
Journal of Reliable Intelligent Environments (2024) 10:19–44
https://doi.org/10.1007/s40860-022-00198-x

ORIG INAL ART ICLE

Handling uncertainty in self-adaptive systems: an ontology-based
reinforcement learning model

Saeedeh Ghanadbashi1 · Zahra Safavifar1 · Farshad Taebi2 · Fatemeh Golpayegani1

Received: 18 June 2022 / Accepted: 20 December 2022 / Published online: 6 January 2023
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023

Abstract
Ubiquitous and pervasive systems interact with each other and perform actions favoring the emergence of a global desired
behavior. To function well, these systems need to be self-adaptive to handle noisy data and partially observable dynamic
environments. However, facing unpredictable and rare events while only accessing incomplete information about the environ-
ment causes uncertainty in the adaptation process. Such uncertainty results in inconsistent decisions and unexpected system
behavior. Currently, SAS handles such unpredictable conditions using adaptive modeling mechanisms to select default actions
or exploiting reinforcement learning (RL) algorithms to learn new actions. However, the current mechanisms do not address
rare events in an environment. This paper improves the system’s decision-making when facing rare events by providing
extra information about alternative adaptation actions using domain ontologies, which provide a thorough understanding of a
domain. In this paper, we propose an Ontology-based unCertainty handling model (OnCertain), which enables the RL-based
system to augment its observation and reason about the rare event using prior ontological knowledge. The overall aim of
this model is to improve the system’s decision-making process under conditions of uncertainty. Our model is evaluated in a
traffic signal control system and an edge computing environment. The results show that the OnCertain model can improve
the RL-based systems’ observation and, consequently, their performance in such environments.

Keywords Self-adaptation · Uncertainty · Unanticipated change · Noisy sensor data · Reinforcement learning (RL) ·
Ontology · Traffic signal control · Edge computing

1 Introduction

Ubiquitous and pervasive computing aims to provide users
with access to services all the time, everywhere, and transpar-
ently through the Self-Adaptive Systems (SASs) embedded
in the physical environment. A SAS is a system that needs
to adapt its run-time behavior autonomously by monitoring
its environment and determining the best adaptation action
to ensure that its adaptation goals are consistently achieved
under run-time changing conditions [1,2]. For example, the
Traffic SignalControl (TSC) systemadapts its timing accord-
ing to current traffic conditions [3], the task offloading
algorithm adapts its strategy based on the task requests gener-

B Saeedeh Ghanadbashi
saeedeh.ghanadbashi@ucdconnect.ie

1 School of Computer Science, University College Dublin,
Belfield, Dublin 4 D04 V1W8, Ireland

2 School of Computer Science, Islamic Azad University,
Azarshahr Street, Tehran 1584743311, Iran

ated, their specific requirements, and available resources [4],
and the homecaremanagement systemadapts itswayof com-
municating with the patients based on their physical and/or
cognitive disabilities [5,6]. The environment is an external
world where a SAS operates, comprising observable physi-
cal and virtual entities. The sensed environmental condition
affects the decisions of the SAS, and these decisions can have
new effects on the environment. The system’s running envi-
ronment gradually tends to be open, dynamic, complex, and
noisy, making it difficult for developers to consider all possi-
ble changes [7]. This will cause the system to only deal with
the predefined changes. So, there is a gap between a SAS’s
design and run-time models, which causes uncertainty in the
adaptation process [8] and the system’s behavior deviation
from expectations [9].

To increase the effectiveness of systems’ self-adaptation,
it is essential having a mechanism to identify the source of
uncertainty and mitigate it [8,10,11]. SASs would be able to
alleviate at least some level of uncertainties using probabilis-
tic run-time modeling mechanisms and optimization-driven

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40860-022-00198-x&domain=pdf
http://orcid.org/0000-0003-0983-301X


20 Journal of Reliable Intelligent Environments (2024) 10:19–44

decision-making to select their default actions and exploit-
ing machine learning (ML) and reinforcement learning (RL)
algorithms to learn new actions [10]. Although the current
approaches canmodel and reason about the uncertainty asso-
ciated with a system and its environment [1,12], detecting
sudden changes and handling open world new situations are
their limitations [13]. Also, random action exploration may
exhibit slow learning if there are many possible adaptation
actions, and it will be more challenging when on the fly
decision-making is desirable [1,14].

As a motivating example, in a TSC system, uncertainty
can arise from fluctuations in travel demand due to weather
conditions, commercial habits, and emergency events. If
the TSC system encounters an ambulance entering one of
its incoming roads, it must change the traffic signal phase
from red to green to make clearance for the ambulance’s
paths. The system should select such a decision immediately
so the ambulance can transport medical equipment, criti-
cal patients, and necessary medicines in time. Also, in the
task offloading system, the rate of task requests generated
by heterogeneous devices, different applications, and their
specific requirements can be highly unpredictable. The task
offloading service, which is faced with the sudden increase
in workload, may adapt itself by rejecting lower priority task
requests.

An ontology is a formal specification of a conceptualiza-
tion of a domain [15], and it supplies a semantic description
of data that a reasoning system can use to make new infer-
ences [16,17]. In the literature, ontological knowledge is used
to model systems and their environment [18–20]. However,
the concerns related to handling uncertain environments,
including detecting sudden changes and exploring the many
possible adaptation actions, are not addressed.

In this paper, we propose a novel Ontology-based unCer-
tainty handling model OnCertain that uses ontology and RL
to better understand the system’s environment and improve
its decision-making. We focus on handling uncertainties
caused by noise and unanticipated changes in the environ-
ment by adapting the sampling rate proportional to entities’
importance, masking unnecessary parts of observation using
entities’ diverse characteristics, augmenting it using ontolog-
ical knowledge, prioritizing the actions and their execution
sequence using inference rules, and augmenting the reward
signal using the actions’ efficiency rate that improves its
action selection.ATSC system and anEdgeComputing (EC)
environment evaluate the model’s performance. The OnCer-
tain model can enhance the performance of the SASs in such
environments through improved observation.

The rest of this paper is organized as follows. Section 2
reviews relevant literature and Sect. 3 provides the required
background knowledge. Section 4 briefly explains the prob-
lem statement. Section 5 describes ourmodel and its different
parts in the typical self-adaptation loop, which has to be

extended to realize uncertainty handling using ontological
knowledge. In Sect. 6, case studies are defined, and the results
are analyzed. Finally, our conclusion and future works are
drawn in Sect. 7.

2 Related work

To develop a system that is adaptive to an uncertain envi-
ronment, various engineering approaches, such as eliciting
adaptive requirements from the environment [21], analyz-
ing SAS design while considering an uncertain environment
[22], testing SAS implementation with environmental inputs
[23], and updating environmental knowledge for optimal run-
time decision-making [24], have been proposed. In [25], the
authors specified loose self-management policies capable of
flexible and nondeterministic choice of behaviors through
the newAutonomic System Specification Language (ASSL).
In [26], the authors proposed a goal model augmented with
uncertainty annotations to guide the synthesis of adapta-
tion policies at run-time. However, it is not specified how
rare events such as catastrophic scenarios could be taken
into account. Probability theory [27] is widely used to deal
with different sources of uncertainty by running averages
to mitigate uncertainty due to noise in monitoring, explicit
annotation of adaptation strategies with probabilities, and
estimation of the future environment and system behavior
[28]. For instance, Rainbow framework [29] calculates the
average of observations to deal with the uncertainty of the
environment. Possibility theory has been mainly used in
approaches that deal with the uncertainty of the objectives
[30]. In [31], the authors designed a formal specification
language RELAX to enable analysts to identify require-
ments that may be relaxed at run-time when the environment
changes. The POISED approach was built on the possibility
theory to assess the positive and negative consequences of
uncertainty. It makes adaptation decisions that result in the
best range of potential behavior, however, it can only deal
with the defined uncertain situations [32]. Fuzzy control can
tolerate the inaccuracy of sensors’ data, but it requires the
system engineers to extract fuzzy rules from historical data
and cannot adapt to significant changes [33].

Artificial intelligence techniques, especially ML, have
been adopted to deal with the difficulty in predicting envi-
ronmental conditions at run-time [34]. ML can support the
MAPE-Kmodel [35] to build run-timemodels and adaptation
strategies from complex and high-dimensional data obtained
from uncertain environments [36]. For example, in [37], the
authors used classifiers over the run-time data to detect real-
time constraints. Then, these constraints are used to refine
the design model of a SAS. In [38], the authors developed
an ML-based approach, ACon, that uses MAPE-K feedback
for adapting the SAS’s contextual requirements affected by

123



Journal of Reliable Intelligent Environments (2024) 10:19–44 21

uncertainty at run-time. A self-learning fuzzy neural net-
work [33] was proposed to handle dynamic uncertainties
from the sensing phase and deal with considerable changes.
FUSION [27] adjusted strategies online through a learning
model of the environment. However, ML-based approaches
need to train the model before the system runs and cannot
deal with the unknowns. Learning methods can handle this
challenge by identifying the active context and modifying
the adaptation space at run-time [39]. Thus, context changes
not anticipated at design time are addressed by learning new
adaptation rules dynamically or bymodifying and improving
existing rules [34]. Although, the generation of all possible
situations, exclusively at run-time, poses a risk to the sys-
tem’s performance, reliability, and real-time constraints. In
[14], the authors used the featuremodel for the system’s adap-
tation space and thereby leveraged its semantics to guideRL’s
exploration, but their approach only supports discrete adap-
tation actions. Mao’s team [40] proposed an RL method that
can solve a part of unknown environment changes through
existing strategies, however, they ignored that the existing
strategies cannot solve all the novel situations. [41] proposed
a planning method to handle uncertainty from the environ-
ment by learning knowledge of the relationship between
system states and actions. This method can generate new
strategies to deal with unknown situations, however, with
the increase in system scale, more knowledge is needed to
learn. When all possible changes in the environment are not
known beforehand, and the models need to be derived during
operation, RL techniques can be used [13], however, learning
methods cannot handle unanticipated situations and detect
sudden changes when they have not previously experienced
such situations.

