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Abstract

Regular inspection of historic buildings is essential, while path planning of the building inspection is challenging because
it requires comprehensive coverage at a low cost. Most of the previous research does not consider the multiple buildings’
environment. In this paper, a three-dimensional path planning approach is proposed to provide the inspection for multiple
buildings. The proposed Helix-HPSO approach generates the helix-shaped path for each building and uses HPSO for path
planning between buildings. The computational experiment validates the proposed approach. The helix-shaped path costs
less than the traditional back-and-forth path for building inspection. HPSO is compared with other bio-inspired algorithms

for optimization problems and PSO for path planning.

Keywords Multi-building - 3D path planning - UAV

1 Introduction

Unmanned Aerial Vehicles (UAVs) can provide remote
inspections, and obtain different digital imagery by sen-
sors or cameras, such as thermal, ultrasonic, laser scanners,
high-resolution, and near-infrared [1,2]. Computer vision
and other technologies can process the collected data to
detect surface defects of infrastructure, including distortion,
spalling, cracking, excessive movements, rusting, and mis-
alignment [2]. Finding an informative and efficient path is
required to perform UAV-based path planning inspection
with data from different views [2].
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This research was conducted because of an accident in
Notre Dame de Paris, which attracted attention to protect the
historical buildings and collect the building data in case of an
accident. Historic buildings have historical value as symbols
of specific eras and can exhibit the architect’s aesthetic and
past people’s lives. Monitoring historic buildings’ condition
and regular inspections of historic buildings are essential.

The Helix-HPSO approach is proposed as UAV-based
path planning for building inspection of multiple historical
buildings. It uses the helix-shaped path for inspecting each
building, which is a smooth path at a low cost and suitable for
UAV constraints. Also, the Helix path is compared with the
traditional inspection path. The proposed HPSO algorithm
generates the path for flying to another building, consid-
ering the distance and collision avoidance. The HPSO has
been compared with other bio-inspired algorithms through
benchmark functions and with PSO for path planning. The
contributions of this paper include the following:

e Improve PSO with the inspiration from the Harmony
search algorithm as a new algorithm, HPSO

e A novel 3D path planning approach based on the helix-
shaped path and proposed HPSO for a smooth and safe
path

e Provide the generic building inspection approach in the
multi-building environment
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This paper proposes a UAV-based path planning for a
building inspection as the Helix-HPSO approach, and it
is organized as follows. Section2 reviews the UAV path
planning algorithms and building inspection approaches.
Section3 describes the problem formulation, and Sect.4
proposes the Helix-HPSO approach. The result of the com-
putational experiment is in Sect.5. This paper is concluded
in Sect. 6.

2 Related work

The path planning algorithms can be classified as node-based
[3], sampling-based [4], mathematical mode [5], multi-
fusion-based [1] and bio-inspired algorithms [2]. A* and
DWA is integrated for global path optimization for UAV path
planning to improve safety, and efficiency [3]. A genetic algo-
rithm and A* algorithm are integrated to solve the travelling
salesman problem for LiDAR-equipped UAV path planning
[6]. An improved A* is combined with a gravitational search
algorithm for the optimal path with several optimization
objectives, such as the return point and the heading angle
[7].

Moreover, for UAV path planning, a biased sampling
potentially guided intelligent bidirectional RRT* algorithm
is proposed to overcome the slow convergence rate of explo-
ration [4]. UAV path planning can be transformed into a
nonlinear optimal control problem, and sequential convex
programming is proposed to solve it by approximating the
non-convex parts [5]. An improved Artificial Potential field
(APF) is proposed for UAV path planning with additional
control force, and it avoids local minima [8]. The chaotic
bat algorithm is combined with an improved APF for faster
position update and adaptive inertia weight [9].

An odd-even layered genetic algorithm (GA) is proposed
for cooperative inspection path planning in [10]. Particle
swarm optimization (PSO) and the mutation operator of GA
are combined to improve the central force optimization algo-
rithm and aim for complicated path optimization [11]. In a
proposed random chemical reaction optimization algorithm
[12], PSO and elitist selections are combined to act as the
subsets of the set of molecules. It is used for UAV inspection
path planning.

