An attacker who uses identity spoofing
can pretend to be another real IoT device using the real user’s
MAC (media access control) or IP (internet protocol) address
as a fake ID [33, 34]. Spoofing attackers have an advantage in
transmitting the deceptive signal to the receiver because they
can do it at higher power. At this time, it is impossible for an
attacker to be in the same physical place as a victim. Because
the victims’ secret keys may have already been compro-
mised by the attackers, cryptography-based authentication
is unlikely to be effective. Attackers might be stationary or
on the move.

The objective is to fool the recipients. Spoofing can be
performed in two situations: (a) when the transmitter stops
transmitting the signal, the spoofer can begin transferring a
deceiving signal to the receiver; and (b) during the transmis-
sion phase between transceivers, the spoofer can transmit the
deceiving signal with increased power to the receiver [34].
So, the receiver takes the spoofing signal as a real signal and
ignores the real signal coming from the transmitter.

By forging a node’sMAC address, aMAC spoofing attack
can make it look like a valid node [35]. Mac spoofing is the
act of modifying the MAC address on a network interface
controller (NIC) card. The MAC address is “burnt in” during
manufacturing. Consequently, each network card leaves the
factory with a unique MAC address. An attacker can acquire
access to data by redirecting a device to another device. In

 

Legal user 

MAC address 

( A.B.C.D.E.F ) 

Internet 

Spoofing 
attacker 

Attacker get MAC address of Legal user 
and he get access to network Attacker Mac address is 

(A.B.C.D.E.F) 

Fig. 4 The MAC spoofing attack

Table 4 The physical layer attacks requirements

Jam–Req1 The jammer constantly checks the wireless
channel and sends out a signal that interferes
with any radio activity it finds

Jam–Req2 Specification of a power threshold to differentiate
channel noise from ongoing transmission activity

Jam–Req3 If the estimated received power is higher than the
threshold, the jamming signal is sent. If the
estimated received power is lower than the
threshold, jamming is not happening

MAC-Req1 Each device connected to the network has a MAC
address (network card)

MAC-Req2 The attacking device’s MAC address must be
different from that of the sender and receiver

MAC-Req3 An attacker can get access to data by redirecting a
device (destination device) to another device
(attacker device)

MAC-Req4 If the attacker’s address matches the destination
address, spoofing will occur. Otherwise, nothing
would occur

reality, a spoofing attack is a Computer identity theft, is rel-
atively simple. In reality, a spoofing attack is a simple way
to steal someone’s identity on a computer. This can be done
for good or bad reasons (see Fig. 4). Table 4 lists the formal
model requirements that must be specified in our model.

3.3 An Event-Bmethod

Event-B is a formal method for discrete system modeling
based on the B-Method and developed from the idea of
action systems. It’s been employed in safety–critical systems
[36]. For the correct-by-construction evolution of reactive
systems, it depends on first-order logic, typed set theory,
and integer arithmetic. The ability to develop correct-by-
construction system designs is a significant characteristic of
this method. The remaining effort is to develop or implement
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Fig. 5 An Event-B project structure

the right code from the correct design once it has been deter-
mined. Event-B is currently centered on the concept of events
in general, which is also seen in other formal approaches such
as Action Systems [37], TLA [38], and UNITY [39].

In terms of CONTEXT and MACHINE, the Event-B
model is made up of static and dynamic parts.

• TheCONTEXTFILE: describes themodel’s static parts. It
is a type of first-order theory that provides CONSTANTS
declarations that are either sets (are types defined by the
user) or numbers. Constants are declared within a con-
text, and Axioms and Theorems specify their attributes and
connections. An AXIOMS is a statement of a property
that cannot be inferred from another axiom. THEOREMS
define characteristics that should be derivable from the
axioms. The Context structure is:

CONTEXT
< context_name >

EXTENDS
<name of extended contexts >

SETS
< lists of carrier sets>

CONSTANTS
< list the different constants used in this context>

AXIOMS

< label >: < predicate >
. . .

THEOREMS

< label >: < predicate >
. . .

END

-The MACHINE: implements the dynamic part of the
model, It uses constants and axioms that are imported from
context via theSEESclause to define the dynamic structure or
system evolution. The machine must describe: The system’s
state via a collection of VARIABLES, The state’s consis-
tency via a set of INVARIANTS, and, A few EVENTS to
specify the machine’s probable state evolutions. Every event
is expressed in the following format:

ANY parameters WHEN guards THEN actions END.
The guard specifies the required condition for an event

to occur. If there is a value for its parameter that causes its
guard to hold in this state, the event is said to be enabled in
that state. When an event occurs, the action explains how the
state variables change. The machine’s structure is

The key benefit of using Event-B is that it enables mod-
els to evolve iteratively through methods such as context
EXTENDS and machine REFINEMENT. This is the pri-
mary characteristic of Event-B. With the help of these
technologies, users can build systems based on their abstract
specifications, and they can then add more details about
how the systems will work [40]. In other words, a machine
can be “refined” by another machine, and a context can be
“extended” by another context. A machine can also “see” a
single context or a number of contexts. In Fig. 5, relationships
between the machine and the context are shown. Machines
and contexts must adhere to the following visibility rules:

4 Proposedmodel and case studies

4.1 Proposedmodel

Building a secure, dependable, and error-free IoT system and
ensuring its correct operation is a challenging endeavor. In
actuality, constructing IoT systems can present a number of
challenges. So, for this reasonwe proposed ourmodel, which
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Fig. 6 Proposed model

proposes a new formal model of IoT physical layer security
and attacks that is based on Event-B (see Fig. 6):

1. A formal approach to constructing IoT physical layer:
IoT system contains “Things” which are entities or phys-
ical objects that can be uniquely identified, have an
embedded system, and share data via a network. Our
proposed model requires that all “things” (i.e., entities)
have to identify information (such as a name, a type,
a location, and properties). IoT parts include things like
gadgets, sensors, andmotors (each “thing” represents one
component). The physical layer’s main job is to get infor-
mation from the environment. We can add sensors and
actuators and use information from any IoT device.

2. Security Model:
We would verify the IoT physical layer vulnerabili-
ties and monitor IoT’s system by suggesting a formal
approach in several aspects: (a) assign administrator: IoT
device and network monitoring by a person or more than
one is helpful in lowering security vulnerabilities and
risks; (b) use a strong and unique password: make sure
each password you use is secure and different; (c) regu-
lar check for updates: monitoring the status of software
updates for IoT devices regularly;d - monitoring baseline
of devices: (i) typical bandwidth: check the functionality
of any devices whose bandwidth needs are less than the
threshold or are the same as reported by Orsini et al. [41];
(ii) power consumption: check the functionality of any
deviceswhose power consumption needs are less than the
threshold or are the same as reported by Prieto et al. [42];
(iii) speed: check the speed of devices that are connected
to the IoT system [43].

3. Attacks Model:
Two types of attacks (jamming and MAC spoofing
attacks) are proposed to formally verify the IoT phys-
ical layer:

– The jammer continuously scans the wireless channel
and emits a signal that disrupts any radio activity it
detects. Specification of a power threshold to distin-
guish channel noise from ongoing transmissions. If
the estimated received power exceeds the threshold, a
jamming signal is transmitted. If the estimated received
power is below the threshold, there is no interference.

– MAC addresses are assigned to every network-
connected device (network card). TheMAC address of

Fig. 7 An overview of the electrocardiogram (ECG) system

the attacking device must be distinct from the sender
and receiver. By rerouting a device (destination device)
to another device, an attacker can gain access to its data
(attacker device). Spoofing will occur if the attacker’s
address corresponds to the destination address. Aside
from that, nothing would occur.

4.2 Case studies

To better understand our model, we’ll use an IoT system for
electrocardiogram (ECG) monitoring in this section. real-
time Monitoring of Electrocardiograms (EMoNet) [44]. It’s
a smart city networkmadeupof patientswith heart conditions
and a slew of ambulances, smartwatches, and other wearable
ECG sensors. EMoNet’s flow diagram is shown in Fig. 7,
which shows an individual patient’s three-minute timed job.
It mostly involves getting an electrocardiogram (ECG) and
figuring out what it means, as well as calling an ambulance
if the patient shows signs of a heart attack.

There are four components to electrocardiogram (ECG)
monitoring, and each things in an IoT system reflects one of
the following components:

1. Smartwatches (smartwatch): provides theECGAnalysis.
2. Wearable ECG Sensor (Wearable): provides the Heart

Rate History.
3. Healthcare Cloud (Cloud): offers emergency service.
4. Ambulance (Ambulance): provide Assistance.

The control flow is triggered at regular intervals by ECG
Analysis (smartwatch), which then passes control to Heart
Rate History (Wearable) to obtain the most recent sensor
reading. Then, ECG Analysis regains control once Heart
Rate History hands it back to it. In the event that there
are indications of a heart attack, control is transferred from
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Fig. 8 Mapping between
proposed model and Event-B
model

Fig. 9 Physical model

ECGAnalysis to the emergency service byHealthcare Cloud
(Cloud), which then transfers control to the assistance ser-
vice of the closest ambulance (Ambulance). After going via
the emergency services, control is handed back to the ECG
analysis. The physical layer consists of all four components
used to represent things [45].

To meet the aforementioned requirements, we present in
this study a formal approach to modeling electrocardiogram
(ECG)monitoring based on the Event-Bmethod. The Event-
B specification, with its formal syntax and semantics, is
capable of validating the behavior of created models through
the execution of multiple verification features.

To support the generalizability of the proposed method,
we test another scenario by checking the IoT system-based
fire alarm.

Second Scenario. In the second scenario, there are six
components to Fire Alarm System that represent the things
in an IoT system:

1. Smoke detecting (SmokeDet).
2. Temperature Sensing (TempSens).
3. Gas Detection (GasDet).
4. Fire Analysis (FireAnaly).
5. Alarm Control (AlarmCont).
6. Water Sprinkling (WaterSpr).