In the literature, several methods have been proposed to
model and reason about the uncertainty, including formal
specification languages, probability theory,ML, and learning
techniques. However, it is not specified how rare/unknown
events should be considered when they have not been expe-
rienced. In addition, exploring the significant number of
possible adaptation actions may compromise the system’s
ability to make on the fly decisions under real-time con-
straints.

Ontology provides user-contributed, augmented intelli-
gence, and machine-understandable semantics of data [16].
In SASs, ontology is mainly used as a modeling method to
specify the requirements of a system-to-be. For example, in
[18], the authors used a goal ontology containing seman-
tic knowledge about the system’s goals and the relationship
between goals and sub-goals. In [42], to support decision-
making in risk treatment, the authors designed a generic
ontology for knowledge management in the MAPE-K loop
to capture the expertise needed for various steps in safety
management. In [19], the authors used a shared ontology,
which includes concepts about the domain and conditions

relating to them to support a shared understanding of con-
cepts between the user and the system. The shared ontology
enables the system to update the specification when a refine-
ment or addition of new concepts occurs and also understand
the service descriptions for solution provisioning. Tomanage
the heterogeneity of real-world systems, in [43], the authors
used ontologies, leveraging their ability to provide a shared
and unified representation of a complex and heterogeneous
domain of interest. In [20], the authors modeled the envi-
ronment using an ontology that defines the concepts and
available actions to the system for test generation. In [44], the
authors proposed a framework to enable Continuous Adap-
tive Requirements Engineering (CARE) that leverages the
requirements-aware systems and exploits a reasoning sys-
tem. A fuzzy theory and semantic distance technology [45]
were proposed to handle inaccurate monitoring data. Self-
adaptive activity recognition systems [46] aim to recognize
complex Activities of Daily Living (ADL) from a series of
observations of the individuals’ actions and the environmen-
tal conditions. In [47], the authors proposed a new approach
that relies on an ontology to derive a first set of semantic
correlation values between activities and sensor events. In
[46], the authors introduced an incremental learning method
to integrate new data with new features into current activ-
ity recognition models. In [48], the authors proposed a new
domain adaptation technique that uses a general ontology
to share and transfer activity models across individuals,
even though the sensor deployments and operating environ-
ments are different. In [49], using an environment ontology,
we proposed an Ontology-based Intelligent Traffic Signal
Control (OITSC) model that enhances the RL controllers’
observation and improves their action selection in dynamic
and partially observable environments with stochastic traffic
flow. However, in this paper, we propose that ontology can
be used to address the uncertainty challenges of SASs in a
different way. For example, the support of ontology to reason
about unavailable data or extracting new concepts, relevant
concepts to the actions, and the importance of concepts can
be a great support.

3 Background

A brief overview of the required background information is
provided in this section.

3.1 MAPE-K referencemodel

MAPE-K is a well-known reference model for SASs (see
Fig. 1).MAPE-K’s self-adaptation logic consists of fourmain
conceptual activities: monitoring the system logic and the
environment via sensors, analyzing the monitored data to
determine whether adaptation is needed, planning adapta-

123



22 Journal of Reliable Intelligent Environments (2024) 10:19–44

Fig. 1 MAPE-K reference model [35]

tion actions, and executing them via actuators modifying the
system logic at run-time. Through the activities, a common
knowledge base is used that contains information regarding
the systemand its environment, includingmodels at run-time,
adaptation goals, and strategies [50].

3.2 Partially observable Markov decision process

Formally, we describe a Partially Observable Markov Deci-
sion Process (POMDP) as a 7-tuple (�, S, A, R, T , V , γ ),
where S is a set of states (s ∈ S), A is a set of actions A =
{a1, a2, . . . , a j }, T is the transition probabilities between
states T (s′ | s, a) corresponds to the dynamics of the sys-
tem, R is the reward function (S × A → R), � is a set of
observations v ∈ �, V is the observation distribution given
the state v ∼ V (s), and γ is a discount rate that shows how
much the future reward signals contribute to the total reward
signal. A policy is a function mapping the current state to the
next action choice(s). It can be deterministic, π : S → A or
stochastic π : S → Prob(A). The objective of the POMDP
is to find an optimal policy π∗ that maximizes the expected
reward signal over the entire time horizon [51].

3.3 Reinforcement learning

RL is a trial-and-error method in which agents learn by inter-
acting with the environment. For a SAS, agent refers to the
self-adaptation logic of the system, and action refers to adap-
tation action. Reward signal gives feedback on the execution
effect of adaptation action and adjusts decision-making. The
agent interacts with the environment to get the observation
stgi and the reward signal r ti at time step t , and chooses the
action ati based on its policy. Finally, this action is executed
in the environment simultaneously. The objective is to opti-
mize the agent’s expected reward signal. There are two types
of RL algorithms: value-based (e.g., Q-learning, SARSA,
DQN) and policy-based (e.g., DDPG). Q-learning algorithm

approximates the discounted cumulative reward signal of
actions Q-value (see (1)):

Q(s, a) = Q(s, a)+ρ[r +γ max Q′(s′, a′)−Q(s, a)]. (1)

Q(s, a) is the current storedQ-value for applying action a
in state s and max Q′(s′, a′) is the maximum expected future
reward signal. r is the reward signal value the agent gets
from the environment after doing action a in state s, which
takes the environment to the new state s′. The learning rate
ρ determines to which degree the new information overrides
the old one. SARSA algorithm learns Q-values relative to
the current policy it follows. Deep Q-Network (DQN) algo-
rithm uses a Deep Neural Network (DNN), and the input of
the neural network would be the state that the agent is in,
and the targets would be the Q-values of each of the actions.
Deep Deterministic Policy Gradient (DDPG) combines both
value-based (i.e., DQN) and policy-based (i.e., DPG) meth-
ods. Policy-based methods target modeling and optimizing
the policy directly. RL-based agents choose between explo-
ration and exploitation as a way to optimize the policy. The
exploration scheme (exploring action space) and exploitation
scheme (taking the best action) are combined to compute an
optimal policy. ε is the percentage dedicated to the explo-
ration [51].

3.4 Ontology

An ontology describes concepts, properties, relations, and
axioms in a specific environment [15]. Using a hierarchi-
cal approach, ontology describes different relations between
concepts such as binary, multiple, inverse, and conditional
[52]. A relation can be used for a particular kind of instance
(domain) with a particular value (range). A neighborhood
concept set is a set of concepts with a direct relation (parents
and children). A judgment is a statement asserting a certain
relation for a concept. An inference rule is an implication of
the form: If J1, J2 up to Jn are inferable, then J is inferable
(see (2)). The inference rules are expressed using Semantic
Web Rule Language (SWRL) [53]:

J1, J2, . . . , Jn
J

. (2)

A concept weighting method is used to determine the
weight of a concept [54], and the concept similarity mea-
sure is used to compare the similarities between the concepts
in different ontologies [55]. The action ontology connects
actions and concepts, thus forming a so-called “action envi-
ronment” for each action. The action ontology is built to
organize and structure action information [56], and its seman-
tic constraints are typically defined as undesirable actions for
the agent at each time step [57].

123



Journal of Reliable Intelligent Environments (2024) 10:19–44 23

Fig. 2 An ontology-based uncertainty handling model (OnCertain)

4 Problem statement

The SAS considered in this paper includes uncertainties
caused by noise and environment changes. To capture the
underlying uncertainty and variability of dynamic envi-
ronments, the knowledge model can be formulated as a
stochastic dynamic decision problem generally modeled via
a POMDP and can be solved using an RL framework. We
assume that the observations received by agents are noisy.
This type of uncertainty is caused by variation in amonitored
agent parameter, changes in the process being monitored, or
errors in the employed sensors, which results in different
values for each observation taken. Also, when an agent’s
environment in which it executes changes, the characteristic
of different entities in the agent’s environment and the avail-
ability of different resources may change. This introduces
uncertainty that may affect the quality of the agent’s observa-
tions. So, there are N observations, i.e.,� = {vg1 , . . . , vgN },
given that a large majority of vgi s are uncorrelated with the
corresponding s, i.e., theyprovide apoor representationof the
current true state for the i th agent. This paper uses ontology to
handle uncertainty due to noisy sensor data and environment
changes.

5 Ontology-based uncertainty handling
model

We present a new Ontology-based unCertainty handling
model (OnCertain) that enables an agent to augment
its observation and consequently improve its performance
while face uncertainties. OnCertain introduces an RL-based
MAPE-K model integrating RL and an ontology-based
schema into a known MAPE-K loop. Figure 2 depicts the
conceptual architecture of OnCertain. Using its sensors and
actuators, the agent follows the process ofmonitoring, choos-
ing an action, executing it, and updating its experience in the
OnCertain model.

Using OnCertain, the agent accesses an ontology-based
schema, a concept weighting method, a concept similarity
measure, inference rules, and semantic constraints to aug-
ment its observations, reason about unanticipated changes in
the environment, and improve its performance. Within this
process, the agent models its observation by an ontology-
based schema while monitoring its environment, selects and
executes an action, and finally, computes a reward signal
for that action. So, OnCertain includes the following stages:
(1) observation modeling, (2) action selection and execution,
and (3) reward augmentation (see Fig. 3). The details of these
stages are discussed further in the following subsections.

