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Abstract
Nowadays, coronary heart disease is one of the most fatal disease globally. Many researchers and medical technicians have
developed and designed various computer-aided diagnosis systems using various machine learning models such as random
forest, linear regression, rough set, naive bayes, artificial neural network, support vector machine, multivariate adaptive
regression splines, K-nearest neighbor and decision tree to name a few. This era of digital health domain demands early
prediction of heart disease which is the crucial need to control the global mortality rate of this particular disease. Commonly
used methods for heart disease detection are clinical and expert dependant which makes them costly and inaccessible to the
masses. In this paper, an efficient-cum-automated coronary heart disease diagnosis model is being proposed using multi-
layered artificial neural network with back propagation algorithm. The proposed model compares the variation caused by
different number of neurons used in the hidden layers for different transfer functions. The model has been implemented on
Kaggle and Statlog heart disease dataset with thirteen clinical parameters. The experimental results attained an accuracy of
99.92% using six hidden layers with tan-hyperbolic transfer function. The results have been substantiated through statistical
parameters and k-fold cross validation.

Keywords Heart disease · Digital health domain · Machine learning · Artificial neural network · Mean squared error

1 Introduction

Coronary heart disease (CHD) is a state of irregular cardiac
rhythms arising due to blockage in the coronary arteries and
blood vessels that obstructs the supply of oxygenated blood
to the different parts of the body. The risk of heart disease
increases due to non-detection at an early stage or ignorance
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of risk factors involved. About 795 thousand people inUS [1]
suffer from heart stroke and 137 thousand die annually. The
most distressing thing is that maximum people die due to first
heart stroke itself while the survivors still risk the chance of a
second strokewithin 5 years. Centers forDiseaseControl and
Prevention (CDC) [1], US reported the death of an American
every 40 s while American Heart Foundation (AHA) [2], US
has identified that 25% of population die because of CHD.

Figure 1 shows the mortality rate of males and females
announced by AHA in the year 2020. The mortality rate is
highest for people with age more than 75 years but a signif-
icant figure is also seen for the age group of 25–34 years.
Major factors causing CHD are physical inactivity, over-
weight, hyperglycemia, hypertension, life style and gene
changes, wrong food and sleep habits.

The heart disease can be identified by typical symptoms
that include chest pain/angima, swelling or numbness in legs
and arms, breath shortness, pain in jaw, neck, throat and high
heart rate. In the initial stage, the doctor/medical practitioner
may prescribe drugs to control blood glucose, blood pres-
sure or cholesterol before diagnosing actual blockage in the
arteries. The standard modes of diagnosing the heart dis-
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Fig. 1 US mortality rate in 2020

ease are blood tests, chest X-rays, electrocardiogram (ECG),
cardiac computerized tomography (CCT) scan,magnetic res-
onance imaging (MRI), echocardiography, angiography and
multiple-gated acquisition scanning (MUGA).Medical diag-
nosis depends largely upon expertise of doctors which may
vary according to their personal experiences, past history of
the patient and vague or incomplete medical data.

This has raised the demand for early detection of heart
disease through diagnosis modeled on the modern tech-
nologies enabling the medical professionals, researchers and
computer technologists to develop machine learning (ML)
techniques for reliable, quick and digital diagnosis based on
the fuzzy, indefinite and uncertain medical data. The use of
smart devices such as smart watches, tablets, smart phones,
internet of things (IoT) enabled gadgets, smart glass and
portable healthmonitoring devices in day-to-day life can help
to improve the disease detection at early stage.
IT professionals and researchers have introduced numerous
data-mining classification techniques in the last few years
for the prediction of heart disease. Support vector machine
(SVM), Naive Bayes (NB), decision tree (DT), K-nearest
neighborhood (KNN), logistic regression (LR) and artificial
neural network (ANN) are the most popularly and com-
monly usedmachine learning (ML) algorithms for improving
the accuracy of medical decision support system. However,
automatic diagnostic system faces twomajor problems: over-
fitting andunderfitting of the datasetwhich arises due to noisy
and missing data, and division of training/testing datasets.
The damage from these problems results in out of context
trends in the final classification.
In order to remove these shortcomings an intelligent multi-
layered ANN diagnosis system using back propagation is
proposed in the study to enhance the accuracy of the model.
Multi-layered ANN has the ability to solve non-linear and
complex problems due to its high computational power. The

Fig. 2 The architecture of ANN

emphasis on the choice of hidden layers and suitable combi-
nation of neurons has been made to avoid overfit and underfit
of the data. The experiment work is carried over Kaggle and
Statlog dataset. The performance on three transfer functions:
log-sigmoid, linear and tan-hyperbolic in the hidden layers
make it possible to analysis the best performance. The high-
lights of the paper are as follows:

• Demonstrates the latest advances for the design of heart
disease diagnose model.

• Describes various combinations of neurons in different
hidden layers.

• Explains achievements in the various phases of train-
ing/testing the system and analyzes related work using
three transfer functions.

• Correlatesmean squared error (MSE), accuracy andnum-
ber of hidden layers.

• Evaluates the study using two data sets, Kaggle and Stat-
log, to formulate realistic model.

2 Study environment and background
theories

ANN is one of the most famous ML adaptive model being
used in the prediction of heart disease. ANN [3] or, simply,
Neural Network is the simulation of decision making ability
of human brain. Neural Network imitates the activity per-
formed by neurons of brain.

A Neural Network, depicted in Fig. 2, mainly comprises
three layers explained as under:

(i) The input layer receives the inputs and passes the same
to second layer without processing. This layer has n
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Table 1 Table of abbreviations of symptoms

S. no. Symptoms Units Abbreviation Range Data type

1 Age AG 30–86 Integer

2 Chest Pain (Typical Angina, Atypical Angina,
Non- anginal pain, Asymptomatic)

CP Yes, no Catagorical

3 Cholesterol mg/dL CHL 125–200 Float

4 Resting Blood Pressure / Blood Pressure mm/Hg RBP/BP 75–120 Real

5 Elecrocardiogram / Resting
Electrocardiogram

ms ECG/ R ECG 120–200 Real

6 Maximum Heart Rate / Maximum Heart Rate
Achieved during exercise

bpm MHR / THALACH Varies Integer

7 Thallium Scan THAL Normal, Fixed Defect,
Reversible Defect

Catagorical

8 Gender GR Male, Female Catagorical

9 Old Peak (ST depression) OP 6.2 Real

10 Slope of the Peak-Exercise ST-Segment SLOPE Upsloping, flat,
downsloping

Catagorical

11 Fasting Blood Sugar mg/dL FBS 62–400 Real

12 Number of major vessels colored by
fluoroscopy

CA 0–3 Integer

13 Exercise-induced Angina EXANG Yes, no Catagorical

Fig. 3 The Block diagram of the proposed system

neurons a1, . . . , an that are connected to every neuron
of the second layer as explained ahead.

