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Abstract
Activity monitoring is a core application for wristbands and, consequently, all the top selling brands (Xiaomi, Apple, Huawei,
Fitbit, and Samsung) incorporate accelerometers as a core movement sensor. Applications range from sports to fitness,
supported by algorithms that analyze the sensor data. Thus, there are significant benefits to be accrued from improving the
activity classification performance of wrist-worn activity monitors, a goal that this study seeks to address. Further to achieving
this goal, this paper presents research which investigates the potential for improving strategies and algorithms used in data pre-
processing andmodel training/testing, for wrist-worn accelerometer sensing. To those ends we investigate different techniques
for data sampling frequency, feature ranking, feature scaling and sub-feature sets selection, aswell asmodel selection strategies
based on a set of neural network, support vector machine, and Gaussian Naïve Bayes classification algorithms.We explore the
effects of different model training and testing strategies, and compare threemodels trained with different datasets organized by
personalization, partial mixing, and full mixing frommultiple subjects. Their relative performance is then compared based on
different test datasets, which are personalized, mixed with pre-specified training subjects, and non-pre specified (unseen/new)
subjects, respectively. Moreover, a novel plurality voting mechanism was explored as a means to adjust the prediction result
during the model testing stage. Finally, the paper concludes by presenting the main finding of the research which are that the
most robust and reliable performance for human activity classification can be obtained by combining a personalized model
with a plurality voting mechanism.

Keywords Data pre-processing · Wearable technology · Activity classification · Feature selection · Plurality voting

1 Introduction

According to the International Data Corporation (IDC), one
of the world’s largest market intelligence organizations, in
2019, over 34 million wrist-worn wearables (wristbands and
smartwatches) were shipped, creating a market valued at
about USD 27 million which is expected to rise to USD
1252 billion by 2025 [1, 2]. Activity monitoring is a core
application for wristbands, with all the top selling brands
(Xiaomi, Apple, Huawei, Fitbit, and Samsung) incorpo-
rating accelerometers as their core movement sensor [3].
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Applications for human activity recognition cover a wide
range of research areas including surveillance, healthcare,
sports training, robotics, smart homes, and human computer
interaction [4, 5]. Human posture recognition involves auto-
matically detecting and analyzing human activities based on
data acquired from sensors such as cameras, wearable iner-
tial sensors. Thus, there are significant benefits to be accrued
from improving human activity classification performance
of wrist-worn activity classifiers, a goal that this study seeks
to address.

Technological advances have allowed Wristbands, con-
taining embedded accelerometers, to be realized in unob-
trusive, light-weight, low-cost and power-efficient mobile
forms [6, 7]. To enable wristbands to provide a reliable
posture recognition system there is a need to research data
pre-processing and optimal model selection techniques. To
convey the ideas underlying and motivating this work, this
study takes as an example scenario, an imaginary crowd
control steward, who is policing a sports event where there
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Fig. 1 The purpose of this study and main contributions (colored in
blue)

is a large unruly crowd but (fortunately) on an occasion
where he is wearing a smart wristband containing move-
ment analysis monitoring algorithms (which this work will
investigate) that can detect if the Stewart was 1—walking,
2—running, 3—waving, 4—punching, 5—clenching his/her
fist, 6—slapping, 7—throwing something, or 8-standing still,
so that assistance might be provided, if necessary. The sce-
nario is somewhat artificial but its intention is simply to act
as a conceptual vehicle to group together and convey various
challenging armband activities to motivate the AI research
which will be described over the course of the paper.

Figure 1 visually depicts the aim and main contributions
to computer science arising from the work described in this
paper. In summary, this paper seeks to advance knowledge
by presenting:

• An investigation of feature selectionmethods: the research
explores performance consequences arising from design
choices relating to 6 sampling rates, five feature selection
techniques and three feature scaling methods, as well as
14 sub-feature sets that were compared and selected using
three classification algorithms: a Gaussian Naïve Bayes
(Bayes), a Support Vector Machine (SVM) with a radial
basis function (RBF) kernel function, and a Neural Net-
work (NN).

• A design of optimal model selection strategies: three
types of models (data collected from personalization, part
of combined subjects and full combined subjects) were
trained and compared based on three testing sets (collected
from personalized training subjects, 5 training subjects,
and 12 new subjects). In addition, a plurality voting mech-
anism was used to adjust the original prediction result
during the model testing.

2 Related work

Activity data tracking, data pre-processing methods and
optimal model selection algorithms are important mech-
anisms for human activity recognition. Raw activity data
sets, tracked from wearable sensors (e.g. accelerometer,
gyroscope), are normally not used directly for activity clas-
sification, rather data processing algorithms are sometimes
used for improving data usability. Moreover, feature selec-
tion and feature scaling are generally performed during the
data pre-processing step. The selected sub-feature sets used
for models training and testing can affect the model’s per-
formance significantly. These issues are discussed in more
detail in the following paragraphs.