5.1 Observationmodeling

The agent’s observation is represented using a schema
described by an ontology. By this schema, the agent can
interpret an unanticipated situation using a semantic descrip-
tion. The schema represents concepts perceived by the
agent (i.e., monitored entities/parameters) and their rela-
tions. These relations enable inheritance between concepts
and automated reasoning. We define Ot

gi = (Ct
gi , P

t
gi , M

t
gi )

as the schema describing the data monitored/observed by
agent gi at time step t . Ct

gi represents the set of concepts
Ct
gi = {c1, c2, . . . , cx }, Pt

gi represents properties Pt
gi =

{p1, p2, . . . , px }, and Mt
gi represents the set of relations

over these concepts that expresses which concepts are associ-
ated with which concepts/values by which properties (M ⊆
C × P × C). Schema Ot

gi is used as input into all stages of
the OnCertain model. Also, we model the action ontology
taxonomy as OA = (Caj , Pa j , Maj ), where Caj represents
action-bound concepts, specifying which concepts are rel-
evant to the action a j , Pa j represents properties, and Maj

represents the relations between concepts and their proper-
ties.

In the observation masking, the agent focuses on impor-
tant concepts/parts of the environment without distraction
from irrelevant concepts/details and condenses broad sen-
sory data into a compact form for action selection. Not seeing
the irrelevant information helps the agent find similarities
between its current and previous observations and use past
experiences to respond to the current situation (i.e., gener-
alization). During observation masking, similarities of the
concept cx in the ontology-based schema Ot

gi and the concept
cy in the action ontology OA are compared. The similarity
of the concepts cx and cy is measured based on their neigh-
borhood concept set and the property set in the two different
ontologies (see (3)):

123



24 Journal of Reliable Intelligent Environments (2024) 10:19–44

Fig. 3 The OnCertain model’s state diagram

Sim(cx , cy) =
√

α Sim2
C +β Sim2

P
2 ,

α = |Nt
gi

(cx )|
|Nt

gi
(cx )|+|Na j (cy)| ,

β = |Pt
gi

(cx )|
|Pt

gi
(cx )|+|Pa j (cy)| ,

(3)

where Sim(cx , cy) is considered as the similarity measure
between the concepts cx and cy and α and β specify the rel-
ative importance of the two similarity constraints SimC and
SimP , respectively. Here cx represents the selected concept
of the agent’s observation vtgi at time step t , cy represents

the concept that is relevant to the action a j , |Nt
gi (cx )| and|Pt

gi (cx )| represent the number of neighborhood concepts and
properties in the ontology-based schema and |Naj (cy)| and
|Pa j (cy)| represent that of the action ontology.

The function SimC is used for measuring the similarity of
the neighborhood concept set of the selected concepts cx and
cy in the two ontologies:

123



Journal of Reliable Intelligent Environments (2024) 10:19–44 25

SimC (cx , cy) =

√√√√
|Nt

gi
(cx )∩Na j (cy)|
|Nt

gi
(cx )| + |Nt

gi
(cx )∩Na j (cy)|
|Na j (cy)|

2
. (4)

|Nt
gi (cx )∩Naj (cy)| represents the number of common neigh-

borhood concepts between the two ontologies. The function
SimP is used for finding similarity by comparing property
sets of the selected concepts cx and cy in both ontologies:

SimP (cx , cy) =

√√√√
|Pt

gi
(cx )∩Pa j (cy)|
|Pt

gi
(cx )| + |Pt

gi
(cx )∩Pa j (cy)|
|Pa j (cy)|

2
. (5)

|Pt
gi (cx ) ∩ Pa j (cy)| represents the number of common

properties between the two ontologies. If ∀cy ∈ Caj :
Sim(cx , cy) < threshold, then the agent does not use the
observed data of the concept cx in its decision-making for
the action a j (see lines 2–13 of Algorithm 1).

Algorithm 1 Observation-Modeling(vtgi , A, Ot
gi , OA)

1: for cx in Ct
gi do

2: for a j in A do
3: f = 1
4: for cy in Caj do
5: Compute Sim(cx , cy)
6: if Sim(cx , cy) >= threshold then
7: f = 0
8: end if
9: end for
10: if f == 1 then
11: Mask cx for a j
12: end if
13: end for
14: if px has unknown value then
15: for cy in Ct

gi do
16: Extract judgments J1, J2, . . . , Jn related to cx and cy

17: if New judgement J : cx px→ Y is inferable then
18: Assign value Y to px
19: end if
20: end for
21: end if
22: for px in Pgi do

23: Extract judgment J : cx px→ Y
24: if Y not in vtgi then
25: Augment vtgi with Y
26: end if
27: end for
28: end for
29: for cx , cy in Ct

gi do
30: Sample cx with rate 
iw(cx ) × u/n�
31: Sample cy with rate 
iw(cy) × u/n�
32: Create sampled observation vtgi
33: end for

In the observation augmentation, the automatic infer-
ence mechanism can deduce the augmented observations for
concepts that have unknown information, i.e., either there is

no sensor to observe them, or there is a fault in the sen-
sors, so the agent has not observed these concepts while
they exist in the environment. Thus, applying inference rules

J1 : cx pz→ cy , J2 : cy py→ Y ⇒ J : cx px→ Y to the existing
relation between cx and cy and the explicitly observed infor-
mation py of concept cy enables agent gi to extract implicit
observation data px of concept cx (see lines 14–21 of Algo-
rithm 1).

During observation transformation, agent gi deduces
new properties px of the concepts cx ∈ Ct

gi from the domain
ontology at each time step t . So, it can automatically generate
a larger variety of training data under a broad range of low-
level properties to feed into its RL algorithm. To do so, the
agent investigates the properties Pgi (i.e., property set in the
domain ontology) and retrieves their domain and range, then
augments its observation with the range of properties whose
domain is a concept of the environment (see lines 22–27 of
Algorithm 1).

The occurrence of an error in the observation data causes
the RL-based agent to exhibit inconsistent behavior. In the
observation sampling, to reduce the impact of monitored
noisy sensor data on the action selection process of agent gi ,
observation vtgi can be sampled [58]. Samples are typically
subsets or extracts from the agent’s observation. They are
used when the agent cannot observe an environment com-
pletely (i.e., due to complexity or noise) [59,60]. The size
of a sample influences the agent’s action selection precision.
Assuming that the sample size is constant, the agent needs
to adjust/divide the sample size proportionally to the impor-
tance of the observed data to draw precise conclusions. An
observation’s importance is determined by the importance of
the concepts Ct

gi involved in it. The concept weighting func-
tion proposed in [61] uses an iweighting indicator iw(cx )
to quantify how important each concept cx ∈ Ct

gi is in an
environment (see (6)):

iw(cx ) = 1/|Mt
gi (cx )|

|Mt
gi

(cx )|∑
m∈Mt

gi
(cx )

iw(mxy). (6)

During the ontology development process, relations are
manually weighted by ontology engineers and then the con-
cept’s weight iw(cx ) is computed based on the average
importance weights iw(mxy) of the relations m ∈ Mt

gi of
domain concept cx restricted by their range cy . Five degrees
of weight are available for weighting relations based on
their importance: “Lowest”, “Low”, “Middle”, “High”, and
“Highest”. These degrees can be converted to numerical val-
ues using predefined mappings.

Thus, agent gi samples observation data vtgi at different
sampling rates proportional to the weight of concepts cx ∈
Ct
gi . To do so, the monitor activity in the MAPE-K loop is

123



26 Journal of Reliable Intelligent Environments (2024) 10:19–44

modified to allow the observation data of concept cx with
higher iweighting indicator iw(cx ) to be sampled at a higher
rate 
iw(cx )×u/n� than observation data of concept cy with
lower importance weight iw(cy). The sampled observation
vtgi is formed as follows (see lines 29–33 of Algorithm 1):

vtgi = {x1, . . . , x
iw(cx )×u/n�, y1, . . . , y
iw(cy)×u/n�}
if iw(cx ) + iw(cy) = n and sample size = u. (7)

5.2 Action selection and execution

Typically, the agent must select its actions in dynamic and
unpredictable environments, and specific actions are unavail-
able at every time step.Also, a fundamental challenge inRL is
balancing exploration and exploitation of actions. Moreover,
learning is concerned with identifying the optimal sequence
of actions for the agent to execute to achieve the highest
reward signal in the future. Uncertain situations can lead to
challenges in finding the best sequence required to do so.

The agent’s possible or valid actions are a small percentage
of the available actions at each time step. The primary func-
tion of the actionmasking in RL is to filter out impossible or
invalid actions, which improves its exploration performance
by only considering valid actions and outputting a better
policy. The agent’s action selection in the current state is con-
strained by semantic constraints H = (H+, H−) imposed
by the ontology-based schema. An ontology language (e.g.,
SWRL) expresses them, specifying both the consequences
H+ that must hold in each state and the consequences H−
that cannot hold. These constraints are extracted from onto-
logical domain knowledge. Any action that complies with
these constraints is possible/valid and any action that vio-
lates these restrictions is impossible/invalid (see lines 1–9 of
Algorithm 2).

