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Abstract
Brain–computer interface (BCI) is an active domain which has attracted attention of the research community in recent years.
It offers huge potential as a technology which can estimate the intention of a user by analysis of brain signals and establish a
communication channel directly between a human brain and an external device. Electroencephalography (EEG) is the most
popular signal acquisition technique due to its ease of use and simplicity. In EEG-based BCI systems, electrodes are placed
on specific positions on the scalp of the subject to record electrical activity. The BCI system consists of sequential stages
of signal acquisition, its preprocessing, feature extraction and feature classification. It is an active research area which has a
focus on improving classification accuracy in motor imagery-based BCI systems. The first stage in a BCI system is to acquire
EEG signals from different positions of the scalp of the human subject. The acquired brain signals are preprocessed to remove
artifacts before these are fed to feature the extraction stage. In this paper, independent component analysis (ICA) technique is
used to remove artifacts from acquired signals. Filter bank common spatial pattern (FBCSP) technique is then used for feature
extraction and feature selection. A feature classification approach based on support vector machine (SVM) is proposed in this
work and its performance is enhanced by optimizing its polynomial kernel parameters. Selection of kernel parameters is done
by grid search method using the fivefold cross-validation procedure. The proposed approach is then executed on publicly
available data set 2a of BCI Competition IV. Results show that the proposed approach offers higher classification accuracy
and lower misclassification rate as compared to other methods executed on the same dataset, as reported in literature.

Keywords Brain–computer interface · EEG · Motor imagery · Support vector machine · Polynomial kernel · Filter bank
common spatial pattern · Independent component analysis

1 Introduction

The brain–computer interface (BCI) is a technique of estab-
lishing a channel for communication between the brain of
the user and an external device without using the brain’s nor-
mal nerve pathways to other body parts [1]. It provides an
advanced technology which can translate the intention of a
user from the analysis of brain signals directly into corre-
sponding commands to establish a communication channel
directly between the human brain and external devices [2].
BCI is a multi-disciplinary research field involving neurol-
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ogy, rehabilitation engineering, human–computer interaction
(HCI), signal processing and machine learning [3]. In recent
years, the brain signals have been extensively analyzed
and explored for BCI applications. Electroencephalography
(EEG) is an important tool for recording functional brain
activity. It is the most used signal acquisition technique for
MI-based BCIs due to its simplicity and ease of use [4].
It offers better temporal resolution at a lower cost, which
makes it popular among researchers [5]. Professor Hans
Berger from Germany discovered in 1924 that electrical sig-
nals produced by the human brain could be recorded from
the scalp using electrodes [6]. He developed the technique of
electroencephalography (EEG) for fetching electrical signals
of the brain. Although EEG is a popularly used mechanism
for fetching brain signals, other techniques like magnetoen-
cephalography (MEG) and electrocorticography (ECoG) can
also be used to monitor the activities of the human brain.
The availability of powerful computer equipment at lower
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costs and new insights into the functionality of the human
brain has encouraged researchers to focus on developing
new supplementary communication and control technology
for patients suffering from neuromuscular disorders due to
sclerosis, brain stroke, spinal cord injury, etc. [7]. The reli-
ability of a BCI system for rehabilitation of such patients is
of paramount importance. The safety of such systems can
be enhanced by improvement in hardware as well as using
advanced techniques such as machine learning to make such
system intelligent and reliable.