(ii) The second layer, known as hidden or processing layer,
has p neurons z1, . . . , z p that are connected to synapses
to input neurons where wi j ; 1 ≤ i ≤ n, 1 ≤ j ≤ p
denote the weight of the arc between i th input neuron
and j th hidden neuron. Thus, the input to each hidden
neuron is the weighted sum of the outputs of the input
neurons and second layer performs intermediary calcu-
lations using the summation and transfer function. All
the hidden neurons are connected to each of the output

neurons with weights vi j ; 1 ≤ i ≤ p, 1 ≤ j ≤ m for
arc between i th hidden neuron and j th output neuron.

(iii) The output layer withm neurons, y1, y2 and ym , receive
inputs from the hidden layer neurons as sum of products
and apply transfer function

Additionally there are two bias nodes, b1 and b2 that are
connected to the hidden and output layers respectively with
the weights w01, . . . , w0p and v01, . . . , v0m . Bias performs
as an interceptor in a linear equation. It adjusts the output
alongwith the weighted sum of the inputs to the neurons,
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Fig. 4 Data-flow diagram of the
proposed methodology

Table 2 Attainment of evaluation metrics in three layer ANN architecture

Combination of neurons Iterations CPU time (in s) Best validation performance Accuracy (%) Validation (%) Average

Training Testing

(10, 9) 48 21 0.13251 91.20 88.96 94.94 91.41

(11, 10) 8 <1 0.179 78.77 65.22 70.82 75.60

(9, 8) 6 <1 0.16022 79.37 72.52 72.91 77.40

(10, 8) 72 22 0.15992 83.37 72.14 70.43 79.80

(11, 9) 41 2 0.14672 88.99 84.53 80.83 87.03

(9, 7) 14 1 0.17349 86.19 89.89 86.15 86.74

(12, 11) 27 2 0.15276 88.79 73.25 85.86 85.99

(12, 10) 15 1 0.13886 85.62 80.60 79.00 83.84

(8, 9) 188 8 0.11156 93.65 88.52 94.46 93.02

(7, 8) 266 150 0.14591 90.41 83.86 90.59 89.40

Average 86.63 79.95 82.60 85.02

SD 4.95 8.62 9.29 5.84

Bold value signifies the highest testing accuracy for distinct iterations

resulting in convergence of thereby determining the best fit
for the given data.

Artificial Neural Network is applicable in various disci-
plines [4] including science, computing, engineering, agri-
culture, environmental, technology, mining, arts, climate,
business, nanotechnology etc. In health-care and medicine
[5], ANN is being applied extensively in general practice,
internal medicine, invasive medicine, intensive care, anaes-
thesia and surgery. Apart from these, ANN is also being
utilized in neuro [6], radiationmedicine [7], forensic [8], den-
tal science [9], dermatology [10], urology [6], ophthalmology
[11], gynaecology [12], paediatry [13], gerontology [14],
oncology [15], endocrinology [16] and cardiology [17]. The
expanse ofANN is being leveraged to devise new solutions to
the complex health care problems through the huge database

of patients. It is not only an effective tool in classification of
medical and health science diagnoses problems but benefi-
cial for solving many other prime problems like prediction
of signals/factors, signal enhancement and its identification.
Back propagation is a supervised learning technique to
efficiently train ANN. The aim of back propagation is to
minimize the calculated error of the output using gradi-
ent descent or delta rule. It basically performs three phases
of propagation: forward phase, backward phase and finally,
substituting the obtained values together and computing the
updated biases and weights. Fine-tuning of the biases and
weights reduces error in the cost function and improvemodel
confidence by generalizing. This technique follows the listed
steps:
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Fig. 5 Testing accuracy in three layer model

Fig. 6 Mean squared error of the best performance in three layer model

Step 1. Normalize of the input and output w.r.t their max-
imum values.
Step 2. Assign random weights to each neuron of the
hidden and output layer of the network.
Step 3. Give an input unit ai , 1 ≤ i ≤ n to each input
neuron that passes it to the intermediate layer.
Step 4. Each hidden neuron z j , 1 ≤ j ≤ p sums its
weighted input signals through

zin j = woj + n
n∑

i=1

aiwi j (1)

Step 5. Compute the output signal and send it to all the
units in the output layer.

z j = f (zin j ), where f is a transfer function (2)

Step 6. Each output neuron yk, 1 ≤ k ≤ m sums its
weighted input signals.

yink = vok + n
p∑

j=1

z jv jk (3)

Step 7. Compute the output signal and send it to all the
units in the output layer.

yk = f (yink), where f is a transfer function (4)

Step 8. Each output unit receives a target pattern corre-
sponding to the input training pattern and compute its
error term

Table 3 Attainment of evaluation metrics in four layer ANN architecture

Combination of neurons Iterations CPU time (in s) Best validation performance Accuracy (%) Validation (%) Average

Training Testing

(10, 9, 8) 48 18 0.14711 90.60 81.04 82.96 88.00

(11, 10, 9) 25 2 0.1573 90.20 85.13 80.43 87.99

(9, 8, 7) 42 29 0.18287 89.30 71.34 79.33 85.28

(10, 8, 7) 30 2 0.11647 84.34 84.41 90.87 85.35

(11, 9, 8) 30 3 0.15363 86.02 78.85 83.38 84.51

(10, 9, 7) 90 39 0.12791 92.62 84.30 90.66 91.07

(7, 8, 6) 34 9 0.14342 83.84 77.86 87.35 83.34

(9, 8, 6) 36 2 0.14628 87.46 81.73 85.37 86.22

(12, 11, 9) 12 1 0.16026 85.94 76.41 83.99 84.22

(10, 11, 9) 20 6 0.16659 88.37 77.04 77.54 85.06

Average 87.87 79.81 84.19 86.10

SD 2.86 4.35 4.50 2.31

Bold value signifies the highest testing accuracy for distinct iterations
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δk = (tk − yk) f́ (yink) (5)

Step 9. Calculate its weight correction term

�v jk = αδk z j (6)

where α is the learning rate.
Step 10. Calculate its bias correction term

�vok = αδk (7)

and sends δk to units in the layer below.
Step 11. Sum the delta inputs of each hidden neuron z j

δin j =
m∑

k=1

δkv jk (8)

Step 12. Compute

δ j = δin j f
′(zin j ) (9)

Step 13. Calculate its weight correction term

�wi j = αδ j ai (10)

Step 14. Calculate its bias correction term

�woj = αδ j (11)

Step 15. Update each weight of the network by

v jk(new) = v jk(old) + �v jk (12)

wi j (new) = wi j (old) + �wi j (13)

Step 16. Repeat steps 4–15 until the weights converge.

3 Related work

Researchers have worked on various ML models based on
ANN or hybridized with ANN, convolutional neural net-
work (CNN), recurrent neural network (RNN), radial Basis
function (RBF), multi-layered perceptron neural network
(MLPNN), back propagation neural network (BPNN), recur-
rent fuzzy neural network (RFNN) and long short term
memory (LSTMNN) for automatic heart disease diagnosis.
They have used several ensemble techniques to enhance the
accuracy rate and analyzed the performance of the mod-
els through the MSE, receiver operator characteristic (ROC)
curve, area under curve (AUC) and F1-score. Some of the
related articles from 2010 to 2021 have been reviewed here.