It is begins by collecting data from two types of sen-
sors: smoke detectors (SmokeDet) and temperature sensors
(TempSens). Fire Analysis (FireAnaly) will begin its work

once it has received real-time data from the preceding sen-
sors. The fire analysis is responsible for analyzing the data
received from smoke detection and temperature sensors and
comparing it to a predetermined threshold to determine
whether or not there is a fire. When a decision has been
reached, alarm control (AlarmCont) and water sprinklers
(WaterSpr) are activated. Thus, alarm bells and water sprin-
klers have been developed simultaneously [46]. In Sect. 6, we
show how our model can be used with the two case studies.

5 Proposedmodel for formalization IoT
physical layer in Event-B

In this section, our strategy for formalizing the physical layer
of IoT systems in terms of security and attacks is described.
The IoT physical layer formalmodel, as shown in Fig. 8, con-
sists of an abstract model and two refinements. We begin by
modeling the physical layer in the abstract model, then refine
it to model the physical layer security, and refine it again to
represent the physical layer attack.Model three contexts and
machines is what we’re proposing to do.

5.1 Physical layer structure model

This section describes in detail how the abstract model was
constructed. The structure of the physical layer is represented
by the abstractmodel. The primary contribution of thismodel
is a formal way to build the physical layer of an IoT system
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Table 5 Specifications of requirements in a model

Phy-Req1 Inv1, Inv2, Inv3, Inv4

Phy-Req2 Inv5, Inv6, Inv7

Phy-Req3 Inv9

Phy-Req4 act1 in Event addData

Phy-Req5 act1 in Events addSensor

Phy-Req6 act1 in Events addActuator

Phy-Req7 act1 in event collectDataSensor

CONTEXT 
IOT_physical

SETS 
thing ,nameset, 

typeset, proset,  locatset, SENSOR, 

ACTUATOR, DEVICE,DATA     

 AXIOMS 
axm1   :   finite(thing) 

axm2   :   finite(ACTUATOR)

axm3   :   finite(SENSOR)

END 

Fig. 10 An Event-B model for IoT architecture: the context (1)

(see Fig. 9). It is made up of the context and the machine, as
detailed bellow:

A. Specifications
Here are the IoT physical layer requirements rewritten for

the abstract model. The contents of the IoT physical layer
are specified by the first three. The following four represent
the model events that describe the behavior of this layer as
illustrated in Table 5.

B. Context
IOT-physical is the initial context for the IoT physical

layer in the Event-B model. Sets (clause SETS) that describe
different notions of an abstract model, such as defining IoT
things as (thing, thing name, thing type, thing properties, and
thing location), are included in the collection. The names
of the fields of variables that are relevant to this kind of
data are things like nameset, typeset, proset, and locatset.
Also, the description of the containingphysical layer includes
things like sensors, actuators, devices, and data with the set
names SENSOR, ACTUATOR, DEVICE, and DATA. The
AXIOMS illustrate the characteristics of the qualities whose
values were derived from the SETS. In this scenario, the
axm1, axm2, and axm3 variables are introduced so as to
stipulate that all of the defined sets of things, SENSOR, and
ACTUATOR, are, in fact, finite (see Fig. 10).

C. Machine
The”physical layer” machine is in charge of most of the

ideas in the physical layer. It is made up of a group of things,
each of which has a physical part that is represented by sen-
sors, actuators, and devices (that meet the Phy1 and Phy2

MACHINE 
physical layer

SEES 
IOT_physical 

VARIABLES 

…………….
INVARIANTS 

inv1   :   thingname ∈ thing ↔ nameset 

inv2   :   thingtype ∈ thing ↔ typeset

inv3   :   thingpro ∈ thing ↔ proset

inv4   :   thinglocat ∈ thing ↔ locatset

inv5   :   sensor ⊆ SENSOR

inv6   :    actuator ⊆ ACTUATOR

inv7   :   DEV ⊆ DEVICE

inv8   :   data ⊆ DATA 

inv9   :   data_sensor ∈ sensor ↔ data

Fig. 11 An Event-B model for IoT architecture: the machine (1)

requirements). The gathering of information from the envi-
ronment of IoT devices is this layer’s primary responsibility.
In other words, the machine is represented by the clause
SEES in the preceding context of IOT-physical, which is
the first machine in the Event-B model for the IoT physi-
cal layer, as shown in Fig. 11. As a next step, we created a set
of variables to represent the abstract model’s components.
Phy-Req1 is a representation of each thing that has a name, a
type, properties, and a location, and the invariants inv1, inv2,
inv3, and inv4 describe this. Phy-Req2 is modeled using the
following: inv5, inv6, and inv7. The data variable is defined
as a subset of the data set by this machine (invariants inv8).
This is followed by the model of the sensor Phy-Req3 by the
invariant inv9.

The first event in the abstract model, the addData event, is
used to add data from any IoT device that meets Phy-Req4
and is included in the data set (grd1) but not in the data set
(grd2), and then added to the data set (act1). In amanner anal-
ogous to this event, the addSensor and addActuator events
include the addition of one or more sensors and actuators,
respectively, that satisfy Phy-Req5, and Phy-Req6 as shown
in Fig. 12.