BCIs can be used in a variety of areas including prosthetic
limbs, mobility devices, robotics and device communication.
These developments have led to improvements in the tech-
niques of processing of signals emanating from the scalp
during the performance of a specific type of mental task. The
major objective of BCI research is to develop supplementary
systems that allow disabled users to control artificial limbs
and communicatewith the outer environment. The electrodes
are placed as per standardized international 10–20 system of
EEG, on different parts of the scalp of the human subject
to record the electrical activity of the brain [8]. These sig-
nals acquired from electrodes reflect the motor imagery (MI)
activity of the subject, such as the hand, foot or tonguemove-
ments. [9]. For the operation of every BCI, a neurological
control signal is required. Different BCI systems have been
developed on the basis of this control signal, [10].Most of the
current BCI systems using EEG fetch their input from neu-
rological phenomena such as P300 potential, event-related
potential (ERP), Mu and/or beta rhythms with event-related
synchronization (ERS) and event-related desynchronization
(ERD), cognitive task-related EEGs, visual evoked poten-
tial (VEP) and slow cortical potentials (SCP). Subjects using
the BCI induce brain activity pattern, by following the
experimental protocol for that particular BCI approach. The
protocol followed by the subjects can be MI movements
and focusing on visual clue of flashing characters on screen.
Motor imagery (MI) is a common paradigm used in BCI. It is
anMI task inwhich a subject is cued to just imagine themove-
ment of a specific limb, without actually executing its action.
EEG signals are then recorded while executing multiple MI
tasks of hands, feet, tongue movement, etc. [11]. Movement
or even preparation for movement leads to a decrease in mu
and beta rhythms,which is called ERD. In contrast to this,mu
and beta rhythm increase after the movement is completed,
which is called ERS. The ERD and ERS do not require the
actual movement, but occur with mere imagination of move-
ment, which is called motor imagery (MI), and hence can
effectively be used for BCI. The efficiency of a BCI system
depends on the choice of suitable algorithms for implemen-
tation of its various stages [12]. It is important to choose
a suitable classifier from the range of well-known classi-
fiers such as linear discriminant analysis (LDA), support
vector machine (SVM), fuzzy logic (FL), k-nearest neigh-

bor algorithm (KNN) and artificial neural network (ANN)
for EEG classification [13]. For multi-class classification,
selection of a particular classifier is a critical issue in the
BCI system [14]. Linear classifiers are generally preferred
for EEG classification due to their low computational com-
plexity and better stability [15]. They are also less prone
to overfitting problem as compared to nonlinear classifiers,
especially when only a limited number of samples are avail-
able [16].The main objective of the BCI-based applications
is to accurately translate the brain wave patterns extracted
from the EEG signals into the desired machine commands.
The objective of many researches is to enhance this accuracy
of interpretation of the harvested EEG signals [17]. SVM
is a popularly used classifier for MI-based BCI systems.
It establishes an optimum hyperplane to separate different
classes as far as possible [18]. It can implement multi-class
classification and is immune to curse-of-dimensionality of
data. Selection of suitable kernel parameters in SVM is
of paramount importance to obtain classification accuracy
results [19]. Parameters value can be varied to set the the
boundary decision in the classifier [20]. This work presents
selection of suitable kernel and setting optimal values of
the kernel parameters to obtain the decision function, which
enhances classification accuracy and overall performance of
the MI-based BCI system. In this work, SVM with polyno-
mial kernel (SVM-PK) approach is proposed for EEG signal
classification in MI-based BCI system. The performance is
improved by selecting the optimal values of the polynomial
kernel, by using the grid-search method. These values are
then varied to obtain better classification accuracy, which is
evaluated by using K-fold cross-validation procedure. This
work has improved the performance ofMI-basedBCI system
by enhancing the classification accuracy of MI data, which
is then compared with other methods executed on the same
dataset, as reported in literature [21].

2 Related work

The goal of the classification stage in BCI is to automatically
assign a class to the feature vector, whichwas extracted in the
previous stage. It represents themental task performed by the
BCI user. Classification is obtained by executing algorithms
called classifiers. The researchers have explored different
methods to implement classifiers for identification of the
class to which the feature vector belongs.

Garrett et al. [22] reported the results of implementation
of one linear (LDA) and two nonlinear classifiers (NN and
SVM) for classification of spontaneous EEG signals, while
subjects performed five mental tasks. They concluded that
SVMs provide a powerful method for data classification as
it uses machine learning and artificial intelligence (AI), for
systematic exploration of the EEG feature classification.
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Kamousi et al. [23] proposed a novel approach of using
source analysis for classifying MI tasks. They proposed
two-equivalent-dipoles analysis for classification of signals
recorded from 15 channels from sensory motor area of four
subjects. They used noise normalization, spatial filtering,
time–frequency analysis and independent component anal-
ysis for preprocessing of these signals and reported 80%
classification accuracy.