Fig. 7 Testing accuracy in four layer model

Fig. 8 Mean squared error of the best performance in four layer model

In 2019,Khourdifi andBahaj [18] proposed classification and
prediction of heart disease usingANN.Thedataset consisting
of 10 clinical attributes of 300 patientswas taken fromSahara
Hospital of Aurangabad. The neural network was trained and
tested by RBF in MATLAB, and yielded 97% accuracy.
Atkov et al. [19] createdMLPNN in the year 2012. The paper
presented a hybrid approach of genetic algorithm (GA) and
ANN which are supposed to be suitable and supportive for
non-linear and complex problems. It achieved an accuracy of
93% using genetic and non-genetic factors. The experimen-
tation was done on 487 patients of Central hospital, Russia
through NeuroSolutions tool of version 5.0.

An intelligent system to predict cardiovascular disease
was explained in 2013 by Amma [20]. The study made an
emphasis on amalgamation of multi-layered feed-forward
ANN with back propagation and GA. A dataset of 303
patients from UCI, California, having thirteen attributes was
used for training and testing the system, respectively. The
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Table 4 Attainment of evaluation metrics in five layer ANN architecture

Combination of neurons Iterations CPU time (in s) Best validation performance Accuracy (%) Validation (%) Average
Training Testing

(11, 10, 9, 8) 24 1 0.029799 98.57 94.73 94.13 97.31

(10, 9, 8, 7) 12 1 0.14453 86.76 80.91 81.36 85.00

(9, 8, 7, 6) 12 <1 0.18121 85.64 82.25 78.37 83.97

(10, 8, 6, 5) 11 3 0.12292 91.26 86.55 94.29 91.01

(10, 7, 6, 5) 17 <1 0.15662 92.16 80.48 80.01 88.59

(10, 8, 7, 6) 35 1 0.13457 87.80 83.24 81.61 86.28

(7, 9, 8, 6) 17 <1 0.1628 88.41 83.22 78.97 86.26

(12, 10, 8, 7) 38 1 0.13958 90.00 78.41 87.24 87.66

(9, 10, 7, 8) 12 1 0.18812 77.95 67.46 73.33 75.68

(10, 7, 6, 5) 19 <1 0.17656 83.87 77.92 75.71 81.70

Average 88.24 81.52 82.50 86.35

SD 5.46 6.90 7.19 5.69

Bold value signifies the highest testing accuracy for distinct iterations

Fig. 9 Testing accuracy in five layer model

three layers of ANN consisted of thirteen, seven and one
neuron respectively. The evaluation of weights of neural net-
work yielded 94.17% accuracy.

Shao et al. [21] claimed classification of heart disease
using various hybrid models of linear regression (LR), multi-
variate adaptive regression splines (MARS), ANN, rough set
(RS) techniques in 2014. A dataset of 899 UCI patients, 60%
for training and 40% for testing, with thirteen atributes was
used. Using wald forward method in RESE software, sin-
gle ANN technique yielded 76.79% accuracy with thirteen
input nodes and hybrid MARS-ANN, LR-ANN and RS-
ANN achieved 82.14%, 78.57% and 79.50% accuracy using
six, twelve and ten input variables, respectively. Type-I and
II error of best performance of MARS-ANNwas recorded as
0.11 and 0.22 which were smaller than the models designed
without ANN.

Fig. 10 Mean squared error of the best performance in five layer model

Fig. 11 Testing accuracy in six layer model
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Table 5 Attainment of evaluation metrics in six layer ANN architecture

Combination of neurons Iterations CPU time (in s) Best validation performance Accuracy (%) Validation (%) Average

Performance Training Testing

(10, 9, 8, 6, 5) 22 1 0.17669 73.84 64.45 66.70 71.27

(9, 8, 6, 5, 4) 35 1 0.13234 87.19 68.67 86.13 84.23

(9, 8, 7, 6, 6) 26 1 0.12212 83.56 78.37 73.70 81.57

(9, 7, 6, 5, 4) 35 1 0.15112 82.05 68.65 79.13 79.57

(10, 8, 7, 5, 4) 22 <1 0.15285 86.91 88.99 80.56 86.29

(9, 8, 6, 5, 3) 58 1 0.13445 92.07 85.11 83.94 89.81

(11, 9, 8, 10, 5) 62 2 0.1343 87.56 83.35 85.70 86.65

(10, 11, 9, 8, 7) 21 1 0.12473 88.09 73.38 87.09 85.81

(12, 10, 9, 8, 7) 39 2 0.15811 86.75 76.13 85.54 84.94

(10, 9, 9, 8, 8) 50 2 0.14405 87.21 77.27 85.94 85.52

Average 85.52 76.44 81.44 83.57

SD 4.89 7.88 6.66 5.14

Bold value signifies the highest testing accuracy for distinct iterations

Feshki and Shijani [22] proposed selection of best fea-
tures, using Particle Swarm Optimization (PSO), in the
diagnosis system that are relevant with respect to time,
cost and accuracy. Feature division of thirteen basic clinical
attributes out of 76 features of Cleveland clinic foundation
(CCF) dataset was made to design a diagnosis model at the
minimum cost and time. BPNN within the PSO was imple-
mented to extract eight features to test 303 patients to attain
an accuracy of 91.94%.

A heart disease diagnosis model was presented by Uyar
and Alhan [23] in 2017 utilizing GA-based RFNN involv-
ing thirteen input, seven hidden and one output neurons.
The implementation on data of 297 CCF patients resulted in
sensitivty (100%), specificity (95.54%), accuracy (97.78%),
precision (96%), probable misclassification error (2.22), root
mean square error (0.0222) and F1-score (0.9796).

An automated medical diagnosis system developed by
Karayilan and Kiliç [24] in 2017 depicted BPNN using four-
teen input parameters. The system included thirteen input
neurons and two output neurons while in the hidden layer,
three to twelve neurons were tested. The best accuracy of
95.55% was achieved at eight and eleven neurons in the hid-
den layer.

Gawande and Barhatte [25] in 2018 proposed a diagnostic
model to predict heart disease using abnormalities in ECG
waveforms. ECG signals of 340 patients of Massachusetts
Institute of technology andBoston IsraelHospital (MIT-BIH)
database were taken as input parameters. The data trained by
CNN, consisting of total seven layers and sigmoid transfer
function, revealed abnormalities of signals and illustrated the
same in GUI form. The accuracy of the model was near 99%.

A smart clinical diagnostic model for heart was presented
by Costa et al. [26] in 2019. The model utilized BLPNN to

train 80% of the data taken from CCF and V. A. medical
center comprising of thirteen clinical parameters. The test-
ing of 20% data gave 90.74% accurate results using sigmoid
transfer function with a learning rate and Nesterov’s momen-
tum of 0.28 and 0.15 respectively. The number of neurons in
respective three layers were thirteen, six and one yielding
AUC-score of 0.94, F1-score, precision and recall of 0.91.