Additionally, a heuristic evolutionary algorithm in [13]
implements mutation, substitution, crossover, smoothness
and length operations to build the path for UAV. The rein-
forcement learning is improved based on the grey wolf
optimizer algorithm to control the switch operations for indi-
viduals during UAV path planning [14]. The differential
evolution algorithm is modified with symbiotic organism
search for impressive local and global search ability [15].
A modified Mayfly algorithm is proposed in [16] with an
enhanced crossover operator, adaptive Cauchy mutation and
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an exponent decreasing inertia weight to search the config-
uration space and get the path with the lowest cost for UAV
path planning.

UAVs offer excellent flexibility in many fields with the
development of technologies and remote photogrammetry,
including security, rural environment monitoring, urban plan-
ning, and, recently, infrastructure inspection [17-19]. UAV
applications in construction include site surveying, safety
inspection, building inspection, damage assessment, urban
monitoring, road assessment, geo-hazard investigations, and
progress monitoring [20,21].

UAV infrastructure inspections can be classified into five
categories: bridges, power lines, buildings and facades, rail-
ways and sewers, and geographical inspections [17]. A
regular building inspection is necessary to ensure their con-
dition is safe. Maintenance and detection of building facade
anomalies require periodic safety inspections and examina-
tions [22]. They are more critical to the historical buildings
as heritage [19].

Detail three-dimensional heritage reconstruction is cru-
cial for interpretation, further analysis and physical recon-
struction eventually [23]. Heritage documentation includes
post-catastrophe damage assessment and the modelling of
facades, monuments or entire buildings [23]. Inspectors usu-
ally take photos directly of every element in general practice
to record damage or dilapidation, which is time-consuming
and expensive [1,19]. UAV technology overcomes risky,
time-consuming, and costly inspection practices for moni-
toring and inspecting infrastructure [24].

Additionally, the research of building inspection is for
evaluating the condition of a building and checking the
appearance of a building. The UAV survey aims to model
the structure and recognize the state [25]. UAV-based pho-
togrammetry evaluates the condition of facilities and allows
complete documentation of buildings with fewer human
resources and time, particularly for the areas difficult to
access [2,19,26]. A UAV-based project’s geometric result
relies on the UAV manufacturing quality and the onboard
sensor system, materials, shutter modes and digital sensor
types [23].

The autonomous navigation of UAVs relies on local infor-
mation in the GNSS-denied zones, and an RGB-D Kinect
camera or visual information can obtain such local informa-
tion to compute an analytical path [27]. Distance measuring
units can also calculate the angle and the range between
the structure and the UAV during the inspection [28]. The
pre-processing algorithm processes the local information
obtained from the point cloud and then uses the path planning
algorithm to generate the path for the indoor environment
[27].

Range-based and image-based techniques are employed
widely in the three-dimensional documentation of build-
ings, and UAVs have advantages for image-based techniques



Journal of Reliable Intelligent Environments (2023) 9:371-384

373

with aerial views [23]. UAVs follow a programmed flight
path to record and survey historical buildings, obtaining sur-
vey data for unreachable areas with a terrestrial platform
[2,18,29]. UAVs are equipped with sensors for navigation, 3D
data acquisition, and obstacle avoidance [1,2,18]. It achieves
higher flexibility with low-cost [30]. Survey data can vary
from sensors, such as Forward-Looking Infrared technol-
ogy, images, separate strips, multi-attributed point cloud, 3D
point cloud, and laser scanners [1,19,30,31]. UAV-derived
point clouds can extract the surface after image processing
[32]. The building information model and the UAV inspection
workflow are integrated for an augmented reality solution
with aerial video [33,34].

Laser scanning data, close-range photogrammetric images,
or a combination of both are generally applied for building
inspection documentation [2,26]. Close-range facade images
are employed to inspect, and document facade anomalies,
such as corrosion and cracks [22]. 2D photographs generated
by UAVs enable the creation of a precise model of buildings
with proper path planning and using dedicated software to
identify the defects [26]. Close-range high-resolution inspec-
tions can achieve 3D modelling of a historical building [29].
Documentation of heritage buildings with 3D reconstruc-
tion and photogrammetry is based on motion with a dense
matching algorithm and optical sensors [23]. LiIDAR, stereo
camera, IMU, and wide-angle camera are implemented for
the UAV-UGYV system for indoor and cluttered scenes [35].