Pfurtscheller et al. [24] reported that phase information
and adaptive classification can improve the performance of
a BCI and also reduce its training time. They reported that
by use of high harmonics features for classification, the per-
formance of a four-class BCI system can be improved. They
also demonstrated that feedback can modify sensory motor
rhythms and recommended powerful algorithms to search for
electrode placement locations.

Bhuvaneswari et al. [18] reviewed different kernel func-
tions in SVM, which is a machine learning method for
classification of EEG signals in MI-based BCIs. They used
ICA for preprocessing and removing the artifacts, to improve
signal-to-noise ratio. They discussed the important role of
kernel function in nonlinear separable methods, while using
SVM for classification of EEG signals.

Ilyas et al. [25] reviewed the selection of appropriate
algorithms for preprocessing, feature extraction and fea-
ture classification in a BCI system. They have discussed
their advantages, disadvantages and current trends of BCI
research.

Mahmood et al. [16] considered mu and beta frequency
ranges of recorded EEG signals for MI-based BCI system.
They employed CSP for feature extraction and SVM for clas-
sification of these signals. They evaluated their approach on
dataset IIIa of BCI competition III, and observed improve-
ment in classification accuracy for online BCI systems.

Arbabi et al. [26] compared the effect of different types
of selected features and classification algorithms for clas-
sifying brain signals in MI-based BCI systems. The results
showed that statistical features and signal energy in different
frequency bands are among the most appropriate features,
which can be processed for implementing a BCI system.

Zhang et al. [27] introduced both cascade and parallel con-
volutional recurrent neural networkmodels for estimating the
intendedmovements by analysis of rawEEGdata. They eval-
uated their performance on a large-scale movement intention
EEG dataset fetched from 108 subjects, and investigated the
influence of the spatio-temporal information on the perfor-
mance of the proposed BCI system.

Lotte et al. [9] surveyed existing literature and reported
that there is a need for validation of techniques on off-line
as well online BCI systems. They emphasized that calibra-
tion of such systems should improve their convenience and
robustness aainst real-life noise in EEG signals. They sug-
gested that the techniques used in BCI systems should be

invariant over time, users and contexts. They recommended
the use of new generation of BCI classification methods that
process human feedback, so that they can adapt to user states,
traits and skills.

The authors in [21] have proposed a fuzzy logic system
(FLS)-based approach for multi-class MI data classifica-
tion. They fused the fuzzy system with particle swarm
optimization (PSO) method for improving the classification
performance. They used CSP algorithm in the feature extrac-
tion phase to extract relevant discriminant features from
multi-class EEG data. The learning process of an FLS is
computationally intensive. Hence, they reduced the compu-
tational expense of the multi-class FLS-based BCI system by
application of PSO to reduce processing time. They cross-
validated the performance of the proposed FLS method on
benchmark data sets, and suggested studying more efficient
feature extraction and selection methods in future research
to improve the classification performance of a BCI sys-
tem.

The author in [28] has presented a deep learning approach
for classification of MI-based BCI using an adaptive method
to determine the threshold. The widely used common spatial
pattern (CSP) method is used to extract the variance-based
CSP features, which is then fed to the deep neural network
for classification. They presented a framework for use of
deep neural network (DNN) for MI-BCI classification and
evaluated the effectiveness of the proposed framework on
dataset IVa of the BCI Competition III.

3 Dataset andmethodology

The MI-based BCI paradigm is widely used in a variety of
applications. It has shown better potential for rehabilitation
of patients suffering from motor impairments. It can provide
them with an alternative mechanism to communicate with
the external world just by thinking of a motor task, without
actually performing the movement. In this work, publicly
available benchmark EEG dataset from BCI competition IV
is used, to evaluate the classification accuracyof our proposed
approach [29]. This dataset is extensively used by the BCI
research community and contains four-class MI data which
is described in the next section

3.1 Experimental paradigm

In this work, the data set 2a from the BCI competition IV [29]
is used. This data set is publicly available for the research
community and consists of EEG data recorded from nine
subjects. Two sessions were recorded for a given subject
on two different days. Each session consisted of six runs
and each run consisted of 48 trials (12 trials for each motor
imagery class). In each trial, a cue was shown on the screen
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Fig. 1 Timing of the dataset 2a
from BCI competition IV [31]

instructing the subject to perform one of the four MI tasks
using the left hand, right hand, both feet, or tonguemovement
[30].