2.1 Data pre-processing

Feature selection aims to identify a smaller feature space by
choosing those features from a dataset that contribute most
to the performance of the activity classification model. For
instance, irrelevant or partially relevant features can have a
negative impact on the accuracy of many models [8]. There
are several potential benefits to feature selection: reduced
overfitting, improved accuracy and reduced training time,
as well as facilitating better data visualization and under-
standing [9, 10]. Generally, feature selection has two main
objectives; maximizing classification accuracy and minimiz-
ing the number of features [11].

There are many feature selection techniques, each with
different (dis)advantages and computational costs. These can
be categorized into three groups: filter, wrapper and embed-
ded methods.

Filter methods apply a statistical measure to calculate
the feature relevance scores for each of features, removing
low-scoring features. For example, the ’Pearson correla-
tion coefficient’ (Corr.) approach measures linear correlation
between two variables, with the resulting value lying in the
range [− 1, 1]. The value + 1 means a perfect positive cor-
relation, − 1 means a perfect negative correlation (as one
variable increases, the other decreases) and 0means no linear
correlation between the two variables [12]. A higher absolute
value of the correlation coefficient indicates a stronger rela-
tionship between variables. Therefore, features with higher
scores should be selected for inclusion.

Wrapper methods utilize a predictor to search the optimal
feature subset. In this method, different combinations of fea-
tures are prepared and evaluated by assigning a score based
on predictor accuracy, comparing the result of each combina-
tion to the others to find the best set [13]. A popular method
is recursive feature elimination (RFE), which selects features
by recursively considering smaller and smaller sets of fea-
tures, based on an external predictor which assigns weights
to features [14].

123



Journal of Reliable Intelligent Environments (2022) 8:285–298 287

Embedded methods select the best contributing features
based on the accuracy of the model, during the model cre-
ation stage (i.e. the best feature subset is embedded into the
model). The least absolute shrinkage and selection opera-
tor (Lasso) and Ridge regression are two examples of this
approach. The Lasso performs both feature selection and
regularization, being also called L1 regularization [15]. L1
feature scores are in the range [0,1]. The L1 regularization
causes the regression coefficient of the least contributing vari-
able to shrink to zero or near zero. Thus, only some features
with higher scores should be selected. A variation of Ridge
regression, called L2, adds a penalty to the loss function (L2-
norm), which forces the coefficient values to be spread out
more equally [16].

Feature scaling/normalization aims to make comparisons
between different features. Most machine learning algo-
rithms will require proper scaling of features if the attributes
are measured using different scales. In this case, feature
scaling can enhance the performance of machine learning
algorithms [17]. In other cases, the feature normalization
could reduce the training time significantly, although it may
not greatly affect in the prediction output. In addition, the
gradient descent converges much faster when it includes fea-
ture scaling than without it [18]. Many techniques are used
for feature scaling, for example, the Min–Max method and
the standardization method.

The Min–Max normalization method can normalize all
feature values to the range [0, 1] or [− 1, 1]. Selecting the
target range depends on the nature of the data [19]. The stan-
dardization normalization (also called Z-score) method sets
the values of each feature distribution to N (0, 1) (normal
distribution with zero mean and unit-variance) and assumes
that initial features follow a normal distribution [20].

The work of Gao et al. [21] has investigated how sam-
pling frequency impacts the performance of classifiers, by
increasing the sampling rate from 10 to 200 Hz in 10 Hz
increments. Their experimental results have revealed that the
recognition accuracy was not sensitive to the sampling rate
(only increasing by 1% increasing above 20 Hz and stabi-
lizing beyond 50 Hz). However, the high sampling rate can
lead to increasing the computational load and power usage
requirements. To choose a better sampling rate, it is necessary
to balance the classification accuracy against the computa-
tional load. This is especially important for wearable devices
because their processors are not very powerful. Thus, in this
paper, we have chosen to expand the sampling rate range and
analyze the correlation between classifier performance and
sampling rate by comparing classification accuracy using 6
datasets collected at 6 different sampling rates from 12.5 to
400 Hz.

Tchuente et al. [22] have identified a combination of
feature selectors and classification models for aggressive
activity classification using smartwatches. They used the

WEKA tool to run 6 machine learning classifiers (RF,
kNN, MLP, SVM, Bayes, DT) coupled with three fea-
ture selectors (ReliefF, InfoGain, Correlation). Ten activities
were separated into aggressive behavior (punching, shoving,
slapping, shaking) and non-aggressive behaviors (clapping
hands, waving, opening/closing a door, handshaking, typ-
ing on a keyboard). Their experimental results demonstrated
that the combination of kNN and ReliefF obtained the best
performance for differentiating between aggressive and non-
aggressive actions, with 99.6% accuracy, 98.4% sensitivity,
99.8% specificity and 98.9% precision. However, their algo-
rithms were performed offline, not-in real-time meaning that
the selected models might in practical applications yield dif-
ferent and (probably) lower performance metrics [23]. This
work is also relevant to our study, since we also propose
a human arm activity recognition method that combines a
better sub-feature set selection method based on a hybrid
classifier.