In the action exploration, we propose an ontology-based
policy to copewith the uncertainty of the environment. In this
policy, the RL-based system dedicates a certain percentage
of exploration time to the actions that reward them for the
most important environmental concepts. The automatic infer-
ence mechanism deduces the appropriate action based on the
ontology rules. Agent gi employs a hybrid policy that com-
bines the proposed ontology-based policyπOnCertain and aRL
policy πRL. It is also possible for gi to switch between these
two policies (see (8)), and α(t) is the percentage function to
have a balance between them and is determined based on the
distribution of unanticipated events experienced before time
step t . Suppose unanticipated events occurred every 2 min,
then α(t) will equal 0.5 (see lines 10–22 of Algorithm 2):

π(a | s) = α(t)×πOnCertain(a | s)+(1−α(t))×πRL(a | s).
(8)

Algorithm 2 Action-Selection-and-Execution(vtgi , A, Ot
gi )

1: for a in A do
2: for h in H do
3: Check a comply with h
4: if a not complied with h then
5: Mask a
6: break
7: end if
8: end for
9: end for
10: Generate random p1
11: if p1 <= α then  The ontology-based policy
12: Select cx from Ct

gi with the highest iw(cx )
13: Extract judgments J1, J2, . . . , Jn related to cx
14: Infer ai using J1, J2, . . . , Jn
15: else  The RL policy
16: Generate random p2
17: if p2 <= ε then
18: Select random a j
19: else
20: Select ak with the highest r tgi
21: end if
22: end if
23: for a in A do
24: for j in J do
25: Extract criterion b using j
26: end for
27: Compute action rank d for action a using b1, b2, . . . , bn
28: end for
29: Select an with the highest rank dan
30: Sort A′ using ranks da1 , da2 , . . . , dan
31: Execute A′ in order

In the action prioritization, actions are prioritized to
address the requirements of ever-changing environments and
limit the number of relevant actions in time-constraint situ-
ations. The RL-based agent computes rank d for the actions
based on the criteria b proposed by the inference rules J .
Then the computed rank is used for prioritizing the actions
(see lines 23–29 of Algorithm 2).

In the executionprioritization,Algorithm2 (see lines 30–
31) uses action rank d to sort the sequence of actions A′ ⊆ A
that should be executed in the environment.

5.3 Reward augmentation

The design of a proper reward can be challenging in complex
problems, especially when there is uncertainty. This uncer-
tainty may be due to environmental conditions that affect the
sensory readings and need to be addressed to improveRLper-
formance [62]. In the reward augmentation, the augmented
reward signal r ′ = r+ f is proposed to providemore frequent
feedback to the system, where r is the output of the original
reward function R, f represents the additional reward signal
resulting from a shaping function F , and r ′ represents the
signal generated by the augmented reward function R′ [63].
The proposed reward signal is augmented using the actions’

123



Journal of Reliable Intelligent Environments (2024) 10:19–44 27

efficiency rate (see (9)):

r ′
gi = r tgi + E . (9)

Suppose we have a set of k actions a1, a2, . . . , ak . Each
action changes n items while observing m items of state.
For example, by observing the waiting time of m vehi-
cles, the signal controller agent decides to switch to a green
phase that causes a decrease in the waiting time of n vehi-
cles. Let us consider an observation matrix X = [xuv, u =
1, 2, . . . ,m, v = 1, 2, . . . , k] and a change matrix Y =
[yuv, u = 1, 2, . . . , n, v = 1, 2, . . . , k]. The qth line (i.e.,
Xq and Yq ) of these matrices shows quantified values of the
observed concepts before applying action aq and quantified
values of the changed concepts after applying the action,
respectively. We use the concept weights to compute the
weighted sum of the quantified values. The efficiency rate
(E) of the action is expressed as follows:

E = weighted sum of changed concepts’quantified values

weighted sum of observed concepts’quantified values

=
∑n

u=1 iw(cu) × yuq∑m
u=1 iw(cu) × xuq

. (10)

The algorithmic procedure is shown in Algorithm 3.

Algorithm3Reward-Augmentation(vtgi , v
t+1
gi , r tgi , O

t
gi , O

t+1
gi )

1: for cu in Ct
gi do

2: Sx+ = iw(cu) × xuq
3: end for
4: for cu in Ct+1

gi do
5: Sy+ = iw(cu) × yuq
6: end for
7: E = Sy/Sx
8: r ′

gi = r tgi + E

6 Performance evaluation

This section presents the evaluation scenarios and discusses
the results.

6.1 Traffic signal control environment

Traffic Signal Control (TSC) system can adjust signal timing
based on real-time traffic flow information to reduce traffic
congestion. An Automatic TSC system can be managed by
agents with learning capabilities to control traffic signals.
This paper considers detectable and undetectable vehicles in
the TSC environment. Communication devices are mounted
on detectable vehicles to transmit real-time information con-
cerning their waiting times and routes to the signal controller
at an intersection. Undetectable vehicles do not possess such

devices, and the signal controller does not have access to their
information. To reduce the average waiting time of vehicles,
we need to sample detectable vehicles’ waiting time, aug-
ment the waiting time of undetectable vehicles, and explore
actions regarding unforeseen situations due to dynamic and
stochastic traffic flow behavior. To do so, the ontology devel-
oped in [49] (see Fig. 4) is used along with our proposed
model.

6.1.1 Simulation settings

To evaluate the OnCertain model, SUMO (Simulation of
Urban MObility) is used to simulate a 750 m × 750 m area
with 16 intersections, each controlled by an intelligent entity,
including two incoming and outgoing roads. Four types of
vehicles, including default, ambulance, fuel truck, and trailer
truck,with respective lengths of 5, 5, 10, and10m, are consid-
ered. One default vehicle enters the network from a random
entrance point every second. Moreover, five important vehi-
cles (ambulances, fuel trucks, and trailer trucks) enter the
network every 2 min from random entrance points as unex-
pected/unforeseen events (i.e., we call this setting the base
scenario). The minimum gap between any two vehicles is
2.5 m and the max speed allowed is 200 km/h, with the max
acceleration of 2.6 m/s2 and the decelerating of 4.5 m/s2.
The number of simulated seconds on SUMO is set to 1000 s.

6.1.2 Parameter modeling

The state is defined as traffic signal phases (i.e., yellow, red,
and green), traffic signal phase elapsed time, the number of
vehicles in each lane, the type of vehicles, and the vehicles’
waiting time. The action is defined as selecting an appropri-
ate traffic signal phase for the next time step. The reward
signal is defined as the difference between the total waiting
time of all vehicles in the current and next time step.

6.1.3 Scenarios

Toevaluate theOnCertainmodel in situationswith partial and
noisy observations, we have defined two scenarios shown in
Table 1.

The average waiting time of vehicles is used as a perfor-
mance criterion. We compare the results obtained from the
baseline RL algorithms, including Q-learning, SARSA, and
DQN [64], to the same algorithms when they use OnCertain
along with their usual functionality.

6.1.4 Results and discussion

The results report the average waiting time for all types
of vehicles in 10 runs in each scenario (see Fig. 5). When

123



28 Journal of Reliable Intelligent Environments (2024) 10:19–44

Fig. 4 Ontology for traffic signal control system [49]

Table 1 Traffic signal control environment—scenarios

Scenario Description

Base scenario with partial observation 20% of undetectable vehicles cannot be observed by the controller agent

Base scenario with noisy observation 50% of vehicles will have a corrupted waiting time

OnCertain is employed, the results show that all algorithms
outperform their basic implementation.

When important vehicles enter intersections, the con-
troller assigns the “Highest” importance weight to the
relation “hasType” and its domain “Vehicle” and range
“Emergency”, thus giving priority to the road that has the
most important vehicles (see the related inference rules in
Table 2). In this case, it has a higher efficiency rate to switch
to a green phase for the road containing emergency vehicles
than to keep a green phase on another road because the for-

mer action reduces the waiting time for important vehicles
with the “Highest” importance weight.

When the OnCertain-RL signal controller is unable to
collect data on undetectable vehicles in the environment, it
replaces the waiting time of “Stationary” vehicles a on lane l
with the current traffic signal phase elapsed time e, following
the inference rule shown in Table 3.

When the observation is noisy, the controller realizes that
“Stationary” vehicles are more important than “Moving”
vehicles according to the inference rules in Table 4, and their
waiting times are sampled more frequently.

123



Journal of Reliable Intelligent Environments (2024) 10:19–44 29

Fig. 5 The average waiting time of different types of vehicles—the OnCertain model and the three baselines

6.2 Edge computing environment

Edge Computing allows mobile devices to offload their
latency-sensitive tasks to resource-rich edge servers. RL
algorithms are used for task offloading, which requires
considering all relevant information related to tasks and
resources to make a reasonable decision. OnCertain can
improve the RL algorithms’ performance in several ways.
From the various properties of tasks and resources fed into

the RL algorithm, irrelevant observation data can be masked
to address concerns such as learning speed, privacy, and lim-
ited bandwidth. Also, the RL agent can prioritize actions
based on different criteria for actions, such as assigning
tasks to servers with capacity limits. Moreover, to allocate
resources for the tasks generated by latency-sensitive appli-
cations, there should be some semantic constraints/rules for
prioritizing them at each step. To model the concepts in an

123



30 Journal of Reliable Intelligent Environments (2024) 10:19–44

EC environment, we propose using the ontology shown in
Fig. 6.

6.2.1 Simulation settings

To evaluate the performance of the OnCertain model in an
EC environment, we simulated a neighborhood consisting of
a varied number of users moving according to the mobil-
ity data collected from the users’ devices at the subway
station in Seoul, Korea [65]. People with smartphones, wear-
able gadgets, and laptops move around the neighborhood
and use applications such as online games or voice over IP
(VoIP). All these applications need considerable computa-
tional resources for execution. Users’ devices offload tasks
to one of 10 edge servers to obtain computation service. Edge
servers are responsible for offering computational resources
and processing tasks for mobile users. After a requested task
has been processed, users need to receive the processed task
from the edge server and offload a new task to an edge server
again. Edge servers are connected with a mesh topology. The
task may be migrated from one edge server to another within
limited bandwidth. Information flow can only exist from one
side to the other (i.e., the bandwidth is shared). All simula-
tions are run during 25 steps; each of them takes 1500 s.1

6.2.2 Parameter modeling

Using the proposed EC ontology (see Fig. 6), the observa-
tion transformation defines the state as available computing
resources of each edge server, its workload, board, group,
cost, availablemigration bandwidth of each connection (link)
between the servers, and task information including size,
latency, priority (defined based on the application type,
latency, or user profile), application type, user financial infor-
mation (i.e., card number), user device information (i.e.,
location, type, operating system, and database), the offload-
ing target of each mobile user, user group, and user usage
history. The action is defined as computing resources each
mobile user’s task needs to use, migration bandwidth, and
offloading target. The reward signal is defined as the total
number of processed tasks in each step.