Moreover, a GIS-based two-step procedure supports
building facade inspection by processing the management
of UAV-collected images [22] in the inspection, measur-
ing the geometry of buildings and requiring documentation
in the form of photogrammetric images [18,36]. Advanced
photogrammetric techniques and deep learning algorithms
are applied to record building damages autonomously by a
true-orthophoto [36]. A Convolutional Neural Network is
fine-tuned to detect damage and surface cracks [37,38]. Ultra-
sonic Beacon system replaces GPS for autonomous flight,
and a geotagging method can locate damages [37].

For buildings with planar surfaces, particle swarm opti-
mization is adapted as enhancing discrete particle swarm
optimization to plan the path for UAV [1]. The most common
path planning method for a building inspection is back-
and-forth paths. The inspection of the Perak Museum used
back-and-forth paths; the UAV flew from the bottom of the
building, then moved to the top, and flew to the right side,
then reached the ground [19].

From the literature, the popular algorithms used in UAV
path planning are based on bio-inspired algorithms. The bio-
inspired algorithms provide fast path generation with optimal
solutions. For the building inspection, the related work lacks
the consideration of multiple buildings. This paper proposes
the Helix-HPSO approach to address the problem of the

multi-building environment, generating the path for each
building and between the buildings.

3 Problem formulation

The basic components of UAV path planning include the
start, the goal and the environment. The shape of most build-
ings can be modelled as rectangular or cylinder. The building
inspection requires broad coverage with a short path. For
proceeding between buildings, collision avoidance and flight
distance should be considered. It is aimed at generating a safe
and optimal path. The developed cost functions to evaluate
the paths are as below.

3.1 Cost functions for building inspection

The cost function is defined as Eq. (1), and it is to evaluate
the inspection paths.

Seost = W1 * fdistance + W2 * frime + W3 * falritude (D

where wi, wy and w3 are the weights of the cost functions
of distance, flight time, and the change of altitude. The cost
functions are listed as Eqgs. (2)—(4). The sum of the weights
is 1.

n
Fdistance = ) _ \/(Xk+1 —x0% + k1 — 0% + @1 — 202

k=1
@)

where n is the size of the path points, and xj is the current
path point.

fattitude =)\ @1 — 20)? 3)
k=1

where v/ (zx11 — zx)? is the change of altitude.

u \/(xk+l —x0)% + k1 = 90 + @1 — 2)?

Jtime = Z
v

k=1

“)
where v is the current velocity.
3.2 Cost functions for path planning
The cost functions are developed to evaluate the optimal path

during path planning, considering the distance and collision
avoidance. The best solution would be the generated path for
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flying to another building.

Spath cost = W4 * fiength + W5 * feollision (5)

where w4 and ws are the weights of the length and collision
cost functions. The cost functions are listed as Equations (6)
—(9). The sum of the weights is 1.

n
Siength = Z \/(xk+1 = X102 + k41 — Y0 + @1 — 20)?

k=1
(6)

where n is the number of path points, and x is the current
path point.

dic = ) (= X + (= ¥ + Gz — 20 %)

where dy is the distance from the current path point to the
centre of an obstacle.

cn
= re—d ®)
c=1

where cn is the number of obstacles. The collision occurs if
re —dr < 0, which means that the current path point overlaps

[

@

Generate the multi-
building model

Initialization

Generate the helix path
for each building

Proceed to another
building

Evaluation by cost
functions

with an obstacle c.
n
Feollision = ) _ Ck ©)
k=1

where fio11ision SUmMs up the violation value for collisions
that happen between each path point and obstacles.

4 Helix-HPSO approach
4.1 Overview

The helix-HPSO approach generates the helix path for each
building, defining the points where info is collected with
reasonable time slots. After inspecting one building, the UAV
proceeds to another building with an optimal path based on
a visited vector and a cost matrix, as shown in Fig. la. Cost
functions evaluate several factors, including distance, time,
and altitude. The helix-HPSO approach is demonstrated in
Fig. 1b. The steps of the proposed algorithm are as follows:

1. Build the model for the multi-building environment.
2. Generate the inspection path and the points where info is
collected for each building.

Generate the inspection
points

1nish the las
building
inspection?

-No-

(a) The flow chart of the Helix-cost approach
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(b) The principle of the Helix cost approach

Fig.1 The Helix-cost
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3. Proceed to another building after inspecting one building.
4.2 Path planning for each building: Helix path
4.2.1 Helix path

The helix path [39] for inspecting each building is generated
through Eqgs. (10)—(12). The position of the UAV is denoted
as (x(t), y(t), z(¢)) at the specific time 7. The time slot is set
to 0.01 for 7. Recording current t as #,,4, and terminating the
iteration once z(¢) reaches the determined height based on
the inspection type.

x(1) =r*sin(%)+xg (10)

y(t) =r*cos(%)+yg (11)
vh

z(t) = (27t_r) 1 +2zg+1 (12)

where v is the UAV flight speed, (x, y¢, zg)represents the
centre of the ground floor of a building, r is the radius of the
helix path, and 4 is the height of each floor.