Latha and Jeeva [27] came up with another heart risk
diagnosis study combining the classification and ensemble
techniques on a CCF data of patients in the age group of 29-
79 segregated throughNB,BayesNet,C4.5DTandMLPNN.
Further, bagging, boosting and stacking ensemble techniques
were employed to improve the accuracy. Finally, best accu-
racy of 80.53% and 84.16% was obtained using ANN and
NB, respectively.

Muhammad et al. [28] demonstrated an adaptive com-
putation model for an early early detection of heart disease.
FCBF,maximum relevanceminimum redundancy (MRMR),
Least Absolute Shrinkage and Selection Operator (LASSO)
and relief algorithms were applied to select features from
a thirteen-parameters dataset taken from CCF and HIC. A
94.41% accurate result was achieved using ANN of thirteen,
twenty and two neurons in three layers.

Recently, Shorewala [17] explored early prediction of
heart disease employing various classification techniques
including LR, SVM, RF, KNN, NB, MLPNN and DT. The
modelwas tested on cardiovascular dataset of 70,000 patients
wherein the feature selection was made using LASSO and
bagging, boosting, and stacking ensemble techniques. DT
achieved the highest accuracy of 74.8% and outperformed
all other models.
In 2021, Shihab et al. [29] came upwith a promising, support-
ive and feasible system revealing smart medical decisions
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Fig. 12 Mean squared error of the best performance in six layer model

of heart failure through RNN and LSTM combining with
IoT. Firstly, 15,000 ECG signals are collected from Py-serial
library by Arduino. Then extraction of features from ECG
signals was made and passed as input parameters for RNN
and LSTM. The network was trained by back propagation
algorithm using sigmoid transfer function. The system was
tested on twenty people of Chattogram and yielded probable
results.
Based on the critical analysis of the related work and com-
parative analysis of various NN models, the proposed study
has employed BPNN due to its advantages. ANN based on
back propagation can learn any non-linear function due to the
application of all transfer functions. It enables the network to
learn all the complex relationships between input and output
parameters. It is fast, easy and simple to learn. In addition to

this, there are no parameters to set other than the input num-
ber. This makes it possible to build a rigorous mathematical
model. While CNN and RNN deals with major challenges
like exploding gradient, class imbalance and overfitting. The
application of these two NN require a huge amount of data
and rate of convergence of these techniques is very slow. Fur-
thermore, many iterations are required for MLPNN to learn
to solve very simple logic problems.

4 Researchmethodology

The diagnosis of heart disease consists of input parameters
that are the risk elements and are extracted from the dataset
of thirteen clinical attributes, described in Table 1, of con-
firmed or suspected heart patients. The data is divided into
two sets for training and testing and the classification of
‘Presence’ or ‘Absence’ of heart disease is made through
the multi-layered ANN with back propagation algorithm as
manifested in Fig. 3.

A diagnosis system (Fig. 4) is developed by training the
network using different hidden layers and transfer functions,
viz. Log-sigmoid Eq. (14) (logsig) [30], Linear (purelin) Eq.
(15) and Tan-hyperbolic Eq. (16) (tansig) [31].

φ(z) = 1

1 + exp(−z)
, z ∈ R (14)

φ(z) =
{
z if z ≥ 0
−z if z ≤ 0

(15)

φ(z) = 1 − exp(−2z)

1 + exp(−2z)
, z ∈ R (16)

Finally, the trained system is tested and accuracy is evalu-
ated at each layer using the said transfer functions. The MSE

Table 6 Attainment of evaluation metrics in seven layer ANN architecture

Combination of neurons Iterations CPU time (in s) Best validation performance Accuracy (%) Validation (%) Average

Training Testing

(10, 9, 8, 6, 5, 4) 37 1 0.12977 86.75 80.31 90.05 86.19

(9, 8, 6, 5, 4, 7) 26 1 0.13855 82.24 74.57 84.31 81.48

(9, 8, 7, 6, 6, 5) 23 1 0.15002 85.17 66.41 70.38 79.99

(9, 7, 6, 5, 4, 6) 41 1 0.15193 85.13 84.44 87.48 85.39

(9, 8, 7, 5, 4, 7) 445 14 0.16695 85.94 77.73 72.88 82.62

(9, 8, 6, 5, 3, 5) 44 1 0.14263 87.75 72.55 90.28 85.84

(11, 9, 8, 10, 5, 7) 20 1 0.065774 94.40 87.85 85.98 92.15

(10, 11, 9, 8, 7, 10) 49 2 0.055556 100.00 92.13 88.95 97.13

(12, 10, 9, 8, 7, 11) 24 1 0.046741 99.86 91.53 90.58 97.21

(7, 9, 6, 9, 8, 5) 8 <1 0.17391 80.68 78.81 72.21 79.16

Average 88.79 80.63 83.31 86.72

SD 6.90 8.39 8.19 6.64

Bold value signifies the highest testing accuracy for distinct iterations
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Fig. 13 Testing accuracy in seven layer model

Fig. 14 Mean squared error of the best performance in seven layer
model

Eq. (17) [32], is computed that shows the cumulative squared
error between the actual and estimated value.

MSE = 1

n

n∑

i=1

(yi − ŷi )
2 (17)

where n is the number of data points, yi and ŷi represents
observed and predicted values, respectively. The MSE of the
best performance case is plotted to diagnose the system effi-
ciently.

5 Experimental work

The implementation is carried out on Kaggle heart disease
dataset of 1025 patients having thirteen clinical input param-
eters and two classes of output, 1 for ‘Presence’ and 0 for
‘Absence’. After normalizing the data, it is segregated for
training and testing processes. The observation of the exper-
iments are recorded in ‘nntool’ toolboxofMATLABR2015a.

5.1 Training of neural network via log-sigmoid
transfer function

Neural network is trained by back propagation technique
using hidden layers varying from two to seven and log-
sigmoid transfer function. Average and variance of accuracy
of each model is also computed to check the spread of
data. The data includes iterations, time elapsed during train-
ing period and accuracy respectively along with validation.
Table 2 present the data for neurons of two hidden layers. Fig-
ures 5 and 6 show the local maximum records of accuracy
and validation respectively.

Table 7 Attainment of evaluation metrics in eight layer ANN architecture

Combination of neurons Iterations CPU time (in s) Best validation performance Accuracy (%) Validation (%) Average

Training Testing

(10, 9, 8, 6, 5, 4, 3) 23 1 0.17658 84.97 77.45 70.02 81.63

(9, 8, 6, 5, 4, 7, 3) 21 1 0.15712 91.79 83.32 83.58 89.36

(9, 8, 7, 6, 6, 5, 3) 10 <1 0.19554 77.50 72.86 78.61 77.04

(9, 7, 6, 5, 4, 6, 2) 84 3 0.15283 79.55 77.78 77.09 78.87

(9, 8, 7, 5, 4, 7, 3) 45 1 0.13377 87.76 66.96 85.63 84.34

(9, 8, 6, 5, 3, 5, 2) 7 <1 0.14058 75.40 75.55 79.28 76.07

(11, 9, 8, 10, 5, 7, 4) 11 1 0.19371 83.97 67.51 71.66 79.72

(10, 11, 9, 8, 7, 10, 5) 19 1 0.16785 79.89 72.51 77.05 78.37

(12, 10, 9, 8, 7, 11, 5) 28 2 0.15505 89.94 83.33 78.10 87.16

(7, 9, 6, 9, 8, 5, 4) 23 1 0.17051 76.32 71.14 76.49 75.58

Average 82.71 74.84 77.75 80.81

SD 5.83 5.76 4.70 4.73

Bold value signifies the highest testing accuracy for distinct iterations
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Fig. 15 Testing accuracy in eight layer model

Fig. 16 Mean squared error of the best performance in eight layermodel

Fig. 17 Testing accuracy in three layer model

Evaluation metrics attained in four layer architecture are pre-
sented in Table 3. Accuracy bar graph and best validation
performance achieved at the combination set of 11, 10 and 9
neurons are depicted in Figs. 7 and 8, respectively.