6.2.3 Scenarios

Our scenarios are designed to evaluate different steps of the
proposed model, including observation masking, observa-
tion transformation, action masking, action prioritization,
and execution prioritization in the simulated EC environ-
ment. These scenarios are as follows:

1 The code of OnCertain-DDPG algorithm and the simulated results are
publicly available: https://github.com/saeedehghanadbashi/ontology-
based-RL.

In the base scenario, we define that 80% of the servers can
be used free of charge for task offloading, and the rest can be
used at a cost. Also, 70% of the servers have a high board,
and 30% of servers have a low board. 20% of servers can pro-
cess four tasks simultaneously, 30% of servers process three,
and 30% process two, and 20% of servers can only process
one task simultaneously. Additionally, users and servers are
organized into three groups based on user access type. In this
setting, 30% of users are in group 1, 30% are in group 2, and
40% are in group 3. Also, 30% of servers are in group 1, 30%
in group 2, and 40% in group 3.

This scenario includes heterogeneous tasks: (1) Health
care tasks are: very low latency, small size, and high priority.
(2) VoIP tasks are: very low latency, big size, and middle pri-
ority. (3) Entertainment tasks are: low latency, medium size,
and low priority. (4) Data collection tasks are: high latency,
very big size, and low priority. Also, this scenario creates
fluctuated workload, where the number of users generating
tasks in the environment and the rate of the latency-sensitive
tasks are not constant throughout the simulation time (see
Table 5).

Evaluation metrics: Task success rate (i.e., average total
processed tasks) is calculated by the number of processed
tasks divided by the total number of generated tasks. The
task failure rate (i.e., average total failed tasks) is calculated
by dividing the number of tasks that failed due to the delay by
the number of generated tasks. To evaluate the performance
of the proposed model, we compare different task offload-
ing strategies obtained from the baseline Deep Deterministic
Policy Gradient (DDPG) algorithm [66] to the OnCertain-
DDPG.

6.2.4 Results and discussion

Impact of Observation Masking: As described in the
Sect. 6.2.2, the user device information, including its loca-
tion, type, operating system, and database, is part of the
observation. However, according to the EC ontology’s infer-
ence rules shown in Table 6, only the device location must
be kept, and the rest can be masked.

The average total processed and failed tasks in 10 runs in
each scenario are reported in Fig. 7. The results show that
the OnCertain-DDPG increases the average number of total
processed tasks and decreases the average number of total
failed tasks compared to the DDPG algorithm. We observe
that masking users’ device information as irrelevant informa-
tion increases the average total processed tasks by 7%, 8%,
and 7% in simple, medium, and hard scenarios, respectively.
This improvement is 4%, 8%, and 9% for scenarios with 10,
25, and 50 users. The percentage increase is more significant
when the number of users increases. The average total failed
tasks is decreased by 6%, 3%, and 8% in simple, medium,
and hard scenarios and 8%, 6%, and 3% in the scenarios with

123

https://github.com/saeedehghanadbashi/ontology-based-RL
https://github.com/saeedehghanadbashi/ontology-based-RL


Journal of Reliable Intelligent Environments (2024) 10:19–44 31

Fig. 6 Ontology for edge computing

123



32 Journal of Reliable Intelligent Environments (2024) 10:19–44

Fig. 6 continued

123



Journal of Reliable Intelligent Environments (2024) 10:19–44 33

Fig. 6 continued

123



34 Journal of Reliable Intelligent Environments (2024) 10:19–44

Table 2 Base scenario—action
exploration based on the
vehicles’ type—an example of
inference rules

Inference rule

TrafficSignalControl(?ia), Intersection(?s),Road(?r1),Road(?r2),Vehicle(?a),

Vehicle(?b), isOn(?a, ?r1), isOn(?b, ?r2), atIntersection(?i, ?s),

DifferentFrom(?r1, ?r2), isRegulatedBy(?r1, ?i), isRegulatedBy(?r2, ?i),

hasType(?a,Emergency), hasSubType(?a,Ambulance), hasType(?b,Default),

hasPosition(?a,Stationary), hasPosition(?b,Stationary),

hasImportanceWeight(?a,Highest), hasImportanceWeight(?b,Low),

hasTrafficSignalPhase(?r1,Red), hasTrafficSignalPhase(?r2,Green)

=> hasHigherImportance(?r1, ?r2), isNextTrafficSignalAction(?i,Switch)

aIn SemanticWeb Rule Language (SWRL), variables are indicated using the standard convention of prefixing
them with a question mark

Table 3 Base scenario with
partial observation—observation
augmentation for waiting time
of undetectable vehicles—an
example of inference rules

Inference rule

TrafficSignalControl(?i), Intersection(?s),Road(?r),Lane(?l), consistOf(?r , ?l),

Vehicle(?a), isOn(?a, ?l), atIntersection(?i, ?s), isRegulatedBy(?r , ?i),

hasPosition(?a,Stationary), hasElapsedTime(?i, ?e)

=> hasWaitingTime(?a, ?e)

Table 4 Base scenario with
noisy observation—observation
sampling proportional to the
vehicles’ position—an example
of inference rules

Inference rule

TrafficSignalControl(?i), Intersection(?s),Road(?r),Lane(?l), consistOf(?r , ?l),

Vehicle(?a),Vehicle(?b), isOn(?a, ?l), isOn(?b, ?l), atIntersection(?i, ?s),

isRegulatedBy(?r , ?i), hasPosition(?a,Stationary), hasPosition(?b,Moving),

hasImportanceWeight(?a,Low), hasImportanceWeight(?b,Lowest)

=> hasHigherSamplingRate(?a, ?b)

Table 5 Edge computing environment—scenarios

Scenario Workload Latency-sensitive tasks

10-simple 10 users 5% of tasks are generated as health care, 15% of them are VoIP, 55% are data collection, and 25% are entertainment

25-simple 25 users

50-simple 50 users

10-medium 10 users 10% of tasks are generated as health care, 30% of them are VoIP, 35% are data collection, and 25% are entertainment

25-medium 25 users

50-medium 50 users

10-hard 10 users 20% of tasks are generated as health care, 40% of them are VoIP, 10% are data collection, and 30% are entertainment

25-hard 25 users

50-hard 50 users

10, 25, and 50 users, respectively. This indicates that there
is a higher percentage decrease in the scenarios with less
number of users.

According to the scenario setting discussed earlier, some
edge servers can be accessed at a cost. In this case, users’
payment information is required during the task offloading
process. However, when using the free-of-charge servers, the
users’ payment information can be masked, according to the
EC ontology’s inference rules, as shown in Table 7.

We observe that masking users’ card numbers as irrele-
vant information increases the average total processed tasks
by 8%, 13%, and 4% in simple, medium, and hard scenar-
ios, respectively. This improvement is 13%, 5%, and 7%
for scenarios with 10, 25, and 50 users. The improvement
is lower when the number of low-sensitive tasks increases.
Also, the percentage increase is lower when the number of
users increases. This is because the number of paid servers
for which the user card number should be included in the

123



Journal of Reliable Intelligent Environments (2024) 10:19–44 35

Table 6 Observation masking
with user device
information—an example of
inference rules

Inference rule

EdgeServer(?s),User(?u),Task(?t),EdgeDevice(?d), isService(TaskOffloading),

DeviceLocation(?l),DeviceOperatingSystem(?o),DeviceDatabase(?b),

DeviceType(?v), hasEdgeDevice(?u, ?d), hasLocation(?d, ?l), hasType(?d, ?v),

hasOperatingSystem(?d, ?o), hasDatabase(?d, ?b), hasTask(?u, ?t),

requestFrom(?u, ?s)

=> isRelevant(?l), isIrrelevant(?o), isIrrelevant(?b), isIrrelevant(?v)

Fig. 7 Observation masking with user device information—the OnCertain model and the DDPG algorithm

Table 7 Observation masking
with user card number—an
example of inference rules

Inference rule

Server(?s),User(?u),Task(?t),CardNumber(?c), isService(TaskOffloading),

hasCardNumber(?u, ?c), hasTask(?u, ?t), hasServerCost(?s,FreeServer),

requestFrom(?u, ?s)

=> isIrrelevant(?c)

observation increases, and the observation in both methods
will be similar. The same results are achieved in the compar-
ison of the average total failed tasks so that it decreases by
8%, 9%, and 3% in simple, medium, and hard scenarios and
11%, 5%, and 5% in the scenarios with 10, 25, and 50 users,
respectively (see Fig. 8).

Impact of action masking: Latency can be significantly
reduced when the edge servers are closer to the place where
data/task is generated. Using the inference rules of the pro-
posed EC ontology (see Table 8), those servers far from the
users are masked by giving the zero selection probability to
the inaccessible servers, and theOnCertain-DDPG agent will
not choose them.

The results show restricting the number of servers that
can be assigned to each user based on the server board and
user request latency requirement significantly increases the

average total processed tasks and decreases the average total
failed tasks compared to the baseline algorithm. The aver-
age total processed tasks increased by 18%, 16%, and 14%
in simple, medium, and hard scenarios, respectively. This
improvement is 23%, 16%, and 9% for scenarios with 10,
25, and 50 users. When the number of users increases, the
number of available servers that can be assigned to each user
based on the appropriate distance is limited, so less improve-
ment can be the result. The same effects are observed in the
percentage of decreases in the average total failed tasks by
32%, 29%, and 29% in simple, medium, and hard scenarios
and 50%, 29%, and 11% in the scenarios with 10, 25, and 50
users, respectively (see Fig. 9).