The time required for an n-floor building inspection is
defined by Eq. (13), with a flight speed v.

2w
T, =" (13)
v
The points of the path are stored as Eq. (14).
X1 Y1 21
X2 Y2 22
Points = | . . . (14)
Xn Yn Zn

Algorithm 1 Generation Of Inspection Path

1: procedure HELIX PATH(xg, yg, zg, floor Num, radiusO f Building,

height Of EachFloor, height Of Roof , inspectionT ype)

2 if inspectionType == "interior" then

3 h < heightOf EachFloor ForlInterior
4 r < radius O f Building For Interior
5: tMax < getTmaxForlInterior()

6 else

7 h < heightOf EachFloor For Exterior
8: r < radius O f Building For Exterior
9: tMax < getTmaxForExterior()

10:  endif

11:  for time <— 0:0.01 : tMax do

12: xt <= rxsin(vxtime/2 % pi xr)+xg
13: yt <—rxcos(vxtime/2* pixr)+ yg
14: 7t < (Vxh)/ (2% pi xr)xtime+ zg + 1
15: points < [points; xt, yt, zt]

16:  end for

17: end procedure

Algorithm 1 presents the algorithm for generating the
paths of interior and exterior inspection. The exterior and
interior inspection paths are connected through the door,
inspecting the entrance hall.

4.3 Path planning between buildings: HPSO
4.3.1 Cost matrix

After completing the inspection of one building, the UAV
proceeds to another building for inspection. Each building
is marked with numbers, and the cost matrix evaluates the
order of inspecting buildings as Eq. (15). If a building has
been visited, update the visited vector and the related costs
asinfinity.

infinity cost(1,2) ... cost(l, m)

cost(2,1) infinity ...cost(2,m)

Cost = (15)

cost(m, 1) cost(m,2) ... infinity

where m stands for the number of buildings in the environ-
ment.

4.3.2 Preliminary knowledge

Particle swarm optimization (PSO) Particle swarm opti-
mization (PSO) is proposed by [40] and is inspired by the
social behaviour of fish schooling or bird flocking. It uses
the globally and local-oriented values to track each particle’s
coordinates in hyperspace. PSO uses initial random solu-
tions and updates the velocity and position for each particle
as Equations (16)—(17) to seek the optimal solutions in the
configuration space. Algorithm 2 shows the principle of PSO.

vf“ = a)vf + clrl(pbestl-’ — xf) + cora(gbest’ — xf)(16)

X = 2t gl a7

where v stands for particle velocity and o is the inertial
weight. ¢ + 1 is the current time slot, and i is the current
particle. pbest is the best local-oriented value, and gbest is
the best global-oriented value. x is the position of the particle.

Harmony search (HS) Harmony search (HS) is proposed
by mimicking the improvisation of music players [41]. It
aims to get better solutions but with fewer iterations than
other heuristic algorithms. Music harmony consists of several
sound waves with different frequencies, and performances
seek the best state. HS initializes a harmony memory (HM).
Set the harmony memory considering rate (HMCR), har-
mony memory size (HMS), and pitching adjusting rate
(PAR). Then, improvise a new harmony from HM as Egs.

@ Springer



376

Journal of Reliable Intelligent Environments (2023) 9:371-384

Algorithm 2 PSO algorithm

Algorithm 3 HS algorithm

1: procedure PSO(x,v)

2:  Initialization

3 fort < 1:tyax do

4 for i < 1 : number Of Particle do

5: updateVelocity

6: update Position

7: Evaluation

8 if cost(particle;) < particle;.pbest then

o.-

: particle;.pbest < particle;
10: end if
11: if cost(particlel) < gbest then
12: gbest < particle;
13: end if
14: end for
15:  end for

16: end procedure

(18)—(20). Add the better harmony in HM and exclude the
old harmony. Keep seeking harmony with the minimum har-
mony until satisfying the stopping criterion. HS is described
by Algorithm 3.