In the physical layer of an IoT structure, sensors or other
devices are used to gather data from the IoT environment.
The collectDataSensor event tells us what this function is,
and Phy-Req7 is modeled to match (see Fig. 13).

5.2 Physical layer security model

In this model, we’d check for any IoT physical layer vulner-
abilities, such as weak passwords and outdated systems, and
we’d examine the baseline (speed, normal bandwidth, and
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addData  
 STATUS 
     ordinary 
ANY 
   d 
WHERE 
      grd1 : d ∈ DATA 
      grd2 : d ∉ data 
THEN 
      act1: data ≔ data ∪ {d} 
END 
addSensor 

STATUS 
      ordinary 
    ANY 
    s 
  WHERE 
        grd1: s ∈ SENSOR 
        grd2: s ∉ sensor 
  THEN 
        act1: sensor ≔ sensor ∪ {s} 
END 
addActuator  
  STATUS 
ordinary 
    ANY 
    ac 
  WHERE 
        grd1: ac ∈ ACTUATOR 
        grd2: ac ∉ actuator 
  THEN 
       act1: actuator ≔ actuator ∪ {ac} 
END 

Fig. 12 The events of adding data, sensor, and actuator for IoT archi-
tecture

Fig. 13 The collectDataSensor event for IoT architecture

power consumption) to make sure there aren’t any. Because
they are used in conjunctionwith security-sensitive functions
on the device, IoT physical layer vulnerabilities hold a spe-
cial place in the formal verification process. Complete device
testing and attacks detection are therefore made more chal-
lenging. During Event-B, the Physical layer is brought in by
a refining of the process (see Fig. 14). Therefore, we will

Table 6 Specifications of requirements in a model

Sec-Req1 Inv1, Inv3

Sec-Req2 Inv4, Inv5

Sec-Req3 Inv6, Inv7, grd1,grd2,grd3 in (Event
passwordChecking)

Sec-Req4 Inv8, Inv9, grd1,grd3 and act1 in (Event
updateChecking)

Sec-Req5 That satisfied in all Specifications bellow

Sec-Req6 Inv11, Inv12, Inv13

Sec-Req7 grd1, grd2, grd3, act1 in (Event
bandwidthMonitoring)

Sec–Req8 Inv15, Inv17, Inv18

Sec–Req9 grd1,grd2, grd3, act1 in (Event
powerMonitoring)

Sec–Req10 Inv19, Inv20 and grd1 grd2,act1 in (Event
speedMonitoring)

develop a second level of abstraction that will further refine
the first level.As illustrated below:

A. Specifications:

The following are rewritten requirements for the first
refinement to describe some of the IoT’s physical layer vul-
nerabilities that cause insecurity to the system. As illustrated
in Table 6.

B. First Refinement:

In this section,we extend the structure of the physical layer
to the formalization wemade in the previous section. So, that
physical layer security can be shown in a formal way using
the refinement concept of Event-B by adding a variable and
five new events: updateChecking, passwordChecking, band-
widthMonitoring, powerMonitoring, and speedMonitoring,
(see Fig. 15).

According to our proposed for this model, we illustrated
the more effective vulnerabilities in IoT physical layer.

1. 1-Put someone in charge of managing everything. Hav-
ing a person who acts as the administrator of all of the
devices connected to the internet of things as well as

Fig. 14 Security model
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MACHINE 
Physical layer security

REFINES 
physical layer 

SEES 
Physical  security 

VARIABLES 
……….. 
INVARIANTS

inv1   :    admin ⊆ ADMIN 

inv2   :    IoT_sys ⊆ IoT_SYS 

inv3   :    sys_admin ∈ admin →IoT_sys

inv4   :    password ⊆ PASSWORD 

inv5   :    sys_password ∈ IoT_sys ↔ password 

inv6   :    hasStrongPassword ∈ BOOL 

inv7   :    check_password ∈ IoT_sys → password 

inv8   :    IsUpdate ∈ BOOL 

inv9   :    check_update ∈ IoT_sys → Update 

inv10   :    sys_device ∈ IoT_sys ↔ DEV 

inv11   :    BANDWIDTH ⊆ ℕ1 

inv12   :    device_bandwidth ∈ sys_device → BANDWIDTH 

inv13   :    bandwidth_threshold ∈ ℕ1 

inv14   :    bandwidth_state ∈ BOOL 

inv15   :    PowerConsumption ⊆ ℕ1 

inv16   :    powerConsumption_state ∈ BOOL 

inv17   :    powerConsumption_threshold ∈ ℕ1 

inv18   :    device_powerConsumption ∈ sys_device ↔ PowerConsumption 

inv19   :    device_speed ∈ sys_device→ SPEED 

inv20   :    speed_state ∈ SPEED 

Fig. 15 An Event-B model for IoT physical layer security: the machine
(1)

the network can help reduce the number of security over-
sights and vulnerabilities. In ourmodel, the administrator
is represented by the variable admin, which is shown as
the invariants inv1 and inv3. It is set up to assign a system
administrator that satisfies Sec-Req1.