Furthermore, considering servers’ maximum capacity
(server limit) is essential to balance the servers’ work-
load. Using the predefined rules shown in Table 9, servers

123



36 Journal of Reliable Intelligent Environments (2024) 10:19–44

Fig. 8 Observation masking with user card number—the OnCertain model and the DDPG algorithm

Table 8 Action masking with
server board—an example of
inference rules

Inference rule

Server(?s),User(?u),Task(?t),ServerBoard(?b),Distance(?d),

isService(TaskOffloading), hasServerBoard(?s, ?b), hasTask(?u, ?t),

requestFrom(?u, ?s), hasDistance(?u, ?s, ?d), isGreaterThan(?d, ?b)

=> isInaccessibleFor(?s, ?u)

with computationally intensive workloads (i.e., unavailable
servers) can be masked. This prevents servers from becom-
ing overworked, which could cause them to slow down, drop
requests, and even crash.

In Fig. 10, it is shown that masking the action set based on
the server limit increases the average total processed tasks
by 9%, 8%, and 7% in simple, medium, and hard scenar-
ios and 8%, 8%, and 7% for scenarios with 10, 25, and 50
users, respectively. Also, the proposed model significantly
decreases the average total failed tasks by 77%, 69%, and
72% in simple, medium, and hard scenarios and 88%, 83%,
and 47% in the scenarios with 10, 25, and 50 users, respec-
tively. The reason for the significant improvement in the
average total failed tasks is that when load balancing is con-
sidered, it will prevent a server from saturating more than its
limit, thus failing the tasks.

Impact of Action Prioritization: Edge devices can be
grouped based on user access type before getting access to
the servers of the EC environment to satisfy security require-
ments. According to the inference rules shown in Table 10,
the action prioritization step prioritizes users’ access to the
servers in the same group.

The results indicate that prioritizing the servers for each
user based on server group significantly increases the average
total processed tasks satisfying security requirements com-

pared to the baseline algorithm. The percentage increase is
82%, 78%, and 84% in simple, medium, and hard scenarios
and 78%, 83%, and 83% for scenarios with 10, 25, and 50
users, respectively (see Fig. 11a). The average total processed
tasks and average total failed tasks are not compromised to
increase the satisfying security requirements (see Fig. 11b,
c). This is a significant result that OnCertain improves satis-
fying security requirementswhilemaintaining overall system
performance.

Impact of Execution Prioritization: In the EC environ-
ment, since not all task requests from edge servers can be
scheduled on time, thus, guaranteeing fairness among the
users (i.e., edge devices offloading tasks) while considering
the priorities of the tasks becomes a critical issue. Based on
the inference rules, the OnCertain model proposes four exe-
cution prioritization strategies, namely the user fair, priority
fair, application type fair, and latency fair, that account for
the user usage history (i.e., the number of user tasks that have
been processed), task priorities, application types, and task
latency requirements, respectively (see Tables 11, 12, 13 and
14). So, the tasks are first prioritized, and then the servers are
assigned to them.

The results indicate that prioritizing the execution of the
actions based on usage history significantly decreases the
average standard deviation of usage history compared to the

123



Journal of Reliable Intelligent Environments (2024) 10:19–44 37

Fig. 9 Action masking with server board—the OnCertain model and the DDPG algorithm

Table 9 Action masking with
server limit—an example of
inference rules

Inference rule

Server(?s),User(?u),Task(?t),ServerLimit(?l),ServerWorkload(?w),

isService(TaskOffloading), hasServerLimit(?s, ?l), hasServerWorkload(?s, ?w),

hasTask(?u, ?t), requestFrom(?u, ?s), isEqualTo(?l, ?w)

=> isUnavailableFor(?s, ?u)

Fig. 10 Action masking with server limit—the OnCertain model and the DDPG algorithm

Table 10 Action prioritization
based on server group—an
example of inference rules

Inference rule

Server(?s1),Server(?s2),User(?u),Task(?t),Group(?g1),Group(?g2),

isService(TaskOffloading), hasTask(?u, ?t), inGroup(?u, ?g1), inGroup(?s1, ?g1),

inGroup(?s2, ?g2), requestFrom(?u, ?s1), requestFrom(?u, ?s2)

=> hasPriorityOver(?s1, ?s2)

123



38 Journal of Reliable Intelligent Environments (2024) 10:19–44

Fig. 11 Action prioritization based on server group—the OnCertain model and the DDPG algorithm

Table 11 Execution
prioritization based on usage
history—an example of
inference rules

Inference rule

Server(?s),User(?u1),User(?u2),Task(?t1),Task(?t2),UsageHistory(?h1),

UsageHistory(?h2), isService(TaskOffloading), hasTask(?u1, ?t1),

hasTask(?u2, ?t2), hasUsageHistory(?u1, ?h1), hasUsageHistory(?u2, ?h2),

requestFrom(?u1, ?s), requestFrom(?u2, ?s), isLessThan(?h1, ?h2)

=> hasPriorityOver(?u1, ?u2)

Table 12 Execution
prioritization based on task
priority—an example of
inference rules

Inference rule

Server(?s),User(?u1),User(?u2),Task(?t1),Task(?t2),Priority(?p1),

Priority(?p2), isService(TaskOffloading), hasTask(?u1, ?t1),

hasTask(?u2, ?t2), hasPriority(?t1, ?p1), hasPriority(?t2, ?p2),

requestFrom(?u1, ?s), requestFrom(?u2, ?s), isGreaterThan(?p1, ?p2)

=> hasPriorityOver(?u1, ?u2)

Table 13 Execution
prioritization based on
application type—an example of
inference rules

Inference rule

Server(?s),User(?u1),User(?u2),Task(?t1),Task(?t2), isService(TaskOffloading),

hasTask(?u1, ?t1), hasTask(?u2, ?t2), hasApplicationType(?t1,HealthCare),

hasApplicationType(?t2,Entertainment), requestFrom(?u1, ?s),

requestFrom(?u2, ?s)

=> hasPriorityOver(?u1, ?u2)

Table 14 Execution
prioritization based on task
latency—an example of
inference rules

Inference rule

Server(?s),User(?u1),User(?u2),Task(?t1),Task(?t2),Latency(?l1),

Latency(?l2), isService(TaskOffloading), hasTask(?u1, ?t1), hasTask(?u2, ?t2),

hasLatency(?t1, ?l1), hasLatency(?t2, ?l2), requestFrom(?u1, ?s),

requestFrom(?u2, ?s), isLessThan(?l1, ?l2)

=> hasPriorityOver(?u1, ?u2)

123



Journal of Reliable Intelligent Environments (2024) 10:19–44 39

Fig. 12 Execution prioritization based on usage history—the OnCertain model and the DDPG algorithm

Fig. 13 Execution prioritization based on task priority—the OnCertain model and the DDPG algorithm

123



40 Journal of Reliable Intelligent Environments (2024) 10:19–44

Fig. 14 Execution prioritization based on application type—the OnCertain model and the DDPG algorithm (App Type 1: remote health care, App
Type 2: VoIP, App Type 3: data collection, App Type 4: entertainment)

baseline algorithm. The percentage decrease is 64%, 62%,
and 64% in simple,medium, and hard scenarios, respectively.
This improvement is 44%, 67%, and 79% for scenarios with
10, 25, and 50 users, respectively (see Fig. 12a). So, the pro-
posed model shows more improvement when the number
of users increases. Also, we can see that the average total
processed tasks and average total failed tasks are not com-
promised to decrease the standard deviation of usage history
(see Fig. 12b, c). This is particularly important as OnCertain
can guarantee fairness among the users while keeping the
whole system’s performance.

According to the results shown in Fig. 13, prioritizing exe-
cution of the actions based on the task priority decreases the
average total failed tasks by 25%. The percentage decrease
for tasks with priority 2 is 69%, 58%, and 31% in simple,

medium, and hard scenarios, respectively. This improvement
is 43%, 56%, and 59% for scenarios with 10, 25, and 50
users. In the tasks with the highest priority (i.e., priority 3),
the average total failed tasks decreases by 81%, 83%, and
73% in simple, medium, and hard scenarios and 67%, 82%,
and 88% for scenarios with 10, 25, and 50 users, respectively.
The OnCertain model decreases the average failure rate for
the tasks with priority 3 more than those with priority 2. This
is because when important tasks with the highest priority are
generated in the EC environment, the execution prioritization
step prioritizes them over other tasks to assign the requested
server to them.

The results show that the execution prioritization based on
the application type decreases the average total failed tasks
overall by 31% (see Fig. 14). The percentage decrease for

123



Journal of Reliable Intelligent Environments (2024) 10:19–44 41

Fig. 15 Execution prioritization based on task latency—the OnCertain model and the DDPG algorithm

remote health care tasks (i.e., App Type 1) is 79%, 80%, and
67% in simple, medium, and hard scenarios, respectively.
This improvement is 67%, 80%, and 79% for scenarios with
10, 25, and 50 users, respectively. In the VOIP tasks (i.e.,
App Type 2), the average total failed tasks decreases by
69%, 56%, and 28% in simple, medium, and hard scenar-
ios and 44%, 54%, and 54% for scenarios with 10, 25, and
50 users, respectively. The OnCertain model decreases the
average failure rate for the remote health care tasks more
than the VOIP tasks. The reason is that the real-time require-
ment for remote health care applications is essential, and any
delay is unacceptable. Hence, our model gives high priority
to the remote health care applications in the task offloading
service.