A single session during the experiment consisted of 288
trials, 72 trials for each of the fourMI tasks. Each trial started
with a short sound (warning tone) and a fixation cross was
shown on the computer screen. After 2 s, in the place of the
fixation cross, a cue was shown (in a form of a small arrow)
telling the subject to start the corresponding motor imagery
task. After another 1.25 s, the arrow changed back to the
fixation cross. The MI task is continued until the sixth sec-
ond of the trial when the fixation cross disappeared. After
that there was a short break where the screen was black
again. The timing diagram of data acquisition is shown in
Fig. 1.

4 Preprocessing to remove artifacts from
EEG signals

The acquired data contain a lot of noise fromexternal sources,
hence it is necessary to remove these artifacts from EEG
signals, in the preprocessing stage, which influences the per-
formance of the overall BCI system [3]. The recorded data
contain undesired signals such as electrooculography (EOG),
electromyography (EMG), electrocardiography (ECG) and
power line noise signals. The methods used for preprocess-
ing depends on the noise levels present in raw signals as well
as on techniques used in further processing of the data.

Simple frequency-specific filtering techniques are not suf-
ficient to remove these noise signals due to their overlapping

spectral characteristics and poor spatial resolution of EEG
signals. Hence, sophisticated spatial filtering methods such
common spatial pattern (CSP), principal component analysis
(PCA) and independent component analysis (ICA) are pop-
ularly used in the preprocessing stage to reduce these noise
signals and improve its spatial resolution. This stage aims at
cleaning and denoising the recorded digital data for enhanc-
ing the relevant information embedded in the signals.

In this study, ICA is used to remove artifacts fromEEGsig-
nals and isolate the required information from these signals.
It is a computational method which separates signals from
multiple sources into subcategories, based on their statistical
independence [32]. It performs the separation of independent
components by maximizing their statistical independence.
ICA is applied to remove EOG, EMG and ECG artifacts
from the acquired signals. In the dataset used in this study,
there are 22 EEG channels and 3 EOG channels for recording
the signals from electrodes placed on the scalp of the subject
. ICA is used to remove three EOG channels related to the
movement of the eyes [33].

4.1 Independent component analysis

ICA is often used for detection and removal of the eye, mus-
cle, and line noise artifacts.

The EEG activity observed at different electrodes placed
on the scalp overlaps and generates some redundant infor-
mation. ICA is used to separate the artifacts acqured from
multiple electrodes.

ICA application to a matrix of EEG scalp data finds an
’unmixing ’ matrix of weights (W). This matrix is then
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Fig. 2 Flowchart for ICA data
decomposition and back
projection

multiplied by the scalp data matrix to generate a matrix of
independent component (IC) activities, as shown in Fig. 2.
EEGLAB toolkit is used in this study, for an automated ver-
sion of the infomax ICA algorithm.

4.2 Feature extraction

The successful classification of MI tasks can be achieved
by the successful extraction of the required features from
the EEG signals. CSP is a popularly used feature extraction
method for the MI-based BCI system. It establishes linear
subspaces, so that the variance value of one of the projected
class is enhanced to a maximum degree. Simultaneously, the
variance value of the other class is reduced to a minimum.
The optimal identified spatial filters are established by col-
lective diagonalization of the two covariancematrices, which
is calculated from two classes of the EEG signals. In the first
step, the normalized covariance matrix of the fetched EEG
signal E in each trial is calculated as:

R = EE ′/(trace(EE ′)′, (1)

where E denotes n × t matrix, n is the number of channels
and t is the number of samples. The average of covariance
matrices calculated from trials within a class, Ma and Mb, is
added to produce a comprehensive covariance matrix Mc =
Ma + Mb. The eigenvectors Ec and eigenvalues λ of this
covariance matrix result in whitening transform

W = λ−1/2E ′
c′, (2)

where Mc = EcλE ′
c′ . Then, Ma and Mb are transformed by

Sa = WMaW
′, Sb = WMbW

′. (3)

The values of Sa and Sb are calculated by using the same
eigenvectors, in such a way that Sa = UψaU ′ and Sb =
UψbU ′. U is calculated from the common orthonormal
eigenvectors of Sa and Sb and the values of ψa and ψb rep-
resent the calculated diagonal matrices of eigenvalues, such
that they add up to a total of 1.