The best accuracy of log-sigmoid transfer function is
obtained in five layer ANN architecture (Table 4) with
training and testing accuracy are 98.57%and94.73%, respec-
tively and Figs. 9 and 10 represent accuracy of experimental
tasks at distinct set of neurons and validation performance
having MSE 0.029799 at 24th iteration.

The best performance of Table 5 is achieved at 28th
iteration having 86.91 and 88.99% as training and testing
accuracies. The local accuracy rate of five hidden layers is
depicted in Fig. 14 and validation performance having MSE
0.15285 at 22th iteration is shown in Fig. 12.

Evaluation metrics attained in seven layer architecture are
presented in Table 6. Accuracy bar graph and best validation

Table 8 Attainment of evaluation metrics in three layer ANN architecture

Combination of neurons Iterations CPU time (in s) Best validation performance Accuracy (%) Validation (%) Average

Training Testing

(10, 9) 6 2 0.098742 73.34 68.96 78.20 73.44

(11, 10) 4 3 0.12526 73.97 72.91 70.30 73.53

(9, 8) 5 2 0.11138 72.43 76.82 74.25 73.46

(10, 8) 5 2 0.10502 73.49 70.22 76.39 73.45

(11, 9) 3 <1 0.12191 73.74 73.88 71.94 73.42

(9, 7) 4 1 0.11863 74.39 69.75 73.00 73.39

(12, 11) 2 3 0.15799 75.92 69.19 62.01 72.78

(12, 10) 2 2 0.12299 72.28 70.72 71.00 71.87

(8, 9) 6 <1 0.14284 73.42 79.64 65.48 73.26

(7, 8) 3 3 0.12082 73.75 72.78 72.58 73.30

Average 73.67 72.49 71.52 73.19

SD 1.02 3.51 4.81 0.51

Bold value signifies the highest testing accuracy for distinct iterations
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Fig. 18 Mean squared error of the best performance in three layermodel

performance achieved at the combination set of 10, 11, 9, 8,
7 and 10 neurons are depicted in Figs. 13 and 14 respectively

The experimental records obtained in using eight hidden
layers are shown in Table 7, and Figs. 15 and 16 illustrates
graphical representation of accuracy of each record and val-
idation execution corresponding to the maximum accuracy
of 83.33% with the substitution of 12, 10, 9, 8, 7, 11 and 5
neurons in respective hidden layers.

5.2 Training of neural network via linear transfer
function

Neural network is trained by back propagation technique
using hidden layers varying from two to seven and linear

Fig. 19 Testing accuracy in four layer model

Fig. 20 Mean squared error of the best performance in four layermodel

Table 9 Attainment of evaluation metrics in four layer ANN architecture

Combination of neurons Iterations CPU time (in s) Best validation performance Accuracy (%) Validation (%) Average

Training Testing

(10, 9, 8) 6 2 0.11481 73.13 75.26 73.45 73.49

(11, 10, 9) 4 2 0.1041 72.83 74.13 76.55 73.57

(9, 8, 7) 3 2 0.091481 73.85 66.41 79.26 73.43

(10, 8, 7) 5 3 0.11127 72.05 79.31 75.31 73.52

(11, 9, 8) 4 4 0.10654 72.28 73.50 75.73 73.34

(10, 9, 7) 4 2 0.12966 74.09 73.06 69.86 73.12

(7, 8, 6) 6 3 0.092258 72.50 71.43 80.39 73.44

(9, 8, 6) 6 2 0.12976 74.29 74.37 69.84 73.53

(12, 11, 9) 4 4 0.094476 72.70 71.62 78.85 73.48

(10, 11, 9) 3 3 0.1547 76.48 69.89 64.23 73.56

Average 73.42 72.90 74.35 73.45

SD 1.32 3.43 5.08 0.13

Bold value signifies the highest testing accuracy for distinct iterations
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Table 10 Attainment of evaluation metrics in five layer ANN architecture

Combination of neurons Iterations CPU time (in s) Best validation performance Accuracy (%) Validation (%) Average

Training Testing

(11, 10, 9, 8) 4 <1 0.095794 72.57 73.34 78.73 73.60

(10, 9, 8, 7) 3 1 0.12445 73.36 75.88 72.02 73.39

(9, 8, 7, 6) 4 <1 0.11719 75.10 66.37 73.01 73.48

(10, 8, 6, 5) 3 <1 0.13345 74.64 72.51 68.11 73.35

(10, 7, 6, 5) 4 <1 0.12868 73.29 77.94 68.94 73.45

(10, 8, 7, 6) 6 <1 0.1458 76.55 65.60 65.12 73.32

(7, 9, 8, 6) 4 1 0.1068 72.25 76.68 75.96 73.49

(12, 10, 8, 7) 4 1 0.12698 72.43 80.58 70.27 73.33

(9, 10, 7, 8) 3 <1 0.13557 74.51 74.42 67.68 73.51

(10, 7, 6, 5) 6 <1 0.10108 73.21 70.83 77.28 73.49

Average 73.79 73.42 71.71 73.44

SD 1.38 4.81 4.50 0.09

Bold value signifies the highest testing accuracy for distinct iterations

Fig. 21 Testing accuracy in five layer model

transfer function. Average and variance of accuracy of each
model is also computed to check the spread of data. The data
includes iterations, time elapsed during training period and
accuracy respectively along with validation. Table 8 present
the data for neurons of two hidden layers. Figures 17 and 18
show the local maximum records of accuracy and validation
respectively.

Evaluation metrics attained in four layer architecture are
presented in Table 9. Accuracy bar graph and best validation
performance achieved at the combination set of 10, 8 and 7
neurons are depicted in Figs. 19 and 20 respectively.

The experimental records obtained in using four hidden
layers are shown in Table 10, and Figs. 21 and 22 illustrates
graphical representation of accuracy of each record and val-
idation execution corresponding to the maximum accuracy
of 80.58% with the substitution of 12, 10, 8 and 7 neurons in
respective hidden layers.