2.2 Activity classification

Classification aims to use trained models to assign a class
label to each sample in a given dataset based on the val-
ues of features. Commonly, classification uses supervised
machine learning algorithms to build a model using training
datasets with associated class labels. Classification algo-
rithms have a wide range of applications such as human
activity recognition, image identification, social network
analysis etc. There are several types of classification tech-
niques, for a given classification problem, the choice of
algorithms is normally decided based on the classification
accuracy and computational efficiency required. The most
popular algorithms reported in research literature for activity
classification are Naïve Bayes (Bayes), k-nearest neighbor
(kNN), C4.5 decision trees (DT), neural networks (NN),
SVM and rule-based algorithms [24]. For example, Yang
[25] classified human activities using accelerometers built
into smartphones. In this work six daily activities: walking,
sitting, standing, driving, running and cycling were classi-
fied. In addition, the classification results were compared
based on different features, such as mean and standard devia-
tion extracted from sensed acceleration dataset. The research
evaluated and compared four classifiers, namely DT, kNN,
Bayes and LibSVMusing the cross-validation method. Their
results showed that the DT algorithm achieved the best over-
all performance for an acceptable computational complexity
and load. kNN and SVM obtained good classification per-
formance based on the selected magnitude features, but at
cost of computational load/time. From this body of earlier
work, it was evident that feature extraction is computational
demanding, which presents particular problems to portable
and wearable devices, such as phones, which have less pow-
erful processors. Therefore, efficient computing algorithms
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and strategies are important forwristband applications. Nam-
srai et al. [26] proposed a method for building an ensemble
of classification models using a feature selection schema.
Several classifiers were built, based on different feature sub-
sets, which combined the classifiers by adopting a voting
approach to form a classification ensemble. Experimental
results illustrated that this method can improve the classi-
fication accuracy in high dimensional datasets. Ngo et al.
[27] proposed an ‘inter-class relation algorithm’ to deal with
similar activity classes. In their work, gait recognition per-
formance was improved overall using a waist-worn inertial
sensor. Jadhav and Channe [28] compared three classifica-
tion algorithms, including DT, kNN and Bayes based on the
same dataset using the WEKA tool. Their study aimed to
analyze the advantages and disadvantages of one classifi-
cation algorithm over the other. Their experimental results
showed that kNN was effective for small data sets, but slow
for big data sets; DT was shown to produce highly accurate
results for some cases, but suffered from overfitting in many
others. Although Bayes had lower accuracy, it was able to
handle noisy datasets and large amounts of data relatively
efficiently; considering the ability to deal with big data and
noisy data, this paper chose Bayesian as one of the three
algorithms for comparison.

To select optimal models, some studies have investigated
different model training methods. For example, Weiss et al.
[29] evaluated three types of models: impersonal, personal,
and hybrid based on datasets collected using a smartphone.
Their experimental results demonstrated that impersonal
models performed much more poorly than personal models,
while the performance of hybridmodelswas able to approach
that of personal models. They also described that a personal-
izedmodel can achieve nearly perfect results even using only
a small amount of user specific training data. Additionally,
since hybrid models also require user specific training data,
one may as well just use personal models instead. Therefore,
they strongly suggested building personal models whenever
possible. Tapia et al. [30] experimented with the C4.5 DT
algorithm, presenting performance data for physical activ-
ity recognition, using five triaxial wireless accelerometers
(attached to each limb and hip). They also placed a heart rate
monitor on the chest for discriminating between the intensity
of activities. In their experiments they compared the perfor-
mance of the C4.5 DT algorithm using subject-dependent
and subject-independent training based on datasets consist-
ing of 30 physical gymnasium activities collected from a total
of 21 people. Their experimental results revealed a recogni-
tion accuracy of 94.6% using a subject-dependent model and
56.3% using a subject-independent model. The addition of
heart rate data improved the recognition accuracy by only
1.2% for the subject-dependent model and by 2.1% for the
subject-independent model.

Ferrari et al. [31] provided a very informative survey of
the main stages of the human activity classification process,
including data collection, data pre-processing, data segmen-
tation, feature extraction, and activity classification. They
noted that, in the data acquisition step, accelerometers, gyro-
scopes, and magnetometers are the most commonly used
sensors, and that the sampling rate was an important factor
to consider; In the data segmentation step, they argued that
window features are affected by window type, window size,
and overlap of adjacent windows; Considering the feature
extraction stage, explained how it aimed to extract the most
meaningful parts of information from raw data to feed into
classification algorithms; Finally, in the classification stage,
they described howmachine learning and deep learning algo-
rithms were popular approaches to activity recognition, but
due to the problem of population diversity, that it was dif-
ficult for these methods to achieve good performance for
new unseen users. The concluded that one solution was to
use personalized machine learning methods to overcome the
problem of natural differences between user activity patterns
[32].

The literature study of related work demonstrated that
each algorithm has its advantages and disadvantages. No
one classifier works best for every problem. Therefore, there
are many factors to consider such as the size and structure
of the dataset in a given application. The consequences for
researchers working in this area are that their remains a need
to experimentwithmany different algorithms to evaluate per-
formance and for system designers to be able to select the
appropriate classifier for a given application.