Subsequently, both classes a and b are projected onto U1,
which is the first eigenvector , leading to class a yielding the
maximal value of variance and class b yielding the minimal
value of variance. In contrast to this, when both classes are
computationally projected onto the last of the eigenvector
Um , then the class a attains the minimal value of variance,
whereas the class b attains the maximal value of variance. In
implementation, only a few of the eigenvectors are selected,
U∗ = U1, . . . ,Um,UN−m+1, . . . ,UN , wherein the value of
m is low (m � N ). The finally calculated projection matrix
is represented as

P = U ∗ W . (4)

The attained dimension of the original signals is reduced
to ’2m’ as per the following equation:

f p = log

(
var(Z p)∑2m
p=1 var(z p)

)
, p = 1, . . . , 2m (5)

The logarithmic transformation method is used to extract
normal distributed elements in f.

This work has focused on the motor and sensorimotor
rhythms, which fall in the frequency band of 8–30 Hz, by
using band pass filter to select the relevant band. The pat-
terns ofMI signals are distinguished by temporal/spectral and
spatial filters. Hence, their optimization has a direct impact
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Fig. 3 Filter bank common
spatial pattern [34]

on the performance of a BCI system. Feature extraction is
implemented by using FBCSP [34].

The FBCSP algorithm is illustrated in Fig. 3. It has stages
of signal processing and then implementation of machine
learning procedure on the processed EEG data. It first filters
EEGsignals inmultiple frequencybands using afilter bank. It
uses band pass filters in having a range of 0.5–40 Hz. Spatial
filters are optimized, for each of the filter band, using the
classic CSP algorithm. Finally, among the multiple spatial
filters obtained, the best resulting features are selected using
feature selection algorithms using mutual information-based
feature (MIBIF) selection. The MIBIF method selects both
the best spectral and spatial filters as each feature corresponds
to a single frequency band and CSP spatial filter. It calculates
mutual information for each of the feature and arranges it in
decreasing order. The top k features are selected from this
list for the next stage of classification.

4.3 Classification

Various classification algorithms can be used for a BCI sys-
tem. The choice of such a classification algorithm depends
on many factors including the BCI paradigm used and type
of recorded input data. The efficiency of the classifier has a
critical effect on the performance and accuracy attained by
the BCI system. In this work, linear classifiers are analyzed.
These types of classifiers use linear functions to demarcate
differentMI classes. LDA and SVMare twomain linear clas-
sifiers used inMI-based BCIs. The LDA technique has a very
low computational requirement which makes it suitable for
an online BCI system. SVM is efficient for synchronous BCI
due to its regularization property and immunity to the curse-
of-dimensionality problem. In this paper, the performance of
classifiers is analyzed and compared on dataset 2a of BCI
Competition IV [15].

4.4 Support vector machine

Support vector machine is a popular classifier for MI-based
BCI systems to classify EEG signals. It establishes a hyper-
plane separating all data points belonging to one class from
the ones belonging to other classes. It creates decision bound-
aries by using support vectors. It separates different classes
by mapping the data to a higher-dimensional space. It tries
to maximize the margins by using a kernel function [36].
It allows parameter adjustment to improve the classification
rate. The values of the degree of the kernel and regularization
parameter, represented as d and C, respectively, are chosen
to adjust the balance between algorithmic complexity and
number of non-separable points.