, x; € {)ol X2, .. x,.HMS} , with probability HMCR
/ (18)

x; € X;, with probability (1-HMCR)

where HMCR is the probability of getting one historic value

in the HM

Pitch adjusting decision of x;
YES, with probability PAR (19)
| NO, with probability (1-PAR)
If a value is from the HM, the pitching process happens. If
the decision is YES, then updating x; as Eq. (20).

x; = x; + (20)
where « can be the result of the arbitrary distance bandwidth
multiplying a uniform distribution in [—1, 1] or the arbitrary
distance bandwidth multiplying the standard normal distri-
bution.

4.4 Harmony particle swarm optimization (HPSO)

From Sect.2, The bio-inspired algorithms are widely used
in UAV path planning, especially PSO and GA. Due to
the requirement of fast computation, PSO is chosen to be
improved for UAV path planning between buildings. HS is
proposed for better solutions with fewer iterations, inspiring
the improvement of the PSO approach. Thus, a hybrid HPSO
is proposed for fast convergence and fewer iterations. The

@ Springer

1: procedure HS(VarMin, VarMax, VarSize)
2:  Initialization

3 for it < 1 :ityax do

4 for k < 1:nNew do

5: XV < unifrnd(VarMin, VarMax, VarSize)
6: for j < 1:nVardo

7 if rand < HMCR then

8 new (_x:fromHM

: X
9: iif rand <IPAR then
10: Xt < xl:fmm +
11: end if
12: end if
13: end for
14: Evaluation
15: Merge HM
16: Update Best Solution
17: end for
18:  end for

19: end procedure

inertial weight in HPSO is adjusted based on Egs. (21)—(23).

o = BW + randn() 21

where BW is the arbitrary distance bandwidth and randn()
generates a Gaussian distribution.

wo=w+uo 22)

where o is the inertial weight of HPSO, the adjust processing
only occurs when the current cost is larger than the personal
best value, and the probability is less than PAR.

(23)

w = w*xdamping ratio

where damping ratio is the ratio of updating the inertial
weight.

Algorithm 4 demonstrates the proposed HPSO algorithm.
The algorithm initializes the velocities and positions of the
particles. Then update the positions and velocities ad Egs.
(16)—(17) and evaluate the solution by the cost function. If the
current cost is less than the personal best value, it becomes
the local best-oriented value. Otherwise, adjusting inertial
weight for the algorithm based on the probability of PAR and
« is calculated by the bandwidth multiplying the standard
normal distribution. The proposed algorithm allows better
solutions with fewer iterations and adjusts the inertial weight
randomly for better search abilities. The global best value
keeps updating until the termination criteria reach.
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Algorithm 4 HPSO algorithm

1: procedure HPSO(v,x,damping,PAR,BW)
2:  Initialization

3 fort < 1:tyax do

4 fori < 1:Ndo

5: updateVelocity

6: update Position
7.
8

Evaluation
if cost(particle;) < particle;.pbest then

o.-

: particle;.pbest < particle;
10: else
11: Alpha <— BW x randn()
12: if rand < PAR then
13: w <« w + Alpha
14: end if
15: end if
16: if cost(particlel) < gbest then
17: gbest < particle;
18: end if
19: end for
20: w < w*kdamping
21: BW <« BW xdamping
22:  end for

23: end procedure

5 Computational experiment
5.1 Performance measurements

The proposed HPSO was compared with other bio-inspired
methods, such as PSO, HS, GA [42] and Firefly algorithm
(FA) [43]. The test functions are listed in Table 1 to compare
the performance of the proposed algorithm with other bio-
inspired algorithms. Each test function is a typical benchmark
function with different characteristics. Ackley function has
many local minima. The shapes of Rosenbrock and Sphere
functions are like valley and bowl, respectively. The shape
of Michalewicz function is a steep ridge. The number of the
maximum iteration was 200.

Table 2 lists the mean iteration times when getting the opti-
mal solution, the runtime of each algorithm, and fitness values
for each benchmark function with different algorithms. Each
algorithm has been run 20 times. The best value is highlighted

Table 1 Test functions

in bold. The proposed HPSO had the best performance for
Ackley, which has many local minima. HPSO had minimal
iteration times for the remaining test functions, while PSO
had minimal runtime. Nevertheless, the difference between
the runtime of PSO and HPSO was insignificant. It can be
concluded that HPSO has great performance compared with
other algorithms, especially for problems with many local
minima. Getting rid of local optima and fast convergence are
important for path planning, so HPSO is suitable for UAV
path planning.