Thus, in this study, we have investigated different tech-
niques for data sampling frequency, feature ranking, feature
scaling and sub-feature sets selection, as well as model
selection strategies based on a set of NN, SVM, and Bayes
classification algorithms. Finally, informed by the literature
and our own experimental results, we designed a hybrid clas-
sifier for human arm activity classification that combined a
personal model together with a plurality voting mechanism.

3 Methodologies

The goal of this section is to describe the methodology we
used for each task in the human arm action classification
process. First, the system configuration and sensor specifica-
tions used in this study are introduced, then we introduce the
sampling rate selection, followed by feature extraction and
optimal sub-feature set selection; Finally, there is a hybrid
classifier design.
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Fig. 2 System configuration

3.1 System configuration

To collect data on human arm activities, the Axivity wrist-
bandwas used to support this study,which embedded anAX3
accelerometer [33]. AX3 features a state-of-the-art MEMS
3-axis accelerometer and Flash based on-boardmemory. The
device incorporates a real-time quartz clock, 512MBof built-
in memory, temperature and light sensors. Its sample rate is
configurable in a range from 12.5 to 3200 Hz, battery life is
30 days at 12.5 Hz.

The wristband was attached to the right wrist as shown
in the right of Fig. 2, and the orientation of the AX3 axis is
shown in the left of Fig. 2.

3.2 Comparison of different sampling frequency

To identify a reasonable sampling frequency, we were first
guided by the literature which indicated the optimum sample
rate was in the range 1–400 samples per second [34]. Using
this information, we set up an experiment to assess the per-
formance of three classifiers for 6 sampling rates (12.5 Hz,
25 Hz, 50 Hz, 100 Hz, 200 Hz, 400 Hz) as described below.

First, we configured six AX3 sensors, for six different
sampling rates in the list above. Then one subject was asked
to wear all 6 sensors on their right arm as shown in Fig. 3.

The subject was instructed to undertake 8 activities [walk,
run, wave, punch, fistClench, slap, throw, still] for 3 min,
while 6 datasetswere collected and saved. Figure 4 visualized
the Ay signals from the 6 datasets concerned.

Figure 4 shows that the Ay signals for 6 different sampling
rates are similar in shape but significantly different in number
of samples, going from about 2000 samples (12.5 Hz) to
about 60,000 samples (400 Hz) for the same data acquisition
time.

The 6 sample rates were evaluated and compared using
a cross-validation technique with three classifiers: a Gaus-
sian Naïve bayes (Bayes), a support vector machine (SVM)
with a description of the RBF kernel function, and the neural

Table 1 Comparing the performance of three classifiers (Bayes, SVM
and NN) based on six datasets collected at six different sampling rates

Frequency 12.5 Hz 25 Hz 50 Hz 100 Hz 200 Hz 400 Hz

Classifier

NN 0.83 0.85 0.85 0.87 0.87 0.89

SVM 0.77 0.81 0.82 0.83 0.86 0.76

Bayes 0.68 0.72 0.73 0.73 0.74 0.73

network (NN) used in our experiments. Their classification
accuracy for the 6 datasets is shown in Table1.

Table 1 indicates that the datasets for the six sampling
rates, applied to the same classifier, produced similar clas-
sification accuracy although the three classifiers delivered
differing levels of performance. For example, the classifi-
cation accuracy ranged from 83 to 89% for the NN, from
77 to 86% for the SVM and from 68 to 74% for the Bayes
approach, based on sample frequencies of 12.5 Hz to 400 Hz.
From the results in Table1, there is no significant difference
in classification accuracy between 25 and400 Hz. This result
is similar to the Gao et al. study [21], although we widen the
sampling rate range.

Leaving aside the slightlyweaker processors inwearables,
200 Hz may be the best option based on the performance of
the three classifiers in Table 1. However, it is well known
that higher sampling rate produce a higher data load and
thus, lower data processing throughput. Finally, we select
this sampling rate 25 Hz as a good balance between data
processing load and classification accuracy.

Furthermore, the experimental results in Fig. 4 and Table
1 show that the data acquisition results are not affected by
the exact location of the wristband (near the elbow or wrist),
but only by the sampling rate.

3.3 Data pre-processing

3.3.1 Feature extraction

Feature extraction is defined as the process of extracting a
new set of features from the original dataset through some
functional mapping [35]. Using a set of features instead of
raw data can potentially improve classification performance
[36]. In this study, raw 3D acceleration datasets were col-
lected using the AX3 accelerometer and organized as (t, Ax,
Ay, Az). Then more features (Axyz, ΔA, ϕ, θ ) were extracted
using the following equations from Eqs. (1) to (4), respec-
tively.