2. 2-Make sure all of your passwords are strong and unique.
Many cyberattacks can be thwarted with the use of strong
passwords. A password manager is a piece of software
that makes it easier for users to set secure passwords and
keep them safe within the application they use, this is
modeled Sec-Req2 and Sec–Req3.

3. The invariants (inv4 and inv5) serve to specify the system
password. And, we suggest adding a Checking password
to check if it is strong or weak password. This is mod-
eled by the event passwordChecking as shown in Fig. 16
where a component hasStrongPassword is checked by
another variable check_password (Guards grd1, grd2,
and grd3).

4. 3-Check updates on a regular basis. The Internet of
Things (IoT) is plagued by numerous security flaws.
This is due to the fact that IoT devices can be vulner-
able at any level. Cybercriminals are still using old flaws
to infect devices, which shows how long devices can stay
online without being fixed. This part is modeled by Sec-
Req4. Variable check_update and IsUpdate are defined
in invariants inv8 and inv9, respectively. which repre-
sents an enablement of the specification of the system’s
update.So, An event with the name updateChecking is
created to model the system’s checking for updates (set

passwordChecking   ≙≙
STATUS 

ordinary 
ANY 

IoTsys 

WHERE 
grd1   :    hasStrongPassword = FALSE 

grd2   :    IoTsys ∈ IoT_sys 

grd3   :    check_password(IoTsys) = strong 

THEN 
act1   :    hasStrongPassword ≔ TRUE 

END 

Fig. 16 The passwordChecking event for physical layer security

updateChecking   ≙≙
STATUS 

ordinary 
ANY 

IoTsys 

WHERE 
grd1   :    IsUpdate = FALSE 

grd2   :    IoTsys ∈ IoT_sys  

grd3   :    check_update(IoTsys) = yes 

THEN 
act1   :    IsUpdate ≔ TRUE 

END 

Fig. 17 The updateChecking event for physical layer security

grd1 and grd3) and ensuring that they are present (set
act1) (see Fig. 17)

5. 4-Monitor the device’s baseline operationwhich satisfied
Sec-Req5. It might be difficult to identify cyberattacks.
The baseline behavior (speed, typical bandwidth, power
consumption, etc.) of devices might assist users in spot-
ting changes thatmay indicatemalware infections. In this
model, we suggest to adding a variable and three new
events to monitoring the device behavior: bandwidth-
Monitoring, powerMonitoring, and speedMonitoring.

- Each IoT device has a standard bandwidth bar-
rier the(bandwidth threshold). The invariants inv11, inv12
and inv13 define how to model the bandwidth (BAND-
WIDTH). It must be a number, and each device has to
have it (device_bandwidth) and have a threshold (band-
width_threshold), respectively which models the require-
ment Sec–Req6. The event (bandwidthMonitoring) is
designed to model the monitoring of the state bandwidth of
any devices that require less or the same amount of bandwidth
as the threshold set (grd1, grd2, and grd3), and to decide the
state (act1) that satisfies Sec-Req7 (see Fig. 18).

- Power consumption limits the battery life of portable
devices like cell phones and laptop computers. For each IoT
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bandwidthMonitoring   ≙≙
STATUS 

ordinary 
ANY 

IoTsys 

IoT_device 

bandwidth 

WHERE 
grd1   :    bandwidth_state = FALSE 

grd2   :    bandwidth ∈ ran(device_bandwidth) 

grd3   :    bandwidth ≥ bandwidth_threshold

………
THEN 

act1   :    bandwidth_state ≔ TRUE 

END 

Fig. 18 The bandwidthMonitoring event for physical layer security

powerMonitoring   ≙≙
STATUS 

ordinary
ANY 

IoTsys

IoT_device

power_consumption

WHERE 
grd1   :   powerConsumption_state = FALSE 

grd2   :   
power_consumption ∈ PowerConsumption ∧ power_consumption

∈ ran(device_powerConsumption) 

grd3   :    power_consumption ≥ powerConsumption_threshold

………..
THEN 

act1   :    powerConsumption_state ≔ TRUE

END 

Fig. 19 The powerMonitoring event for physical layer security

device has a standard power consumption, set (inv17), which
models the requirement Sec–Req6, and the (inv15 and inv18)
define the power consumption of device. (grd1, grd2, and
grd3) are meant to model the monitoring of state power con-
sumption in any devices that need less or the same amount
of power as the threshold set by the event (powerMonitor-
ing) and to decide the state (act1) that meets Sec-Req9 (see
Fig. 19).

- Devices connected to the IoT network can be moni-
tored for their current speed. The (inv19 and inv20) models
the requirement Sec–Req10 regarding the device speed
(device_speed), and device state (speed_state). The (speed-
Monitoring) event is utilized to monitor the speed status of
the device. Every IoT device has a speed within a particular
range set (grd1 and grd2), then the speed state is checked
(act1), as shown below (Fig. 20).

speedMonitoring   ≙≙
STATUS

ordinary 
ANY 

IoTsys 

IoT_device 

speed 

WHERE 
grd1   :    (IoTsys ↦ IoT_device) ∈ dom(device_speed) 

grd2   :    speed ∈ SPEED  ∧ speed ∈ ran(device_speed) 

THEN 
act1   :    speed_state ≔ device_speed(IoTsys ↦ IoT_device) 

END 

Fig. 20 The speedMonitoring event for physical layer security

5.3 Physical layer attacks model

In this model, we used jammer and MAC spoofing attacks
as our models for the more significant IoT physical layer
attacks, as shown below (Fig. 21).