Figure 2 presents the test functions’ mean fitness value’s
convergence curve. Figure2 and Table 2 show that the
proposed C-PSO converges faster than other bio-inspired
algorithms. It has much fewer iteration times to get the opti-
mization solutions, which is useful for path planning.

5.2 Scenario: Fujian Tulou
5.2.1 Modelling

A Tulou is an enclosed, large and fortified earthen building,
most commonly circular or rectangular in configuration. It
has thick, load-bearing, and rammed earthen walls, housing
up to 800 people. It represents the living style from Song and
Yuan Dynasty, around C.E. 960 to C.E. 1368. Figure 3a dis-
plays the photo of the Tianluokeng Tulou cluster comprising
five main buildings, and Fig. 3b presents the model with the
marked number of each building.

5.2.2 Simulation results

MATLAB validates the simulation of the path planning. The
radius and the centre coordinate are inputted to generate the
inspection path. The assumptions are as below:

e The speed is 18 m/s, the speed of ascent is 6 m/s, and the
descent speed is 4 m/s.

e The UAV hovers when the UAV reaches the point of gen-
erating inspection data.

Name Type Test function
d d
Ackley Many Local Minima f1(x) = —a exp(—b é > xiz) —exp( % > cos(cxi)) +a+exp(l)
i=1 i=1
d—1
Rosenbrock Valley-Shaped frlx) = Z [100(xj4+1 — )c,-z)2 + (x; — D?]
i=
d
Sphere Bowl-Shaped )= xi2
i=1
d ix?
Michalewicz Steep Ridges/Drops fa(x) = — Zl sin(xi)sinz"’(T')
i=
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Table2 Test functions

Function HPSO PSO HS GA FA
Ackley Iterations 127.6 177.25 179.35 199.6 191.25
Runtime (s) 0.007485 0.008081 0.106657 0.275348 1.008479
Fitness value 0.00 0.00 0.01 0.00 0.00
Rosenbrock Iterations 1 1 190.15 199.1 197.5
Runtime (s) 0.005447 0.003763 0.107351 0.329114 0.970046
Fitness value 0.00 0.00 4.05 7.86 0.40
Sphere Iterations 102.8 1924 174.6 199.1 187.45
Runtime (s) 0.0057645 0.0045109 0.103878 0.2901371 0.9958323
Fitness value 0.00 0.00 0.00 0.00 0.00
Michalewicz Iterations 1 1 174.3 192.75 188.55
Runtime (s) 0.005332 0.003449 0.115909 0.335478 1.070354
Fitness value —0.86 -0.84 —4.87 —-9.31 —4.41

Convergence curve of HPSO

=@=—Ackley ==@==Rosenbrock ==@==Sphere Michalewicz
2
L.5
1
0.5
0
0 20 40 60 80 100 120 140
-0.5

aERER

(a) The Tianluokeng Tulou cluster (b) Model of the cluster

Fig.3 The Fujian Tulou
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Fig. 4

Fig. 5

The flight path for each building

The Helix-HPSO path

Table 3 Details of the Helix-HPSO path

Steps

Description

Path

Start

Destination

O 0 N AN AW N =

—_
(=)

1 (From exterior to interior)
From 1 (interior) to 2 (exterior)
2 (From exterior to interior)
From 2 (interior) to 5 (exterior)
5 (From exterior to interior)
From 5 (interior) to 4 (exterior)
4 (From exterior to interior)
From 4 (interior) to 3 (exterior)

3 (From exterior to interior)

Building 1 inspection
Proceed to Building 2
Building 2 inspection
Proceed to Building 5
Building 5 inspection
Proceed to Building 4
Building 4 inspection
Proceed to Building 3

Building 3 inspection

(—=29.97,—-7.932,12.48)

(0.196,27,15)
(44.74,—-56.73,17.5)
(75.2,-23,20)
(46.07,50.23,15.5)
(89.66,87,17.99)
(65.29,190.4,10.48)
(100.2,232,13)
(173.2,141.8,11.46)

(0.196,27,15)
(44.74,-56.73,17.5)
(75.2,—23,20)
(46.07,50.23,15.5)
(89.66,87,17.99)
(65.29,190.4,10.48)
(100.2,232,13)
(173.2,141.8,11.46)
(200.2,174,14)
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e UAV has been charged fully and operates in excellent
condition.