Axyz(t) �
√
Ax (t)2 + Ay(t)2 + Az(t)2 (1)

�A(t) � ∣∣Axyz(t) − Axyz(t − 1)
∣∣ (2)
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Fig. 3 Six sensors were setting
up in 6 different sample rates
and collecting 6 datasets at the
same time

Fig. 4 Comparison of the 6
datasets (12.5 Hz, 25 Hz, 50 Hz,
100 Hz, 200 Hz, and 400 Hz),
using their Ay signals for 3 min

φ(t) � Atan(
Ay(t)

Az(t) + 0.00001
) × 180

◦

π
(3)

θ(t) � Atan

⎛
⎝ −Ax (t)√

Ay(t)2 + Az(t)
2
+ 0.00001

⎞
⎠ × 180

◦

π
(4)

whereAx,Ay,Az are the acceleration components in theX, Y ,
and Z directions, respectively; Axyz is the three-dimensional
acceleration; �A is the absolute Axyz change between time
points t and (t− 1); ϕ and θ are the sensor rotation angles
around the X and Y axis, respectively. The number 0.00001
in Eqs. (3) and (4) is an adjustable constant pragmatically
introduced via our experiments, to avoid a zero divisor. There
are seven features (Ax, Ay, Az, Axyz, ΔA, ϕ, θ ) in the dataset

used for further feature selection (t is simply used to record
time points).

3.3.2 Features ranking and sub-feature sets selection

The feature ranking is performed by five different feature
selection methods at the same time, which includes the
Pearson correlation coefficient (Corr.), the least absolute
shrinkage and selection operator (Lasso), ridge, the recur-
sive feature elimination (RFE), and stability selection.

The experimental results are shown in Table2, which
demonstrated that each of the seven features has a differ-
ent score for the five different feature selection methods. For
example, the feature ΔA obtained the highest score for all of
the five methods; the feature Ay received one highest score
1 for REF method, but has lower scores for other four meth-
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Table 2 The feature ranking score obtained from 5 different feature
selection methods

Features Ax Ay Az Axyz �A ϕ θ

Method

Corr 0.13 0.02 0.25 0.07 0.91 1 0

Lasso 0.12 0 0.55 0 1 0.01 0

Ridge 0.71 0.03 0.54 0.36 1 0 0

RFE 0.4 1 0.6 0.8 1 0 0.2

Stability 0.14 0 0.52 0 1 1 0

Table 3 Selected potential sub-feature combination based on feature
ranking scores from different methods

Methods Selected potential sub-feature sets

Corr Fset1 (Ax , Ay, �A, ϕ), Fset2 (Az, ΔA, ϕ), Fset3
(ΔA, ϕ)

Lasso and ridge Fset4 (Az, ΔA), Fset5 (Ax , Az , �A), Fset6 (Ax , Az ,
Axyz , �A)

REF Fset7 (Ax , Ay,Az , Axyz , �A), Fset8 (Ay,Az , Axyz ,
�A)

Fset9 (Ay,Axyz , �A), Fset10 (Ax , Ay, Az, Axyz ,
�A, θ)

Stability Fset11 (Ax , Az , �A, ϕ), Fset12 (Az , �A, ϕ)

All Fset13 (Ax , Ay, Az, Axyz , �A, ϕ, θ)

Original Fset14 (Ax , Ay,Az)

ods; the feature ϕ received two higher scores 1 for methods
of Corr. and Stability, but also got three 0 scores for other
methods; Ax and Az were ranked in similar position, only
receiving some medium scores; Axyz got one high score 0.8
for REF method, one medium score 0.36 for Ridge method
and three lower scores; θ ranked in the lowest position, it
had more zero scores. Therefore, different combinations of
sub-features were chosen based on the feature ranking scores
from different methods.

Finally, 14 sub-feature sets are selected, also labeled from
Fset1 to Fset14, as listed in Table 3, which will be used for
optimal sub-feature selection in the next section.

3.3.3 Feature scaling and the best sub-feature set selection

The values for each of the features use different scales. For
example, accelerations have values in the range from − 3 g
to 3 g, however the rotation angles have values in the range
from 0° to 360°. Hence feature scaling is necessary for some
machine learning algorithms. Three feature scaling meth-
ods (original, standardization, and minmax) were compared
using the above 14 sub-feature sets. The training and testing
datasets were organized in three groups (Xorig, Xstand, and
Xminmax), respectively, as shown in Eqs. (5), (6) and (7).

Xorig � (Ax, Ay, Az, Axyz,�A, ϕ, θ) (5)

Xstand � Xorig − μ

σ
,

{
μ � 1

N

∑N
i�1 Xorig(i)

σ �
√

1
N

∑N
i�1 (Xorig(i) − μ)2

(6)

Xminmax � Xorig − min(xorig)

max
(
xorig

) − min(xorig)
(7)

In these equations, Xorig (i) is the ith original feature vec-
tor, μ is the mean of that feature vector, N is the number of
samples, and σ is its standard deviation.

Each of the three group datasets were classified, based on
the 14 sub-feature sets, using three algorithms (Bayes, SVM,
and NN). The experimental results are presented in Table 4.

Table 4 demonstrates that the ’stand’ scaling dataset dis-
plays the best performance and that the minmax scaling
dataset shows the worst performance for all three algorithms.

For the Bayes algorithm, the ’stand’ scaling dataset shows
very similar results to the original dataset. This means that
’stand’ scaling is necessary when NN and SVM classifiers
are used for activity classification.