A. Specifications:

The following requirements for the second refinement
have been rearranged to describe some of the attacks on the
system that use the IoT’s physical layer according to our
model. Table 7 shows a structure that can be used to get
physical layer attack parameters from the proposed method.

B. Second Refinement

This part shows the second refinement to the IoT physi-
cal layer model, which is attacks on the physical layer. This
refinement adds the physical layer representations for the
jamming andMAC spoofing attacks to the formalization that
was made for the abstract model in the last refinement. That
is illustrated in Fig. 22.

- Jamming attack: An IoT device and a gateway can not
talk to each other if an attacker with a jammer uses the same
frequency as the IoT device. For this purpose, we model how
a jammer operates in the formalization method.

The jammer is always looking for radioactivity on
the wireless channel and sending out a signal to stop
it, this modeled Jam–Req1. The inv1, inv2 define jam-
ming attack (DOSjammer_attack) and send a jamming sig-
nal (send_DOSjammer_signal), respectively. And the event
(DOSJammingAttack) check this signal in grd2. After that,
The specification of a power threshold (power_ threshold) set
(inv5), received power (POWER_RECEIVED) set (inv3), and
the channel communication power (communication_power)
set (inv4) is required to distinguish channel noise from con-
tinuous transmission activity (grd3 and grd4) which models
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Fig. 21 Attacks model

Table 7 The physical layer Attacks requirements

Jam–Req1 inv1, inv2,inv3,inv4 and grd2 in event
(DOSJammingAttack)

Jam–Req2 inv5,grd3, grd4

Jam–Req3 grd5, act1

MAC-Req1 inv14, inv15, event
(MACSpoofingAttackChecking)

MAC-Req2 inv16

MAC-Req3 Inv17,grd2, grd3

MAC-Req4 grd4, act1

MACHINE 
Physical layer Attacks 

REFINES 
Physical layer security 

SEES 
Attacks 

VARIABLES 
………… 
INVARIANTS 

inv1   :    DOSjammer_attack ∈ ATTACK 

inv2   :    send_DOSjammer_signal ∈ BOOL 

inv3   :    POWER_RECIEVED ⊆ ℕ1 

inv4   :    
communication_power ∈ COMMUNICATION_CHANNEL  

↔ POWER_RECIEVED 

inv5   :    power_threshold ∈ ℕ1

inv6   :    IsSecureJamming ∈ BOOL 

inv7   :    IsSecureMACSpoofing ∈ BOOL

inv8   :    SENDER_DEV ⊆ DEV

inv9   :    RECIEVER_DEV ⊆ DEV 

inv10   :    ATTACK_DEV ⊆ DEV 

inv11   :    senderMACAddress ⊆ MAC_ADDRESS 

inv12   :    recieverMACAddress ⊆ MAC_ADDRESS 

inv13   :    attackMACAddress ⊆ MAC_ADDRESS 

inv14   :    sender_MAC ∈ SENDER_DEV ↔ senderMACAddress 

inv15   :    reciever_MAC ∈ RECIEVER_DEV → recieverMACAddress 

inv16   :    attack_MAC ∈ ATTACK_DEV → attackMACAddress 

inv17   :    send_data ∈ DATA → MAC_ADDRESS 

Fig. 22 An Event-B model for IoT physical layer attacks: the machine
(3)

the requirement Jam–Req2. So, if the estimated received
power exceeds the predetermined threshold (grd5), the jam-
ming signal is transmitted (act1). Jamming does not occur if
the estimated received power is less than the threshold; this
satisfies (Jam–Req3) (see Fig. 23).

-MAC spoofing attack: MAC address spoofing occurs
when an attacker changes a network device’s MAC address
to something else. In our model, we are formally modeling
this attack’s method and workflow.

To model MAC-Req1, we used the invariants (inv14 and
inv15) to define the sender’s and receiver’s MAC addresses.

DOSJammingAttack ≙≙

STATUS 
ordinary 

ANY 
communication_channel

power_recieved

WHERE 
grd1   :   IsSecureJamming = TRUE 

grd2   :   send_DOSjammer_signal = FALSE

grd3   :   
communication_channel ∈ COMMUNICATION_CHANNEL 

∧ communication_channel ∈ dom(communication_power) 

grd4   :   
power_recieved ∈ POWER_RECIEVED ∧

power_recieved ∈ ran(communication_power) 

grd5   :   power_recieved ≥ power_threshold 

THEN 
act1   :   send_DOSjammer_signal ≔ TRUE

act2   :   IsSecureJamming ≔ FALSE

END 

Fig. 23 The DOSJammingAttack event for physical layer Attacks

MACSpoofingAttackChecking   ≙≙
STATUS 

ordinary
ANY 

distination_address

current_address 

WHERE 
grd1   :    IsSecureMACSpoofing = TRUE

grd2   :    distination_address ∈ ran(reciever_MAC) 