Figure 15 shows that the execution prioritization based on
task latency decreases the average total failed tasks by 33%.
The percentage decrease for very low latency tasks is 75%,
63%, and 44% in simple, medium, and hard scenarios and

53%, 63%, and 66% for scenarios with 10, 25, and 50 users,
respectively. In the low latency tasks, the percentage decrease
is 70%, 36%, and −33% in simple, medium, and hard sce-
narios and 25%, 23%, and 25% for scenarios with 10, 25, and
50 users, respectively. We observe that the OnCertain model
decreases the average failure rate for the very low latency
tasks more than others. Also, the improvement in the hard
scenario is lower than in medium and simple scenarios. This
is because the number of very low latency tasks increases,
and our proposed model shows less improvement due to the
limited number of servers.

7 Conclusion and future work

Self-adaptive systems face uncertainty from various sources,
including uncertainties imposed by noisy sensor data and
unanticipated events. Several approaches, including adaptive

123



42 Journal of Reliable Intelligent Environments (2024) 10:19–44

modeling mechanisms, machine learning, and reinforcement
learning algorithms, take uncertainty into accountwhenmak-
ing adaptation decisions. However, they cannot performwell
in handling rare events, especially when the number of adap-
tation actions increases and on the fly decision-making is
desired. To address these challenges, a novel Ontology-based
unCertainty handling model (OnCertain) is proposed and
evaluated in traffic signal control and edge computing envi-
ronments. The OnCertain enables self-adaptive systems to
use ontology and RL to augment their observation and rea-
son about unanticipated situations.

OnCertain can be extended to handle uncertainties associ-
ated with different sources, including the system’s goals and
human behavior. It is essential that the ontology used by the
OnCertain model is accurate and complete to maximize per-
formance. The ontology must be continuously updated and
evolved to operate in dynamic environments using ontology
evolution techniques. Furthermore, a study about the impact
of the goodness of ontology with respect to the performance
of the systems could be useful. Also, the impact of under
or overestimating concepts’ weights on the overall process
must be assessed. Moreover, the importance of concepts can
change depending upon the context, so that the agent can
have different ontologies for different “modes of operation”,
for example, during a hurricane or flood, or power outage.
Also, Quality of Service (QoS) requirements can be defined
based on the ontology to facilitate the actions and execution
prioritization. To deal with unfamiliar environment changes,
the proposed model can be extended to use ontology-based
generalization techniques to evaluate the possible similarity
of these unknown changes with known ones.

Availability of data and materials/Code availability The code of the
OnCertain-DDPG algorithm and the simulated data and results are
publicly available: https://github.com/saeedehghanadbashi/ontology-
based-RL.

Declarations

Conflict of interest On behalf of all authors, the corresponding author
states that there is no conflict of interest.

References

1. Calinescu R, Mirandola R, Perez-Palacin D, Weyns D (2020)
Understanding uncertainty in self-adaptive systems. In: Interna-
tional conference on autonomic computing and self-organizing
systems (ACSOS). IEEE, Washington, pp 242–251

2. Van Der Donckt J, Weyns D, Quin F, Van Der Donckt J, Michiels
S (2020) Applying deep learning to reduce large adaptation spaces
of self-adaptive systems with multiple types of goals. In: Inter-
national symposium on software engineering for adaptive and
self-managing systems (SEAMS). IEEE/ACM, Seoul, pp 20–30

3. Wang Y, Yang X, Liang H, Liu Y (2018) A review of the
self-adaptive traffic signal control system based on future traffic
environment. J Adv Transp 2018

4. Safavifar Z, Ghanadbashi S, Golpayegani F (2021) Adaptive
workload orchestration in pure edge computing: a reinforcement-
learning model. In: International conference on tools with artificial
intelligence (ICTAI). IEEE, Washington, pp 856–860

5. CiampiM, Coronato A, NaeemM, Silvestri S (2022) An intelligent
environment for preventing medication errors in home treatment.
Expert Syst Appl 193:116434

6. Naeem M, Coronato A (2022) An AI-empowered home-
infrastructure tominimizemedication errors. J Sens Actuator Netw
11(1):13

7. Schmerl B, Andersson J, Vogel T, Cohen MB, Rubira CM, Brun
Y, Gorla A, Zambonelli F, Baresi L (2017) Challenges in compos-
ing and decomposing assurances for self-adaptive systems. In: De
Lemos R, Garlan D, Ghezzi C, Giese H (eds) Software engineer-
ing for self-adaptive systems III. Assurances. Springer, Cham, pp
64–89

8. Esfahani N, Malek S (2013) Uncertainty in self-adaptive software
systems. In: De Lemos R, Giese H, Müller HA, Shaw M (eds)
Software engineering for self-adaptive systems. Springer, Berlin,
pp 214–238

9. Mahdavi-Hezavehi S, Avgeriou P, Weyns D (2017) A classifica-
tion framework of uncertainty in architecture-based self-adaptive
systems with multiple quality requirements. In: Mistrik I, Ali N,
Kazman R, Grundy J, Schmerl B (eds) Managing trade-offs in
adaptable software architectures. Elsevier, Berlin, pp 45–77

10. Calinescu R, Grunske L, Kwiatkowska M, Mirandola R, Tam-
burrelli G (2010) Dynamic QoS management and optimization in
service-based systems. Trans Softw Eng 37(3):387–409

11. Cámara J, Peng W, Garlan D, Schmerl B (2017) Reasoning about
sensing uncertainty in decision-making for self-adaptation. In:
International conference on software engineering and formalmeth-
ods. Springer, Cham, pp 523–540

12. Moreno G.A, Cámara J, Garlan D, Klein M (2018) Uncertainty
reduction in self-adaptive systems. In: International conference
on software engineering for adaptive and self-managing systems
(SEAMS). ACM, Gothenburg, pp 51–57

13. Gheibi O, Weyns D, Quin F (2021) Applying machine learning in
self-adaptive systems: a systematic literature review. Trans Auton
Adapt Syst 15(3):1–37

14. Metzger A, Quinton C, Mann Z.Á, Baresi L, Pohl K (2022) Real-
izing self-adaptive systems via online reinforcement learning and
feature-model-guided exploration. Computing 104:1–22

15. Zouaq A, Nkambou R (2010) A survey of domain ontology
engineering: methods and tools. In: Nkambou R, Bourdeau J,
Mizoguchi R (eds) Advances in intelligent tutoring systems.
Springer, Berlin, pp 103–119

16. Fong ACM, Hong G, Fong B (2019) Augmented intelligence with
ontology of semantic objects. In: International conference on con-
temporary computing and informatics (IC3I). IEEE, Singapore, pp
1–4

17. Golpayegani F, Dusparic I, Clarke S (2019) Using social depen-
dence to enable neighbourly behaviour in open multi-agent sys-
tems. Trans Intell Syst Technol 10(3):1–31

18. Alkhabbas F, Murturi I, Spalazzese R, Davidsson P, Dustdar S
(2020)A goal-driven approach for deploying self-adaptive IoT sys-
tems. In: International conference on software architecture (ICSA).
IEEE, Salvador, pp 146–156

19. Qureshi NA, Liaskos S, Perini A (2011) Reasoning about adaptive
requirements for self-adaptive systems at runtime. In: International
workshop on Requirements@Run.Time (RE@RunTime). IEEE,
Trento, pp 16–22

123

https://github.com/saeedehghanadbashi/ontology-based-RL
https://github.com/saeedehghanadbashi/ontology-based-RL


Journal of Reliable Intelligent Environments (2024) 10:19–44 43

20. Morandini M (2011) Goal-oriented development of self-adaptive
systems. PhD thesis, University of Trento, Italy. http://eprints-phd.
biblio.unitn.it/511

21. Whittle J, Sawyer P, Bencomo N, Cheng BH, Bruel J-M (2010)
RELAX: a language to address uncertainty in self-adaptive systems
requirement. Requir Eng 15(2):177–196

22. Ding Z, Zhou Y, Zhou M (2015) Modeling self-adaptive software
systems with learning Petri nets. Trans Syst Man Cybern Syst
46(4):483–498

23. Qin Y, Xu C, Yu P, Lu J (2016) SIT: sampling-based interactive
testing for self-adaptive apps. J Syst Softw 120:70–88

24. Sykes D, Corapi D, Magee J, Kramer J, Russo A, Inoue K (2013)
Learning revisedmodels for planning in adaptive systems. In: Inter-
national conference on software engineering (ICSE). IEEE, San
Francisco, pp 63–71

25. Vassev E, Hinchey M, Balasubramaniam D, Dobson S (2011) An
ASSL approach to handling uncertainty in self-adaptive systems.
In: Annual software engineering workshop (SEW). IEEE, Limer-
ick, pp 11–18

26. Solano GF, Caldas RD, Rodrigues GN, Vogel T, Pelliccione P
(2019) Taming uncertainty in the assurance process of self-adaptive
systems: a goal-oriented approach. In: International symposium
on software engineering for adaptive and self-managing systems
(SEAMS). IEEE/ACM, Montreal, pp 89–99

27. Elkhodary A, Esfahani N, Malek S (2010) FUSION: a frame-
work for engineering self-tuning self-adaptive software systems.
In: International symposium on foundations of software engineer-
ing (FSE). ACM, Santa Fe, pp 7–16

28. Calinescu R, Kwiatkowska M (2009) Using quantitative analysis
to implement autonomic IT systems. In: International conference
on software engineering (ICSE). IEEE, Vancouver, pp 100–110

29. Cheng S-W, Garlan D (2007) Handling uncertainty in autonomic
systems. In: International Workshop on Living with Uncertainties
(IWLU’07), colocated with International Conference on Auto-
mated Software Engineering (ASE’07). Citeseer, Atlanta,

30. Baresi L, Pasquale L, Spoletini P (2010) Fuzzy goals for
requirements-driven adaptation. In: International requirements
engineering conference (RE). IEEE, Sydney, pp 125–134