Table 4 also illustrated that two sub-feature sets Fset7 (Ax,
Ay, Az, Axyz, ΔA) and Fset13 (Ax, Ay, Az, Axyz, ΔA, ϕ, θ )
achieved highest performance (90%).

From analyzing these results, Fset7 was selected as the
best sub-feature set in this study for further model training
and testing, since it was the best balance between delivering
higher classification accuracy and requiring least features.

3.4 Model design with plurality voting algorithm

To improve activity classification performance, a hybrid
classifier was designed for arm action recognition. The
hybrid classifier combined an original classification algo-
rithm (originalA) with plurality voting algorithm, and was
named pluralityVA.

The originalA could be based on any selected machine
learning algorithm such as NN, SVM or Bayes. Because
the classifiers operate on the testing set point-by-point, it
is possible that they return different class labels for a same
action, during a given period of time. To reduce the number
of possible misclassified points, a plurality voting algorithm
was designed based on a data segmentation technique, to
assign the same class label to identical actions that may have
more than one classification. Data segmentation splits the
signal into smaller data segments, also known as windows
(w), which helps the algorithm deal with high volumes of
data and facilitates simpler and less time-consuming data
analysis (i.e., lowers the computational load). Three main
types of approaches are used in human activity recognition,
including activity-defined windows, event-defined windows,
and sliding windows [37]. Sliding windowing is the most
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Table 4 Comparison of activity
classification results based on
three feature scaling methods
(original, minmax and stand
scaling) for each of the selected
14 sub-feature sets, using three
algorithms (Bayes, SVM and
NN)

Methods Bayes SVM NN

Origi mixmax stand Origi mixmax stand Origi mixmax Stand

Features

Fset1 0.73 0.73 0.73 0.74 0.72 0.77 0.73 0.70 0.83

Fset2 0.67 0.66 0.66 0.70 0.67 0.73 0.71 0.66 0.80

Fset3 0.61 0.63 0.63 0.57 0.54 0.60 0.57 0.53 0.65

Fset4 0.63 0.58 0.62 0.52 0.51 0.56 0.58 0.49 0.62

Fset5 0.66 0.64 0.66 0.62 0.58 0.66 0.67 0.55 0.73

Fset6 0.67 0.66 0.67 0.71 0.62 0.74 0.67 0.57 0.80

Fset7 0.75 0.74 0.75 0.78 0.72 0.82 0.82 0.68 0.90

Fset8 0.71 0.70 0.71 0.72 0.66 0.76 0.77 0.64 0.86

Fset9 0.68 0.62 0.68 0.65 0.60 0.69 0.70 0.57 0.76

Fset10 0.74 0.73 0.74 0.79 0.74 0.83 0.69 0.67 0.89

Fset11 0.74 0.73 0.73 0.77 0.74 0.81 0.75 0.70 0.88

Fset12 0.69 0.69 0.68 0.74 0.71 0.77 0.70 0.66 0.82

Fset13 0.76 0.76 0.75 0.78 0.74 0.83 0.76 0.72 0.90

Fset14 0.72 0.71 0.72 0.69 0.64 0.69 0.79 0.60 0.80

Bold values indicate better accuracy and best feature scaling method (stand); Bold italics values indicate best
accuracy and best sub-feature sets (Fset7 and Fset13).

widely employed segmentation technique in activity recog-
nition [38].

In this paper, the pluralityVA determines a relevant major-
ity class value for each slidingwindowP(w), here the relevant
majority class is calculated based on the predicted result from
the original classification algorithm (originalA). Details of
this pluralityVA algorithm is described below.

1) There exists a classifier that defined a list of class labels
C � [c1… cm], where m is the total class number.

2) The classifier predicts a result of a testing set using the
orignalA algorithm, and the result denotes as a list P �
[p1, …, pn], where for all pi belong to C, and n is the
sample number of the testing set in total (n � sample
rate f times data collecting time t), as shown in Eq. (8).

3) Awindow (w) size is set as 1 s period of time (25 samples
in this study). Then, count the number of each class (Nci)
for every sliding window (w) from the predicted result
P(w) as shown in Eq. (9).

4) Obtain the relevant majority class label key, and use
this key value to replace all values in P(w), as shown
in Eq. (10).

Compared with the orignalA method, the pluralityVA
algorithm not only improved the classification accuracy, but
also clearly illustrated the classification results through offer-
ing a diagrammatic view of the acceleration signal, as shown
in Fig. 5a, b. For example, in the "run" time period in Fig. 5a,
some points were incorrectly classified as "walk", however,
in Fig. 5b, the wrongly classified points were corrected for
each sliding window.

The detailed performances of pluralityVA and originalA
algorithms will be compared in the Experiments section.