grd3   :    current_address ∈ ran(send_data)

grd4   :    distination_address ≠ current_address

THEN 
act1   :    IsSecureMACSpoofing ≔ FALSE 

END 

Fig. 24 The MACSpoofingAttackChecking event for physical layer
attacks

And, the (inv16) defines the MAC address for attack (attack-
MACAddress) which has to be different from the preferences
of both the sender and the receiver MAC-Req2. However,
an attacker can acquire access to a data set (inv17). The
event (MACSpoofingAttackChecking) covers MAC Req3 by
redirecting a device’s destination (distination_address) to a
different device (current_address) set (grd2, grd3). Spoofing
will occur if the attacker’s address matches the destination
address (grd4). If not, nothing would happen. Set the act1
and MAC-Req4 requirements (see Fig. 24).
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Fig. 25 The proof obligations of IoT physical layer formal model

6 Verification and validation

In this section, the steps taken to verify and validate our
model are described. The Rodin platform is used to model
and validate Event-B for model validation. Although some
difficult proof obligations (POs) [47] necessitate manual
interactive verification, most of the proof obligations can
be proved automatically using the Rodin platform, which
automatically creates the proof obligations for each theo-
rem and invariant. The accuracy generation invariants must
meet their proof obligations at each level of the model. Val-
idation is accomplished through close observation of the
specification’s operation. A plugin called ProB is available
on the Rodin platform for animating and validating Event-B
requirements.

6.1 Proof-based verification

The Proof Obligation Generator is a feature of the Rodin
Platform that generates proof obligations (POs) mechani-
cally. In general, proof tasks were either well-definedness
(WD) or invariant preservation (INV) types (for the model’s
invariants). The invariant preservation operators (INV POs)
guarantee that all events comply with the specification.

The purpose of the well-definedness proof obligation
rule (WD) is to guarantee that a potentially ill-defined the-
orem, axiom, invariant, guard, action, witness, or variant
is, in fact, well defined. The following element names are
used when referring to a particular modeling component:
inv/WD, thm/WD, axm/WD, grd/WD, act/WD, VWD, and

Fig. 26 The proof statistics of IoT physical layer formal model

evt/x/WWD. The way this proof obligation rule is put into
action depends on the expression, which may or may not be
clear. A PO may be discharged either automatically or inter-
actively (indicated by the green symbol), or it may remain
undischarged (orange symbol). When you see the letter “A”
on the PO, it indicates that the discharge is processed auto-
matically.

For example, in our model, the invariant (INV1) in the
abstract model (physical layer)inv1: thingname ∈ thing ↔
namesetwhen verifying this invariant by proof obligation, if
assigned a name to things, then it is discharged and indicated
by (green symbol), if not, it remains undischarged (orange
symbol).

In our model, (see Fig. 25); 100% of proof obligations
were automatically satisfied by the Rodin prover. The com-
plexity of the proof obligation is correlated with the speed at
which automatic proofs can be completed. The robust Rodin
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plugins greatly facilitate our work by automating the major-
ity of the routine mechanical tasks. But careful modeling and
smarter automatic proof tools can cut down on the amount
of time people have to spend on verification tasks. Figure 26
shows the proof statistics that illustrates the distribution of
automatically and manually discharged POs.

It’s important to note that the Event-B approach does not
have the state explosion problem [48], which is a problem
with other verification techniques used in the literature.

6.2 Validation by ProBmodel checker

There are numerous potent plugins for Rodin. We use the
ProB animation tool [47] in our work. For the Event-B
approach, ProB is a constraint solver and model verifier that
enables both the validation of the requirements and the detec-
tion of errors to fix them. It is not necessary for the user
to intervene to demonstrate most of the proof obligations.
Using ProB’s constraint-solving capabilities, you may create
models, check for deadlocks-free, and generate test cases. It
needs a concrete model to be done, and cannot be done on

an abstract Event-B specification. We were able to perform
an automated animation to verify the accuracy of the model
specification step-by-step using an animator checker tool.We
were able to bring the case studies to life in our model by
altering the values of its many variables, carriers, and con-
stants. The initialization parameters of an electrocardiogram
(ECG) IoT system shown in Fig. 27 must be used to put this
animation into action. To support the generalizability of the
proposed method using another case study fire alarm sys-
tem, see Fig. 28, which shows the initialization parameters
of this case study. By monitoring the various states, we may
determinewhether themodel behaves accurately. ProB tested
the model’s events and found no problems at any level. This
shows that the model’s behavior has been fixed.