SVM increases the margin of separation between various
classes and tries to reduce the classification error to a min-
imum, for data points represented by the respective slack
variables, as represented in Fig. 4. The SVM for a k-class
problem with n-training points can be represented as a min-

Fig. 4 Separation of nonlinear data points [35]
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Fig. 5 SVM error representation [35]

imization of

Q(w, b, ε) = 1

2
�k

j=1w
T
i wi + C�n

i=1�
k
j �=yi ; j=1εi j , (6)

subject to

wT
yiθ(xi ) + byi ≥ wT

j θ(xi ) + b j + 1 − εi j

εi j ≥ 0, i = 1, 2, . . . , n and j ∈ i .2, . . . , k, j �= yi ,
(7)

where xi is the vector of the i th data point, yi is the class
for the i th data point , εi j is the slack variable as a measure
of error, and C is the regularization parameter for balancing
errorminimization andmarginmaximization. Figure 5 shows
the slack variables for individual classes and formation of the
classification problem.

The SVM classifier tries to reduce the value of k×n slack
variables while maximizing the k margins [35]. The multi-
class classification function is represented by argmax j=1,...,k

wT
j φ(xi ) + b j ,where a data point (x) is associatedwith class

j. The classification score for the point x is maximized by
using weights. The constraints represented in Eqs. 6 and 7
are converted into equivalent unconstrained formulation by
Lagrange multipliers αi j and βi j

Q(w, b, ξ, α, β) = 1

2
�k

j=1w
T
j w j + C�n

i=1�
k
j �=yi ; j=1ξi j

− �n
i=1�

k
j �=yi ; j=1αi j ((wyi − w j )

Tφ(xi )

+ byi + b j − 1 + ξi j )

− �n
i=1�

k
j �=yi ; j=1βi jξi j = 1

2
�k

j=1w
T
j w j

− �n
i=1�

k
j �=yi ; j=1zi j (w

T
j θ(xi ) + b j − 1)

− �n
i=1�

k
j �=yi ; j=1(αi j

+ βi j − C)ξi j ,

(8)

where

zi j = �k
j �=yi ; j=1αi j f or j = yi ; (9)

otherwise,

= −αi j , (10)

and the conditions for optimality are:

αi j ((wyi − w j )
Tφ(xi ) + byi + b j − 1 + ξi j ) = 0 (11)

for

for j �= yi , j = 1, . . . , n (12)

βi jξi j = 0 for j �= yi , j = 1, . . . , k, i = 1, . . . , n, (13)

in addition to Q(w, b, ε, α, β) being minimized in w, b, ε
(derivatives equal to zero). The dual formulation is obtained
by reducing (3)–(6) using the kernel function k(x,y)=φ(x)T

φ(y). The dual formulation is to maximize

Q(α) = �n
i=1�

k
j �=yi ; j=1αi j

−1

2
�n
i=1�

k
j=1zi j z1 j K (xi , x1), (14)

subject to

�n
i=1zi j = 0 f or j �= yi , j = 1, . . . , n (15)

0 ≤ αi j ≤ C f or j �= yi , j = 1, . . . , k, i = 1, . . . , n (16)

Finally, the decision function for class j is given by:

f j (x) = �n
i=1zi j K (xi , x) + b j , (17)

and the classification is to assign class j to data point x which
satisfies argmax j=1,...,k f j (x).

The memory requirement and processing time affects
the performance of an optimization technique. SVMlightis
an implementation of the SVM classifier. Its efficiency is
enhanced by reducing its training time and suitable selection
of kernel parameters.

Abe et al. [37] have improvised by including the bias term.
The optimization is represented for n slack formulation by
Eq. 18.

Q(w, b, ξ) = 1

2
�k

j=1w
T
i wi + C�n

i=1ξi (18)

subject to

(wT
yi − wT

j )φ(xi ) + byi − b j ≥ 1 − ξi jξi j ≥ 0, 1, . . . , n

and j ∈ 1, . . . , k, j �= yi
(19)

the dual formation is to maximize

Qα = �n
i=1ξi − 1

2
�n
i,l=1�

k
j=1Zi j Zl jαiαl K (xi , xl) (20)
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subject to

�n
i=1Zi jαi = 0for j �= (yi , j = 1, . . . , k) (21)

0 ≤ (n − 1)αi ≤ Cfor j �= yi , j = 1, . . . , k, i = 1, . . . , n.