4 Experiments

Datawere collected from 17 subjects. All subjects performed
8 actions corresponding to 8 classes: {walking, running, wav-
ing, punching, fistClenching, slaping, throwing, still}. The
experimental results were validated against synchronized
videos, recorded with 3 cameras installed on a ceiling or high
up on a wall. All 17 subjects performed 8 actions based on a
crowd safety scenario simulated in an AI lab environment.
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Fig. 5 Comparison of the visual classification results of arm actions using the Ay signal between the orignalA algorithm (pointwise) and the
pluralityVA algorithm (sliding windows)

4.1 Experiments protocols

The experimental protocols were performed as follows: first,
subject 1 (sub1) performed all 8 actions in a stated order
and the associated dataset was collected and saved into a file
as personTrain. Subsequently the 17 subjects (sub1~sub17)
were organized into two groups (one comprising 5 people,
the other 12 people), and each of the 2 groups performed all
8 actions 2 times, the first in the prescribed order and the
second in a random order. In total 35 datasets (1 + 17*2)
were collected (collected separately for each dataset), and
organized as different types of training and testing sets as
shown in Fig. 6, three datasets were collected from sub1 and
two datasets were collected from each of the other subjects
(sub2~sub17).

Three types of models (personM, pComM, fComM) were
trained based on three corresponding training sets, then tested
using three testing sets. From this the following training sets
and testing sets were gathered.

• personTrain: A personal training set, collected from only one
subject such as subject 1 (sub1).

• partComTain: A ’partial combination’ training set based on
50 samples for each of the 8 classes from subject 2 (sub2)
to subject 5 (sub5), appended it to personTrain.

• fullComTrain: A ’full combination’ training set collected
from sub1 to sub5.

• personTest : Test-set from a personal training subject (sub1).
• trainSubTest : Test-set from training subjects that combines 5
training subjects’ unseen datasets.

• newSubTest : Test-set from new subjects that combines all
untrained subjects’ datasets (sub6–sub17).

4.2 Experimental results

4.2.1 Comparison of originalA and pluralityVA

The three types of testing sets (personTest, trainSubTest, and
newSubTest)were classified by each of the 9models based on
the two model design strategies (originalA and pluralityVA),
respectively. The experimental results are shown in Fig. 7,
which indicates that the classification accuracy is improved
using the plurality voting mechanism pluralityVA based on
the performance of original algorithms originalA, compared
to each of the 9models. For example, theNNpersonM for the
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Fig. 6 Dataset organization. The
35 datasets were collected from
17 subjects and organized as
three types of training sets
(shown in red) with three types
of models (shown in blue) and
three types of testing sets
(shown in purple)

Fig. 7 Comparison to (1) the
activity classification accuracy
using the two model design
strategies: originalA and
pluralityVA for each of the 9
models; (2) the performances of
three types of models (personM,
pComM, fComM) based on
three types of testing sets:
personTest(top),
trainSubTest(middle), and
newSubTest(bottom)

personTest set yields 92% classification accuracy using the
pluralityVA vs. 76% classification accuracy using the origi-
nalA as shown at the top of Fig. 7, and for the SVM fComM
for the trainSubTest set yields 71% classification accuracy
using the pluralityVA vs. 57% classification accuracy using
the originalA as shown at the middle of Fig. 7. In addition,
for the newSubTest dataset, theNN fComMwith pluralityVA

has the better performance of all 9 models, as shown at the
bottom of Fig. 7.

4.2.2 Comparison of the three types of models

The Full Combined Model fComM displayed better per-
formance than the model of pComM and personM for
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the two testing sets trainSubTest and newSubTest, how-
ever the personal model personM delivered its best result
for the personal testing set personTest. Figure 7 illustrated
that the three models all works well for the personalized
training subject personTest set, but had poor prediction
ability for the unseen datasets (newSubTest and trainSub-
Test), which suggests training a personalized model for
every user could improve the activity classification accu-
racy and robustness, compared to using a non-personalized
model.

To verify the robustness of the personalized modeling
approach, subject 1 was asked to randomly perform all 8
activities for 5 min, and then the newly acquired person-
alized dataset was classified using NN personM with both
versions of originalA and pluralityVA. Their classification
performancewas compared on precision to recall and F-score
for each class as shown in Table5.

• Precision is also referred to as the positive predictive value,
since it measures the ratio between true positives versus
all positives.

• Recall is also known as sensitivity, since it measures the
accuracy of the classifier in identifying true positives.

• F1 score takes into account both precision and recall and
is based on a balance between the two, with the best score
being 1 and worst 0. The F1 score will be low if either
precision or recall is low.

Table 5 shows that the personalized modeling method
is reasonably robust. For example, testing on a newly col-
lected personalization dataset (label imbalance, see support
numbers), the pluralityVA classifier yielded average preci-
sion, recall and F1 with a score of 89%, 88% and 88%,
respectively. Furthermore, the classification performance
of the pluralityVA was significantly higher than that of
the originalA classifier, which yielded average precision,
recall and F1 with scores of 78%, 75% and 76%, respec-
tively. The reason for this was that pluralityVA is a hybrid
model that combined the original model originalA with
sliding window segmentation and the plurality voting (PV)
algorithm to revise (and improve) the classification results
from the originalA for each of the sliding windows, as
shown in Fig. 8. This can reduce greatly misclassified sam-
ples.

Figure 8 demonstrates that the NN personM model, with
the plualityVA scheme, offers very good performance for
training subjects using a posture-based adaptive segmented
signal. This is because some misclassified samples will
be automatically corrected by the plurality voting algo-
rithm, if the number of errored samples is less than the
number of correct samples within a given signal segmen-
tation.