31. Whittle J, Sawyer P, Bencomo N, Cheng BH, Bruel J-M (2009)
Relax: incorporating uncertainty into the specification of self-
adaptive systems. In: International requirements engineering con-
ference (RE). IEEE, Atlanta, pp 79–88

32. Esfahani N, Kouroshfar E, Malek S (2011) Taming uncertainty in
self-adaptive software. In: International symposiumon foundations
of software engineering (FSE). ACM, Szeged, pp 234–244

33. Han D, Xing J, Yang Q, Li J, Wang H (2016) Handling uncer-
tainty in self-adaptive software using self-learning fuzzy neural
network. In: Annual computer software and applications confer-
ence (COMPSAC), vol 2. IEEE, Atlanta, pp 540–545

34. Sharifloo AM, Metzger A, Quinton C, Baresi L, Pohl K (2016)
Learning and evolution in dynamic software product lines. In:
International symposium on software engineering for adaptive and
self-managing systems (SEAMS). IEEE/ACM, Austin, pp 158–
164

35. Kephart JO, ChessDM (2003) The vision of autonomic computing.
Computer 36(1):41–50

36. Weyns D, Schmerl B, Kishida M, Leva A, Litoiu M, Ozay N,
Paterson C, Tei K (2021) Towards better adaptive systems by
combining MAPE, control theory, and machine learning. In: Inter-
national symposium on software engineering for adaptive and
self-managing systems (SEAMS). IEEE/ACM, Madrid, pp 217–
223

37. Rodrigues A, Caldas RD, Rodrigues GN, Vogel T, Pelliccione P
(2018) A learning approach to enhance assurances for real-time
self-adaptive systems. In: International symposium on software

engineering for adaptive and self-managing systems (SEAMS).
IEEE/ACM, Gothenburg, pp 206–216

38. Zavala E, FranchX,Marco J, KnaussA,DamianD (2018) SACRE:
supporting contextual requirements’ adaptation in modern self-
adaptive systems in the presence of uncertainty at runtime. Expert
Syst Appl 98:166–188

39. Knauss A, Damian D, Franch X, Rook A, Müller HA, Thomo A
(2016) ACon: a learning-based approach to deal with uncertainty
in contextual requirements at runtime. Inf Softw Technol 70:85–99

40. Mao X, Dong M, Liu L, Wang H (2014) An integrated approach to
developing self-adaptive software. Inf Sci Eng 30(4):1071–1085

41. Wu T, Li Q,Wang L, He L, Li Y (2018) Using reinforcement learn-
ing to handle the runtime uncertainties in self-adaptive software.
In: International conference on software technologies: applications
and foundations (STAF). Springer, Berlin, pp 387–393

42. Teimourikia M, Fugini M (2017) Ontology development for run-
time safety management methodology in smart work environments
using ambient knowledge. Future Gener Comput Syst 68:428–441

43. Poggi F, RossiD,Ciancarini P, Bompani L (2016)An application of
semantic technologies to self adaptations. In: International forum
on research and technologies for society and industry (RTSI). IEEE,
Bologna, pp 1–6

44. Qureshi NA, Perini A, Ernst NA, Mylopoulos J (2010) Towards a
continuous requirements engineering framework for self-adaptive
systems. In: International workshop on Requirements@Run.Time
(RE@RunTime). IEEE, Sydney, pp 9–16

45. Cheng W, Li Q, Wang L, He L (2018) Handling uncertainty
online for self-adaptive systems. In: International conference on
soft computing and machine intelligence (ISCMI). IEEE, Nairobi,
pp 135–139

46. Hao J, Bouzouane A, Gaboury S (2019) An incremental learning
method based on formal concept analysis for pattern recognition
in nonstationary sensor-based smart environments. Pervasive Mob
Comput 59:101045

47. Civitarese G, Bettini C, Sztyler T, Riboni D, Stuckenschmidt H
(2019) newNECTAR: collaborative active learning for knowledge-
based probabilistic activity recognition. Pervasive Mob Comput
56:88–105

48. Sanabria AR, Ye J (2020) Unsupervised domain adaptation for
activity recognition across heterogeneous datasets. Pervasive Mob
Comput 64:101147

49. Ghanadbashi S, Golpayegani F (2021) An ontology-based intel-
ligent traffic signal control model. In: International intelligent
transportation systems conference (ITSC). IEEE, Indianapolis, pp
2554–2561

50. Palm A, Metzger A, Pohl K (2020) Online reinforcement learning
for self-adaptive information systems. In: International conference
on advanced information systems engineering (CAiSE). Springer,
Berlin, pp 169–184

51. Sutton RS, Barto AG (2018) Reinforcement learning: an introduc-
tion. MIT, Cambridge, pp 154–157

52. Thanh-Tung D, Flood B, Wilson C, Sheahan C, Bao-Lam D
(2006) Ontology-MAS for modelling and robust controlling enter-
prises. In: International conference on theories and applications of
computer science (ICTACS). World Scientific, Ho Chi Minh, pp
116–123

53. Horrocks I, Patel-Schneider PF, Boley H, Tabet S, Grosof B, Dean
M et al (2004) SWRL: a semantic web rule language combining
OWL and RuleML. W3C Memb Submiss 21(79):1–31

54. Belohlavek R, Macko J (2011) Selecting important concepts using
weights. In: International conference on formal concept analysis
(ICFCA). Springer, Nicosia, pp 65–80

55. Saleena B, Srivatsa S (2015) Using concept similarity in cross
ontology for adaptive e-Learning systems. J King Saud Univ Com-
put Inf Sci 27(1):1–12

123

http://eprints-phd.biblio.unitn.it/511
http://eprints-phd.biblio.unitn.it/511


44 Journal of Reliable Intelligent Environments (2024) 10:19–44

56. Vitkute-Adzgauskiene D, Markievicz I, Krilavicius T, Tamo-
siunaite M. (2022) Learning and execution of action categories
(ACAT). https://if.vdu.lt/en/research/projects/project-learning-
and-execution-of-action-categories-acat. Accessed 2022

57. Li C, TianG (2020) Transferring the semantic constraints in human
manipulation behaviors to robots. Appl Intell 50:1711–1724

58. Vallejo M, Corne DW (2016) Evolutionary algorithms under noise
and uncertainty: a location-allocation case study. In: Viktorovic
M, Yang D, De Vries B (eds) Symposium series on computational
intelligence (SSCI). IEEE, Athens, pp 1–10

59. Viktorović M, Yang D, de Vries B (2020) Connected Traffic Data
Ontology (CTDO) for intelligent urban traffic systems focused on
connected (semi) autonomous vehicles. Sensors 20(10):2961

60. Wei H, Zheng G, Gayah V, Li Z (2019) A survey on traffic signal
control methods. Comput Res Repos. arXiv:1904.08117

61. MazakA,SchandlB,LanzenbergerM(2010) iweightings:Enhanc-
ing structure-based ontology alignment by enriching models with
importance weighting. In: International conference on complex,
intelligent and software intensive systems (CISIS). IEEE, Krakow,
pp 992–997

62. Wang J, Liu Y, Li B (2020) Reinforcement learning with perturbed
rewards. In: AAAI conference on artificial intelligence. AAAI
Press, New York, vol 34, pp 6202–6209

63. Kiran BR, Sobh I, Talpaert V, Mannion P, Al Sallab AA, Yogamani
S, Pérez P (2022) Deep reinforcement learning for autonomous
driving: a survey. Trans Intell Transp Syst 23(6):4909–4926

64. Alegre LN (2019) SUMO-RL. https://github.com/LucasAlegre/
sumo-rl. Accessed 2022

65. Han M, Lee Y, Moon SB, Jang K, Lee D (2008) CRAW-
DAD dataset kaist/wibro (v. 2008-06-04). https://crawdad.org/
kaist/wibro/20080604. https://doi.org/10.15783/C72S3B

66. Chen D (2020) Resources allocation in the edge computing
environment using reinforcement learning. https://github.com/
davidtw0320/Resources-Allocation-in-The-Edge-Computing-
Environment-Using-Reinforcement-Learning. Accessed 2022

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

123

https://if.vdu.lt/en/research/projects/project-learning-and-execution-of-action-categories-acat
https://if.vdu.lt/en/research/projects/project-learning-and-execution-of-action-categories-acat
http://arxiv.org/abs/1904.08117
https://github.com/LucasAlegre/sumo-rl
https://github.com/LucasAlegre/sumo-rl
https://crawdad.org/kaist/wibro/20080604
https://crawdad.org/kaist/wibro/20080604
https://doi.org/10.15783/C72S3B
https://github.com/davidtw0320/ Resources-Allocation-in-The-Edge-Computing-Environment-Using-Reinforcement-Learning
https://github.com/davidtw0320/ Resources-Allocation-in-The-Edge-Computing-Environment-Using-Reinforcement-Learning
https://github.com/davidtw0320/ Resources-Allocation-in-The-Edge-Computing-Environment-Using-Reinforcement-Learning

	Handling uncertainty in self-adaptive systems: an ontology-based reinforcement learning model
	Abstract
	1 Introduction
	2 Related work
	3 Background
	3.1 MAPE-K reference model
	3.2 Partially observable Markov decision process
	3.3 Reinforcement learning
	3.4 Ontology

	4 Problem statement
	5 Ontology-based uncertainty handling model
	5.1 Observation modeling
	5.2 Action selection and execution
	5.3 Reward augmentation

	6 Performance evaluation
	6.1 Traffic signal control environment
	6.1.1 Simulation settings
	6.1.2 Parameter modeling
	6.1.3 Scenarios
	6.1.4 Results and discussion

	6.2 Edge computing environment
	6.2.1 Simulation settings
	6.2.2 Parameter modeling
	6.2.3 Scenarios
	6.2.4 Results and discussion


	7 Conclusion and future work
	References