Fig. 22 Mean squared error of the best performance in five layer model

The best performance of Table 11 is achieved at 7th
iteration having 72.27 and 81.90% as training and testing
accuracies. The local accuracy rate of five hidden layers is
depicted in Fig. 23 and validation performance of blending
10, 9, 9, 8 and 8 neurons in respective layers withMSE 0.122
at 5th iteration is shown in Fig. 24.

The blending of 9, 8, 6, 5, 7, 3 and 5 neurons in respective
six hidden layers of Table 12 marked 73.53% and 76.21% as
training and testing accuracies. The illustration of accuracy
records achieved at different combinations and best valida-
tion execution corresponding to the best accuracy is shown
in Figs. 25 and 26.

The best accuracy of linear transfer function is obtained
in the eight layer ANN architecture model shown in Table 13
where training and testing accuracy are 81.24% and 86.72%,
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Table 11 Attainment of evaluation metrics in six layer ANN architecture

Combination of neurons Iterations CPU time (in s) Best validation performance Accuracy (%) Validation (%) Average

Training Testing

(10, 9, 8, 6, 5) 3 <1 0.13293 74.99 69.59 66.88 73.06

(9, 8, 6, 5, 4) 5 <1 0.12203 74.81 68.25 71.96 73.40

(9, 8, 7, 6, 6) 4 <1 0.12378 74.72 70.17 71.25 73.58

(9, 7, 6, 5, 4) 5 <1 0.12087 72.69 77.85 71.19 73.40

(10, 8, 7, 5, 4) 5 <1 0.146 76.32 66.72 65.85 73.30

(9, 8, 6, 5, 3) 7 <1 0.13045 72.76 80.09 70.08 73.40

(11, 9, 8, 10, 5) 6 <1 0.12457 75.12 67.98 71.92 73.50

(10, 11, 9, 8, 7) 2 <1 0.13019 74.10 74.18 69.68 73.43

(12, 10, 9, 8, 7) 4 <1 0.12618 73.88 71.54 70.63 73.07

(10, 9, 9, 8, 8) 5 <1 0.122 72.27 81.90 71.43 73.50

Average 74.17 72.83 70.09 73.36

SD 1.28 5.41 2.11 0.17

Bold value signifies the highest testing accuracy for distinct iterations

Fig. 23 Testing accuracy in six layer model

respectively. Figures 27 and 28 represent accuracy of exper-
imental tasks at distinct set of neurons and validation
performance having MSE 0.083134 at 14th iteration.

5.3 Training of neural network via tan-hyperbolic
transfer function

Neural network is trained by back propagation technique
using hidden layers varying from two to seven and tan-
hyperbolic transfer function. Average and variance of accu-
racy of each model is also computed to check the spread of
data. The data includes iterations, time elapsed during train-
ing period and accuracy respectively along with validation.
Table 14 present the data for neurons of two hidden layers.
Figures 29 and 30 show the local maximum records of accu-
racy and validation respectively.

Fig. 24 Mean squared error of the best performance in six layer model

The best validation performance for which the testing accu-
racy is the highest is presented in figs.
The best achievement of Table 14 is presented at 23rd itera-
tion with 99.20% and 90.19% training and testing accuracy
with best validation performance 0.040924 at 21st iteration
shown in Fig. 30.

Evaluation metrics attained in four layer architecture are
presented in Table 15.Accuracy bar graph and best validation
performance achieved at the combination set of 12, 11 and 9
neurons are depicted in Figs. 31 and 32, respectively.

The experimental records obtained in using four hidden
layers are shown in Table 16, and Figs. 33 and 34 illustrates
graphical representation of accuracy of each record and val-
idation execution corresponding to the maximum accuracy
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Table 12 Attainment of evaluation metrics in seven layer ANN architecture

Combination of neurons Iterations CPU time (in s) Best validation performance Accuracy (%) Validation (%) Average

Performance Training Testing

(10, 9, 8, 6, 5, 4) 17 <1 0.12608 73.73 75.05 70.57 73.39

(9, 8, 6, 5, 4, 7) 6 <1 0.10556 72.44 76.14 76.42 73.57

(9, 8, 7, 6, 6, 5) 5 <1 0.11672 73.98 70.71 73.19 73.46

(9, 7, 6, 5, 4, 6) 6 <1 0.10142 73.07 69.96 77.71 73.33

(9, 8, 7, 5, 4, 7) 7 <1 0.10819 74.67 66.64 75.44 73.49

(9, 8, 6, 5, 3, 5) 6 <1 0.12426 73.53 76.21 70.59 73.42

(11, 9, 8, 10, 5, 7) 4 <1 0.10254 73.86 66.20 76.36 73.04

(10, 11, 9, 8, 7, 10) 6 <1 0.12637 73.87 75.45 71.50 73.47

(12, 10, 9, 8, 7, 11) 8 <1 0.12248 73.90 72.44 72.08 73.39

(7, 9, 6, 9, 8, 5) 7 <1 0.13058 75.26 66.61 69.56 73.29

Average 73.83 71.54 73.34 73.38

SD 0.77 4.10 2.92 0.15

Bold value signifies the highest testing accuracy for distinct iterations

Fig. 25 Testing accuracy in seven layer model

of 94.76% with the substitution of 10, 8, 6 and 5 neurons in
respective hidden layers.

The best performance of Table 17 is achieved at 50th
iteration having 99.06 and 97.60% as training and testing
accuracies. The local accuracy rate of five hidden layers is
depicted in Fig. 16 and validation performance having MSE
0.021406 at 44th iteration is shown in Fig. 36.

The overall maximum accuracy of tan-hyperbolic transfer
function is obtained in the seventh layer ANN architecture
model shown in Table 18 where training and testing accuracy
are 97.247% and 99.92%, respectively. Figures 37 and 18
represent accuracy of experimental tasks at distinct set of
neurons and validation performance having MSE 0.027839
at 37th iteration.

The blending of 12, 10, 9, 8, 7, 11 and 5 neurons in respec-
tive seven hidden layers of Table 19 marked 93.78% and

Fig. 26 Mean squared error of the best performance in seven layer
model

95.79% as training and testing accuracies. The illustration
of accuracy records achieved at different combinations and
best validation execution corresponding to the best accuracy
is shown in Figs. 39 and 40.