4.2.3 Optimal model selection

Our experimental results have indicated that the personal-
ized model personM provided the best result of the arm
activity classification activities for the personal training sub-
ject. For example, Table5 illustrated that four classes (2-run,
4-punch, 6-slap, and 8-still) got the best precision and F1
score (more than 90%); three classes (1-walk, 4-punch, 8-
still) obtained the best recall (more than 90%). While, class
7-throw had lowest precision (81%), and class 3-waving suf-
fered the lowest recall (80%) as well as the lowest F1 score
(82%). However, the personalized model personM provided
the worst result for the unseen subjects.

According to the analysis of the experimental results in
Fig. 7, the SVM fComM outperformed the NN and Bayes
fComM for the mix-training objects (71% vs. 67% vs. 55%),
but theNN fComMoutperformed all othermodels for unseen
objects (65% vs.63% vs. 52%). If the system stability for
unseen subjects is of concern, then from the results it’s clear
that NN fComM should be chosen, despite its poor perfor-
mance. Figure 9 illustrates the challenge of using a common
model for activity classification on unseen subjects.

Figure 9 shows experimental results for a ‘punching
action’ scenario, based on the accelerometer Ay signals col-
lected from four subjects. These signals illustrate that all
models performed poorly for unseen datasets, which we
argue was due to the different subjects have widely differ-
ent behavior, even though they performed the same action.

As we discussed above, the personalized model train-
ing strategy delivers the best performance of the approaches
studied. Therefore, we suggest that it is necessary to train
a personalized model for each of the new users, especially
for business systems, which can improve the accuracy and
robustness of activity classification. This result is similar to
the Weiss et al. study [29], although we classified different
activities using different algorithms.

5 Conclusion and future work

In this study, we investigated different techniques for data
sampling rate, feature ranking, feature scaling and sub-
feature sets selection, as well as model selection strategies.

The experimental results demonstrated that the higher
sampling rateswere not always associatedwith greater classi-
fication accuracy and, in addition, incurred a higher data load
which may be important if the activity monitor was embed-
ded into a small wristband device with limited computational
resource. We also observed that the RFE feature ranking
method worked well compared to others in this study. For
example, the ’stand’ scaling showed better performance for
NN and SVM algorithms; whereas, with the original dataset,
it showed very similar results to Bayes. Also, if there are con-
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Table 5 Comparison of
classification reports from the
two classifiers evaluated using
the same testing set collected
from a personal training subject

Classifier Originala Pluralityva Support numbers

Prec Recall F-score Prec Recall F-score

Classes

Walk 0.73 0.89 0.80 0.85 0.93 0.89 1124

Run 0.84 0.66 0.74 0.96 0.84 0.90 834

Wave 0.71 0.64 0.67 0.85 0.80 0.82 715

Punch 0.78 0.58 0.67 0.90 0.92 0.91 488

fistClench 0.69 0.75 0.72 0.86 0.83 0.85 597

Slap 0.87 0.77 0.81 0.90 0.88 0.89 788

Throw 0.71 0.82 0.76 0.81 0.89 0.84 1002

Still 0.91 0.92 0.92 0.96 0.94 0.95 1871

Avg/total 0.78 0.75 0.76 0.89 0.88 0.88 7149

Fig. 8 Visualized arm activity classification results for sub1 using the NN personM model with a posture-based adaptive signal segmentation
algorithm and the pluralityVA approach. The Ay signal and class labels are automatically drawn based on its predicted results by the arm activity
classification system

Fig. 9 The accelerometer Ay signals collected from 4 subjects for a ’punching action’ scenario
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cerns about the robustness of the system for unseen subjects,
NN fComM should be the best choice. In addition, our work
determined (maybe unsurprisingly), that a personal model
tailored to each individual userwouldworkbest.While, in the
longer term, it may be possible to build in a form of lifelong
learning to the scheme, so it gradually individuals to a given
user, there would still remain issues for how to initialize the
systemwithout incurring unacceptable time overheads. Also,
it would be challenging to incorporate such sophisticated AI
into computationally small devices that typify wristbands.
Therefore, balancing all such practical issues against perfor-
mance we concluded that the NN fComM model offered the
best solution for arm activity classification systems at this
time. Of course, the choice of the classification algorithm
can greatly influence the classification accuracy, but, to date,
the research literature has yet to offer definitive advice on
the best classifier, for human activity recognition, leaving
that question as a remaining challenge for the research com-
munity [31].

By way of some final comments, during the course of
this work we realized just how complicated differentiating
between seemingly different human arm activities is, since
every person can have a somewhat different behavior for a
same action. For example, at times, there was very little dif-
ference between light punching and heavy slapping as, even
a real-person might have difficult differentiating between
these behaviors. From that perspective (and what we said
earlier about lifelong learning) this area is challenging to
AI research and, in-turn, an excellent vehicle for research
which we intend to continue researching. Finally, in writing
this paper, we hope to encourage other researches to pick up
the gauntlet that some of our findings have thrown up.
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