(22)

The class j decision function is given by

f j(x) = �n
i=1Zi jα j K (xi , x) + b j . (23)

The regularization parameter (C) limits the value of
learned weights as shown in Eq. 23. It performs a balancing
act between margin maximization and slack minimization
[35].

In this paper, SVMlight is used as a classifier formulti-class
MI EEG signals [38]. Its polynomial kernel parameters are
then varied in a range of values, to attain better performance
[39]. Parameter selection plays an important role to obtain
accurate classification results [19]. The parameters values
can be set, which have a direct effect decision boundary of the
classifier [20]. This work focuses on selecting the kernel and
then optimizing the values of its parameters to improve the
interpretation capability of the decision function. It improves
the classification accuracy and overall performance of anMI-
basedBCI system.TheSVMlight [40] is an implementation of
SVM. It is used in this work, as it is designed for optimization
problems.

4.4.1 Parameters selection

Parameter optimization of the selected kernel has a sig-
nificant effect on the efficiency of the SVM classifier for
multi-class EEG signals. In this paper, the polynomial kernel
is selected due to its generalization capability. The degree of
polynomial kernel characterizes the decision boundary. Eq.
24 represents the achieved decision function.

f j (x) = �n
i=1Zi jα j K (xi , x) + b j , (24)

where b represents the bias term, xi is the ith feature vector
and n is the number of feature vectors. The vector αi is the
parameter decision boundaries and K(xi ,x) is a kernel func-
tion. The polynomial kernel function is represented as K(xi ,
x) = (s a∗b + c)d . The kernel makes distinction between
multiple classes with significant margin, due to its flexibil-
ity [41]. C is a regularization parameter, representing the
trade-off between maximization of the margin and the error
on the training dataset. The grid search method using cross-
validation is executed to assign different values to C from a
wide range, to maximize average classification accuracy.

5 Proposed approach

The research work introduces a proposed approach based on
SVM in themulti-class EEG signal classification as shown in
Fig. 6. In thiswork, appropriatemethodswere used for imple-
mentation of various stages of the BCI system. The ICA is
used for signal preprocessing to remove noise and artifacts
from the acquired signals. The FBCSP method, which is a

Fig. 6 Flowchart of the
proposed approach
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Table 1 Classification accuracy Subject C = [0.1 − 10 − 20 . . . 100] C = [0.01] C = [0.001]
1 0.722 0.729 0.743

2 0.559 0.563 0.555

3 0.806 0.816 0.823

4 0.417 0.423 0.433

5 0.580 0.569 0.569

6 0.455 0.448 0.473

7 0.875 0.882 0.858

8 0.861 0.886 0.865

9 0.702 0.705 0.719

Average 0.664 0.669 0.670

Fig. 7 Classification accuracy

Table 2 Misclassification rate
on dataset 2a of BCI
competition IV

Subject C = [0.1 − 10 − 20 . . . 100] C = [0.01] C = [0.001]
1 0.278 0.271 0.257

2 0.441 0.437 0.445

3 0.194 0.184 0.177

4 0.583 0.577 0.567

5 0.420 0.431 0.431

6 0.545 0.552 0.527

7 0.125 0.118 0.142

8 0.139 0.114 0.135

9 0.298 0.295 0.281

Average 0.335 0.331 0.329

Table 3 Comparison of related
work in literature

Author Feature Extraction Classifier Accuracy%

She et al. (2015) CSP SVM 48.4%

NBPW 53.8%

NBPW with FBCSP 59.3%

PPTSVM 62.4%

Proposed approach FBCSP SVM-PK 67.0%
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Fig. 8 Misclassification rate

Table 4 Classification accuracy
of the proposed approach and
existing approaches [21] for
BCI IV dataset 2a