INITIALISATION ≙
STATUS 
ordinary 
BEGIN 
act1 : thinglocat ≔{smartwatch ↦ locatT1, wearable ↦ locatT2, HC_cloude ↦
locatT3 ,ambulance ↦ locatT4 } 
act2 : thingname ≔{smartwatch ↦nameT1, wearable ↦nameT2, HC_cloude 
↦nameT3 ,ambulance ↦nameT4 } 
act3 : thingpro ≔{smartwatch ↦proT1, wearable ↦proT2, HC_cloude ↦ proT3 
,ambulance ↦proT4 } 
act4 : thingtype ≔{smartwatch ↦type1, wearable ↦type2, HC_cloude ↦type3 
,ambulance ↦type4 } 
act5 : sensor ≔{ s1,s2,s3,s4} 
act6 : actuator ≔{ AC1,AC2,AC3,AC4} 
act7 : data ≔{D1,D2,D3,D4} 
act8 : data_sensor ≔{s1 ↦ D1,s2 ↦ D2,s3 ↦ D3,s4 ↦ D4} 
act9 : DEV ≔{De1,De2,De3,De4} 
act10 : admin≔{adm1 ,adm2} 
act11 : IoT_sys≔{IoT_system} 
act12 : sys_admin≔ {adm1↦IoT_system ,adm2↦IoT_system} 
act13 : password≔{weak, strong} 

act14 : sys_password≔{IoT_system ↦weak } 
act15 : hasStrongPassword≔ FALSE 
act16 : check_password≔{IoT_system ↦weak } 
act17 : IsUpdate≔ FALSE 
act18 : check_update≔ { IoT_system ↦ no} 
act19 : sys_device≔{IoT_system ↦De1 ,IoT_system ↦De2 ,IoT_system ↦De3 
,IoT_system ↦De4 } 
act20 : BANDWIDTH≔ {1,2,3} 
act21 : device_bandwidth≔ {(IoT_system ↦De1) ↦1 ,(IoT_system ↦De2)↦1 
,(IoT_system ↦De3)↦2 ,(IoT_system ↦De4)↦3} 
act22 : bandwidth_threshold≔ 2 
act23 : bandwidth_state≔FALSE 
act24 : PowerConsumption≔{1,2,3} 
act25 : powerConsumption_state≔ FALSE 
act26 : powerConsumption_threshold≔ 1 
act27 : device_powerConsumption≔{(IoT_system ↦De1) ↦1 ,(IoT_system 
↦De1)↦1 ,(IoT_system ↦De1)↦2 ,(IoT_system ↦De1)↦3} 
act28 : device_speed≔{(IoT_system ↦De1) ↦high ,(IoT_system ↦De2)↦slow 
,(IoT_system ↦De3)↦high ,(IoT_system ↦De4)↦slow} 
act29 : speed state≔ slow

act30 : DOSjammer_attack≔ Jamming_attack 
act31 : send_DOSjammer_signal≔FALSE 
act32 : POWER_RECIEVED≔{1,2} 
act33 :  communication_power≔{communication_ch↦1 ,communication_ch↦2} 
act34 : power_threshold≔1 
act35 : IsSecureJamming≔FALSE 
act36 : IsSecureMACSpoofing≔FALSE 
act37 : SENDER_DEV≔{De1,De2,De3,De4} 
act38 : RECIEVER_DEV≔{De1,De2,De3,De4} 
act39 : ATTACK_DEV≔{De1,De2,De3,De4} 
act40 : senderMACAddress≔{MAC_address} 
act41 : recieverMACAddress≔{MAC_address} 
act42 : attackMACAddress≔{MAC_address} 
act43 : sender_MAC≔{De1↦MAC_address ,De2↦MAC_address ,De3↦MAC_address 
,De4↦MAC_address} 
act44 : reciever_MAC≔{De1↦MAC_address ,De2↦MAC_address 
,De3↦MAC_address ,De4↦MAC_address} 
act45 : attack_MAC≔{De1↦MAC_address ,De2↦MAC_address ,De3↦MAC_address 
,De4↦MAC_address} 
act46 : send_data≔{D1↦MAC_address ,D2↦MAC_address ,D3↦MAC_address 
,D4↦MAC address}

Fig. 27 Initialization values of the electrocardiogram (ECG) system
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Fig. 28 Initialization values of the fire alarm system

7 Conclusion

In this research, we present a method for verifying and val-
idating the security and attacks of the IoT’s physical layer.
We formalized and validated the physical-layer vulnerabil-
ities and attacks. First, we defined the needs for modeling
the IoT physical layer structure, vulnerabilities (by analyz-
ing the absence of changes in a number of characteristics
that contribute to these vulnerabilities, such as speed, usual
bandwidth, and power consumption), and attacks (jamming
and MAC spoofing). Second, an Event-B model was shown
to model and test the security and attacks on the physical
layer of the IoT using the mechanism for refinements. The
refinements made it possible for us to make corrections by
constructing all the models and facilitating the proofs. To
show how well our method works, we turned our ideas into
a real-world example in the form of an electrocardiogram
(ECG) IoT system. As a second case study to show how flex-
ible the proposedmethod is,we looked at the fire alert system.
An animator checker called ProB and proof obligations are
used to ensure that our formal model is correct. In future
work, we intend to address issues that must be resolved for
the IoT physical layer’s continued security. We would like to

address the security of physical layer communication proto-
cols as a software component, as our model only addressed
the physical component. Additionally, we intend to address
security at the IoT system’s other layers.
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