Figure 4 demonstrates the flight path of each building,
with the points where info is collected marked by "*". The
interior and exterior inspection paths are connected through
the hall, and it provides the possibility to check the condition
of the entrance hall.

The start building is Building 1. From the visited vector
and the cost matrix, the order of inspecting the buildings is

1254 3, which is determined by Dijkstra’s algorithm. The
start is the exterior path of Building 1, which is close to the
top.

The Helix-HPSO approach integrates the flight path; the
entire flight path is shown in Figs. 5 and 7a. The Helix-HPSO
path starts from the exterior inspection path of Building 1,
following the interior path inspection path. After reaching
the end of the interior path, the UAV flies to the next building
defined in the order. After getting to Building 2, the UAV
inspects the exterior and interior areas. The loops of inspec-

Exterior inspection

5,

~AHEREe

0 250
-50

(a) The exterior inspection paths by Helix-HPSO

(b) The back-and-forth for each building

Fig.6 The exterior inspection paths
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;:3: 4 Costs of the exterior Path Building]  Building2  Building3  Building4  Building 5
The Helix-HPSO path 236.8405 236.8405 209.1750 280.4919 299.7959
The back-and-forth path 600.1694 600.1694 542.8375 695.7231 600.1694
il
(b) The path generated by PSO
Fig.7 The generated paths
Table 5 Comparison of PSO
and HPSO paths Path From 1 to 2 From2to 5 From 5 to 4 From 4 to 3
The HPSO path Iteration times 11 11 32 11
Best cost 47.4371 39.4697 53.5707 58.0246
The PSO path Iteration times 11 11 69 11
Best cost 47.4371 39.4697 53.5756 58.0246
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tion keep until the UAV reaches the last building. Table 3
lists the details for the generated path.

Comparison of path planning for each building The
back-and-forth path is widely implemented for a building
inspection to get the inspection data. It is programmed
to compare with the Helix-HPSO approach. The distance
between a UAV and a building is less than 2m. The path
length of the vertical flight is 1 m. The back-and-forth path
is only for the exterior inspection without considering the
costs of taking inspection photos, as shown in Fig. 6a. Fig-
ure 6b displays the exterior inspection path by defining the
data generation points through the proposed Helix-HPSO
approach.

The proposed approach implements the helix-shaped path
for coverage inspection. Table 4 compares the costs of the
exterior inspection of each building for different paths. The
cost only considers the exterior inspection path, and they
are calculated by Equation (1), considering the distance, alti-
tude, and time. For getting complete documentation of the
building, coverage path planning is required to get complete
documentation of the building. If comprehensive coverage
is required, the costs of traditional back-and-forth paths rise
rapidly.

Comparison of path planning between the buildings PSO
is compared with the proposed HPSO for path planning
between the buildings. Figure 7 compares the path generated
by PSO and HPSO. The HPSO path is marked orange, and
the PSO path is marked blue.

Table 5 compares the performance of PSO and HPSO
for path planning. If the algorithm gets the best solution ten
times, the algorithm terminates. For the path between Build-
ings 1 and 2, Buildings 2 and 5, and Buildings 4 and 3, PSO
and HPSO have the same performance. While for the path
between 5 and 4, HPSO has fewer iteration times and costs
than PSO. HPSO reduces by around 53.62% iteration times
to get the optimal path.

6 Conclusion

The Helix-HPSO path planning approach is developed for
UAV multi-building inspection, considering the paths trav-
elling between buildings. Usually, the building inspection
algorithm is designed for one building, while our approach
is for a multi-building environment. The proposed method
can be used for interior inspection, extending the traditional
inspection area. The proposed helix path provides broader
coverage and smooth turn angles at lower costs than tradi-
tional inspection paths. Cost function factors include time,
distance, and altitude, as altitude change affects energy con-
sumption and speed.

@ Springer

A visited vector and a cost matrix are implemented to
determine the order of proceeding inspections for travel-
ling between buildings. The PSO algorithm is improved
by the inspiration of HS for getting rid of trapping on
the local optima. The proposed HPSO exhibits outstanding
performance when dealing with many local optima in the
benchmark functions compared to other bio-inspired algo-
rithms. For UAV path planning, the cost functions consider
the distance and achieve collision avoidance. The HPSO
provides faster convergence than PSO during UAV path plan-
ning, so it is used in the path planning between buildings.
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