Subjects LDA NB KNN Ensemble SVM FLS SVM-PK

1 0.722 0.639 0.670 0.594 0.688 0.719 0.743

2 0.444 0.493 0.455 0.465 0.483 0.531 0.555

3 0.781 0.757 0.747 0.726 0.760 0.764 0.823

4 0.632 0.632 0.504 0.590 0.618 0.667 0.433

5 0.403 0.399 0.358 0.399 0.413 0.392 0.569

6 0.403 0.438 0.399 0.351 0.410 0.424 0.473

7 0.788 0.705 0.674 0.656 0.778 0.733 0.858

8 0.785 0.802 0.760 0.708 0.816 0.802 0.865

9 0.767 0.785 0.726 0.750 0.792 0.816 0.719

Average 0.636 0.628 0.588 0.582 0.640 0.650 0.670

Fig. 9 Classification accuracy
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variant of CSP, is used for extraction and then selection of
extracted features. The selected features are then processed
by the classifier. Signal classification is performed by using
SVM, and its appropriate kernel is chosen. The performance
is enhanced by optimizing the parameters of its polynomial
kernel. The optimal parameter values were searched using
the two-step grid search method. The proposed approach
(SVM-PK) is executed on dataset 2a of BCI competition
IV, and its performance is evaluated by using the fivefold
cross-validation procedure.

6 Results and discussion

The proposed approach is implemented on publicly avail-
able dataset 2a of BCI competition IV, and its performance is
evaluated. The ICAwas used for preprocessing to remove the
artifacts. In this paper, FBCSP and SVM-PK are used for fea-
ture selection and classification, respectively, for MI-based
BCI systems. The performance of the proposed method in
terms of different statistical measures, such as classification
accuracy and misclassification rate, is evaluated.

In the classifier stage, parameters of the polynomial kernel
are assigned to different values to improve the classification
accuracy. The degree of polynomial kernel (d) was assigned
a value of 3 while varying the regularization parameter (C)
by coarse grid search in steps of 10 between 0.1 to 100
[0.1,10,20,—-,90,100]. The classification accuracy of 0.664
was attained at all these values of C. To improve this further,
fine grid search was used to find the optimal value of C, by
lowering it in the neighborhood of 0.1 and attained a better
average classification accuracy of 0.67 for C = 0.001 and
0.669 for C = 0.01, as shown in table 1. Thus, the classifi-
cation accuracy was enhanced by finding the optimal values
of C and d parameters of the polynomial kernel.

The Fig. 7 shows classification the accuracy for the nine
subjects with different C values of the kernel. The misclas-
sification rate was reduced to 0.329 as shown in Table 2 and
Fig. 8.

It is shown in Table 3 that the classification accuracy of the
proposed approach is improved as compared to its attained
value using other approaches as reported in literature.

Classification algorithms of LDA, KNN, NB, Ensem-
ble, FLS and SVM are evaluated, and their performance is
reported in literature [21]. Their reported performance on
dataset 2a of BCI competition IV is compared with our pro-
posed approach as shown in Table 4 and Fig. 9. It is also
compared with classification methods reported in [42], in
which the authors have used SVM, NBPW, NBPW with
FBCSP and PPTSVM as classifier methods. It is shown that
the proposed approach of SVM-PK offers improved classifi-
cation accuracy for subjects 1, 3, 7, 8 and 9, while the overall
average accuracy improved significantly.

7 Conclusion and future scope

In this paper, SVM with polynomial kernel approach is pro-
posed for the classification of multi-class MI EEG signals.
The performance of the proposed approach was evaluated
from dataset 2a from BCI competition IV. In the preprocess-
ing stage, the ICA is employed for removing artifacts from
the acquiredEEGsignals. The next stage of feature extraction
and feature selection is implemented by the FBCSP method.
The selected features are then provided to the classifier.
Signal classification is performed by SVM with polyno-
mial kernel and its parameters are varied to search for their
optimal values, using the grid search method. The perfor-
mance is evaluated using a fivefold cross-validation process,
which indicates the reliability of the obtained results, as it
yields better performance. The proposed approach attains an
average classification accuracy of 0.67, which is more than
that of other approaches executed on the same dataset, as
reported in literature. It enhances the reliability and safety of
a BCI system for rehabilitation, by improving its classifica-
tion accuracy. Future research can also investigate different
techniques for optimization of different classifier parameters
to further improve the efficiency of a BCI system. Future
researches can explore other methods for feature extraction
and feature selection.
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