6 Comparative analysis of hidden layers of
ANN and transfer functions

Accuracy of two, three, four, five, six and seven hidden
layers with distinct pair of neurons has been computed for
log-sigmoid, linear and tan-hyperbolic transfer functions of
neural network. The computational and comparative analysis
of the study is highlighted in theFigs. 41, 42, 43, 44, 45 and46

123



72 Journal of Reliable Intelligent Environments (2023) 9:57–85

Table 13 Attainment of evaluation metrics in eight layer ANN architecture

Combination of neurons Iterations CPU time (in s) Best validation performance Accuracy (%) Validation (%) Average

Training Testing

(10, 9, 8, 6, 5, 4, 3) 6 <1 0.10161 79.61 74.65 77.22 78.52

(9, 8, 6, 5, 4, 7, 3) 7 <1 0.11485 80.51 78.26 73.81 79.19

(9, 8, 7, 6, 6, 5, 3) 8 <1 0.14644 78.45 83.02 64.75 77.18

(9, 7, 6, 5, 4, 6, 2) 8 <1 0.10593 81.30 73.00 76.10 79.27

(9, 8, 7, 5, 4, 7, 3) 5 1 0.12328 78.53 76.63 71.85 77.22

(9, 8, 6, 5, 3, 5, 2) 14 <1 0.083134 81.24 86.72 83.15 82.35

(11, 9, 8, 10, 5, 7, 4) 31 1 0.066913 82.18 84.24 85.76 83.06

(10, 11, 9, 8, 7, 10, 5) 22 01 0.10055 79.93 78.68 77.45 79.30

(12, 10, 9, 8, 7, 11, 5) 6 <1 0.38973 25.11 24.16 21.73 24.41

(7, 9, 6, 9, 8, 5, 4) 19 1 0.047585 83.77 73.367 90.05 83.19

Average 75.06 73.27 72.19 74.37

SD 17.63 17.87 19.14 17.70

Bold value signifies the highest testing accuracy for distinct iterations

revealing that at each layer tan-hyperbolic transfer function
comes out with maximum accuracy of 90.19% (Fig. 41),
98.18% (Fig. 42) , 94.76% (Fig. 43), 97.6% (Fig. 44), 99.92%
(Fig. 45) and 95.79% (Fig. 46) from three to eight layer ANN
architecture respectively.

7 Results and discussion

Figure 47 plots the maximum accuracy corresponding to the
number of hidden layers where each layer represents the best
accuracy achieved for log-sigmoid, linear and tan-hyperbolic
transfer functions of neural network.

It can be easily observed that the best performance is
yielded corresponding to tan-hyperbolic transfer function in
each layer and best accuracy of 99.92% is achieved in six
layer model of ANN.

The performance of the proposed diagnosis system has
been evaluated through some performance metrics and also
validated through the k-foldmethod. Furthermore, the results
of the proposed system have been compared with the other
models and datasets.

7.1 Performancemetrics

The confusion matrix [33] and the performances of the
evaluation metrics [34] are tabulated in Tables 20 and 21
respectively with AUC 0.90 as plotted in Fig. 48.

7.2 Cross-validation k-fold method

Cross-validation is one of the best and popularly used to
test the performance of the results that randomly partitions
a dataset into k-subsets where (k − 1) subsets are used for

Fig. 27 Testing accuracy in eight layer model

Fig. 28 Mean squared error of the best performance in eight layermodel
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Table 14 Attainment of evaluation metrics in three layer ANN architecture

Combination of neurons Iterations CPU time (in s) Best validation performance Accuracy (%) Validation (%) Average

Training Testing

(10, 9) 14 7 0.069851 98.15 88.23 86.09 94.77

(11, 10) 5 <1 0.074415 86.40 85.14 84.23 85.67

(9, 8) 16 1 0.049075 97.87 88.27 89.78 95.23

(10, 8) 13 10 0.082669 86.70 81.82 81.88 85.25

(11, 9) 15 1 0.06235 98.04 87.99 87.49 94.86

(9, 7) 44 24 0.037037 96.83 85.43 92.45 94.46

12, 11) 12 10 0.030213 97.24 87.84 93.73 95.27

(12, 10) 20 14 0.039482 99.59 88.78 91.99 96.83

(8, 9) 21 13 0.040924 99.20 90.19 91.83 96.74

(7, 8) 11 9 0.04861 90.25 83.71 89.97 89.17

Average 95.03 86.74 88.94 92.83

SD 5.16 2.61 3.90 4.42

Bold value signifies the highest testing accuracy for distinct iterations

Fig. 29 Testing accuracy in three layer model

training purpose to test each of the kth subset. A single value
obtained by taking the average of k-MSE demonstrates the
performance of the method. The performance of the current
proposal has been analyzed through 5-fold and 10-foldmeth-
ods, presented inTable 22, to strongly support the claimabout
the correctness of the procedure.

7.3 Results of the proposed study on other datasets
and comparison with the similar researches

The proposed study has also been implemented on Statlog
dataset of 270 patients in which 189 and 81 patients are
used for training and testing respectively and correctly iden-
tified the presence or absence of disease with an accuracy of
89.11%. The comparative results with the similar techniques
are presented in Table 23.
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Table 15 Attainment of evaluation metrics in four layer ANN architecture

Combination of neurons Iterations CPU time (in s) Best validation performance Accuracy (%) Validation (%) Average

Training Testing

(10, 9, 8) 13 6 0.045159 96.56 86.43 90.63 94.12

(11, 10, 9) 19 11 0.050319 99.02 90.90 89.17 96.37

(9, 8, 7) 25 11 0.037002 97.22 90.56 92.59 95.53

(10, 8, 7) 18 7 0.020866 96.96 88.31 95.86 95.50

(11, 9, 8) 17 12 0.032278 97.55 93.24 93.63 96.29

(10, 9, 7) 8 7 0.070435 88.41 75.53 85.10 86.01

(7, 8, 6) 17 12 0.0089698 98.84 85.89 98.22 96.79

(9, 8, 6) 12 9 0.028079 96.38 88.19 94.48 94.85

(12, 11, 9) 27 18 0.03622 98.93 98.18 92.55 97.86

(10, 11, 9) 11 6 0.072017 93.71 92.37 84.42 92.13

Average 96.36 88.96 91.66 94.55

SD 3.21 5.95 4.43 3.39

Bold value signifies the highest testing accuracy for distinct iterations

Fig. 30 Mean squared error of
the best performance in three
layer model

Fig. 31 Testing accuracy in four
layer model
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Fig. 32 Mean squared error of
the best performance in four
layer model

Table 16 Attainment of evaluation metrics in five layer ANN architecture

Combination
of neurons

Iterations CPU
time
(in s)

Best vali-
dation
perfor-
mance

Accuracy (%) Validation (%) Average

Training Testing

(11, 10, 9, 8) 21 1 0.029936 99.75 92.51 94.04 97.82

(10, 9, 8, 7) 126 4 0.0090866 99.20 94.44 98.16 98.32

(9, 8, 7, 6) 21 <1 0.042487 99.17 91.74 91.36 96.89

(10, 8, 6, 5) 14 <1 0.044038 93.31 94.76 91.02 93.16

(10, 7, 6, 5) 20 1 0.059421 99.60 94.45 88.11 97.08

(10, 8, 7, 6) 16 <1 0.041029 97.61 92.53 91.75 95.98

(7, 9, 8, 6) 35 1 0.072288 98.86 86.18 85.20 94.90

(12, 10, 8, 7) 14 <1 0.078133 97.35 88.29 84.18 93.96

(9, 10, 7, 8) 20 <1 0.037016 97.15 89.13 92.41 95.22

(10, 7, 6, 5) 20 1 0.046362 99.20 93.19 90.31 97.00

Average 98.12 91.72 90.65 96.03

SD 1.94 2.92 4.09 1.69

Bold value signifies the highest testing accuracy for distinct iterations

Fig. 33 Testing accuracy in five
layer model
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Fig. 34 Mean squared error of
the best performance in five
layer model

Table 17 Attainment of evaluation metrics in six layer ANN architecture

Combination of neurons Iterations CPU time (in s) Best validation performance Accuracy (%) Validation (%) Average

Training Testing

(10, 9, 8, 6, 5) 44 1 0.021406 99.06 97.60 95.58 98.33

(9, 8, 6, 5, 4) 61 1 0.034005 96.53 86.81 92.71 94.54

(9, 8, 7, 6, 6) 22 <1 0.035317 95.61 92.15 92.66 94.64

(9, 7, 6, 5, 4) 32 1 0.055065 96.15 90.91 88.56 94.24

(10, 8, 7, 5, 4) 19 <1 0.018161 98.00 96.35 96.36 97.50

(9, 8, 6, 5, 3) 11 <1 0.057062 91.53 91.78 87.87 91.01

(11, 9, 8, 10, 5) 43 2 0.0091188 99.99 95.94 98.18 99.11

(10, 11, 9, 8, 7) 10 <1 0.060497 93.29 88.37 87.13 91.60

(12, 10, 9, 8, 7) 11 1 0.060412 95.97 84.97 87.40 93.04

(10, 9, 9, 8, 8) 60 2 0.018518 1.00 94.43 96.28 98.60

Average 86.71 91.93 92.27 95.26

SD 30.22 4.25 4.25 2.96

Bold value signifies the highest testing accuracy for distinct iterations

Fig. 35 Testing accuracy in six
layer model
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Fig. 36 Mean squared error of
the best performance in six layer
model

Table 18 Attainment of evaluation metrics in seven layer ANN architecture

Combination of neuron Iterations CPU time (in s) Best validation performance Accuracy (%) Validation (%) Average

Training Testing

(10, 9, 8, 6, 5, 4) 23 1 0.019145(23) 98.80 92.76 96.07 97.50

(9, 8, 6, 5, 4, 7) 26 1 0.050312(26) 98.74 94.11 89.81 96.73

(9, 7, 8, 10, 6, 5) 37 14 0.027839(37) 97.247 99.922 94.137 97.2

(9, 7, 6, 5, 4, 6) 8 <1 0.066828(8) 89.28 81.53 85.68 87.55

(9, 8, 7, 5, 4, 7) 76 2 0.062778(76) 91.83 85.67 86.64 90.13

(9, 8, 6, 5, 3, 5) 23 1 0.036124(23) 92.88 90.68 92.49 92.48

(9, 8, 7, 6, 6, 5) 51 2 0.07885(51) 94.47 90.93 92.73 93.69

(10, 11, 9, 8, 7, 10) 24 1 0.027217(24) 98.02 96.19 94.55 97.22

(12, 10, 9, 8, 7, 11) 18 1 0.032056(18) 98.76 89.63 93.33 96.61

(7, 9, 6, 9, 8, 5) 18 1 0.065774(18) 97.95 85.76 86.45 94.36

Average 95.80 90.72 91.19 94.35

SD 3.44 5.44 3.77 3.41

Bold value signifies the highest testing accuracy for distinct iterations

Fig. 37 Testing accuracy in seven layer model
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Fig. 38 Mean squared error of
the best performance in seven
layer model

Table 19 Attainment of evaluation metrics in eight layer ANN architecture

Combination of neurons Iterations CPU time (in s) Best validation performance Accuracy (%) Validation (%) Average

Training Testing

(10, 9, 8, 6, 5, 4, 3) 26 1 0.082977 90.68 76.08 81.77 87.14

(9, 8, 6, 5, 4, 7, 3) 17 <1 0.027785 94.49 85.31 94.45 93.04

(9, 8, 7, 6, 6, 5, 3) 9 1 0.062348 90.21 81.55 86.67 88.38

(9, 7, 6, 5, 4, 6, 2) 20 <1 0.070947 90.08 82.81 84.76 88.15

(9, 8, 7, 5, 4, 7, 3) 20 1 0.044096 94.47 93.42 90.80 93.79

(9, 8, 6, 5, 3, 5, 2) 20 <1 0.052208 92.09 87.46 89.19 90.89

(11, 9, 8, 10, 5, 7, 4) 33 2 0.056758 94.34 84.48 88.10 91.93

(10, 11, 9, 8, 7, 10, 5) 46 3 0.032568 99.24 91.19 93.32 97.14

(12, 10, 9, 8, 7, 11, 5) 19 1 0.064512 93.78 95.79 86.46 93.01

(7, 9, 6, 9, 8, 5, 4) 17 1 0.065215 90.50 76.50 85.56 87.71

Average 92.99 85.46 88.11 91.12

SD 2.88 6.66 3.92 3.25

Bold value signifies the highest testing accuracy for distinct iterations

Fig. 39 Testing accuracy in
eight layer model
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Fig. 40 Mean squared error of the best performance in eight layermodel

Fig. 41 Comparative analysis of three layer ANN architecture

Fig. 42 Comparative analysis of four layer ANN architecture

Fig. 43 Comparative analysis of five layer ANN architecture
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Fig. 44 Comparative analysis of six layer ANN architecture

Fig. 45 Comparative analysis of seven layer ANN architecture

Fig. 46 Comparative analysis of eight layer ANN architecture

Fig. 47 Hidden layers versus accuracy
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Table 20 Confusion matrix

Result of the
diagnostic test

Physician diagnosis

Actual
positive (1)

Actual
negative (0)

Classifier
result

Predicted
positive (1)

147 17

Predicted
negative (0)

137 7

Table 21 The Outcomes of the proposed model for diagnosis of the
heart disease

Specificity Sensitivity Accuracy Precision F-score AUC

88.96% 95.45% 92.20% 0.89 0.92 0.90

Fig. 48 Receiver operating characteristic curve

Table 22 Cross-validation

Cross validation

Average MSE Average accuracy (%)

5-fold 0.0817 89.20

10-fold 0.0742 90.99

8 Conclusion and future scope

The aim of this experimental work is to develop an ANN-
Back Propagation based diagnostic model for the prediction
of heart disease through comparison study of hidden layers
and transfer functions. The best performance is yielded by
tan-hyperbolic transfer function in each layer with an accu-
racy of 99.92% in seven-layer (six hidden layers) model of
ANN. The proposed study attained an accuracy of 99.92%
using Kaggle heart disease set. The performance was also
validated through its test on Statlog dataset. The consistency
of the system has been measured in terms of specificity
(88.96%), sensitivity (95.45%), accuracy (92.20%), preci-
sion (0.89), f-score (0.92), AUC (0.90) and k-fold cross
validation resulting in an overall accuracy of 92.88%. Further
increase in the number of hidden layers reduces the accu-
racy of the proposed system. The results have been validated
through the evaluation metrics and justified by computing
statistics such as the values of accuracy, validation perfor-
mance, average, variance and MSE. The results achieved
during the proposed technique are highly accurate, encourag-
ing researchers/ scholars to further explore mass adoption of
this approach in the benefit of early and cost-effective heart
disease diagnosis. In future, model can be tested on large
scale datasets using SVM or other latest ML techniques.
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