
Vol.:(0123456789)1 3

Journal of Reliable Intelligent Environments (2020) 6:79–94
https://doi.org/10.1007/s40860-020-00098-y

ORIGINAL ARTICLE

A secure mutual authentication protocol for IoT environment

Prabhat Kumar Panda1 · Sudipta Chattopadhyay2

Received: 18 August 2019 / Accepted: 4 January 2020 / Published online: 16 January 2020
© Springer Nature Switzerland AG 2020

Abstract
Rapid development in the field of Internet of Things (IoT) has made it possible to connect many embedded devices to the
internet for the sharing of data. Since, the embedded device has limited storage, power, and computational ability, an inte-
gration of embedded devices with the large pool of resource such as cloud is required. This integration of technologies is
expected to provide extraordinary growth in current and future promising applications of IoT. In this context, the security
issues such as authentication and data privacy of devices are major issues of concern. The research motivation of the present
work is to propose a secure mutual authentication protocol for IoT and cloud servers based on elliptic curve cryptography.
In this work, the security properties of the proposed protocol have been formally verified by using Automated Validation
of Internet Security Protocols and Applications tools and informally analyzed and compared with the related protocols in
terms of various security attributes such as device privacy, impersonation attack, replay attack, password guessing attack,
mutual authentication and so on. Moreover, the performance of the proposed protocol has also been evaluated in terms of
computational, communication, storage overhead and total computational time. The security and performance analyses found
the supremacy of the proposed protocol over the other related protocols.

Keywords Authentication · Cloud server · Elliptic curve cryptography · Internet of Things · Security

1 Introduction

Internet of Things (IoT) [1] is a network of physical devices,
objects, buildings, vehicles and other things that are embed-
ded with software, electronics, sensors, and network connec-
tivity. These objects are connected together and interchange
the information between them and with other digital devices
without any human interference [2, 3]. IoT contributes to
boosting the life we live in through many applications such
as smart cities, e-healthcare, smart buildings, smart grids
and many more.

In recent years, due to the rapid development of IoT,
internet connectivity with embedded devices for informa-
tion sharing has also increased. Since the embedded device

has limited storage, power, and computational ability, it is
integrated with the cloud server, where the cloud has more
storage and processing power and also can resolve most of
the IoT issues. Combining the IoT devices with the cloud
makes a new paradigm named CloudIoT which is expected
to provide an extraordinary growth in current and future
internet [4]. In the CloudIoT environment, the embedded
device can depend on the computational skill of the cloud
and can extract a large amount of data storage from the cloud
server. Moreover, the embedded devices are more suitable
for the practical implementation of IoT which results in dif-
ferent types of IoT services by incorporating smart embed-
ded devices. However, while connecting an embedded
device to a cloud, security is the prime issue of concern
[5, 6]. Also, the mutual authentication must be established
between the cloud server and the embedded devices. To meet
these security requirements, many authentication protocols
have been proposed for IoT and cloud servers. However, the
existing protocols have certain shortcomings which need to
be addressed further. In the environment, where memory and
power are limited and higher security needs to be achieved
at a minimum key length, then elliptic curve cryptography

 * Prabhat Kumar Panda
 prabhatjdvu@gmail.com

 Sudipta Chattopadhyay
 sudiptachat@yahoo.com

1 School of Electronics and Communication Engineering,
REVA University, Bangalore 560064, India

2 Department of Electronics and Telecommunication
Engineering, Jadavpur University, Kolkata 700032, India

http://crossmark.crossref.org/dialog/?doi=10.1007/s40860-020-00098-y&domain=pdf

80 Journal of Reliable Intelligent Environments (2020) 6:79–94

1 3

(ECC) is considered to be the best public key cryptography
scheme [7].

Being motivated by the above research issues and trends,
an improved mutual authentication and security protocol for
IoT environments based on ECC has been proposed in this
paper.

The major contributions of this work are summarized
below:

• The ECC technique has been adopted to eliminate several
security issues.

• The proposed protocol employs the concept of password
verifier with the status bit in such a way that the server
stores the password in the form of a password verifier
with a status bit to achieve the device privacy and to
prevent the impersonation attack and many logged-in
devices’ attack.

• Proper mutual authentication and perfect forward secrecy
have been achieved by following a unique way of com-
puting the values of several authentication parameters
and session key.

• The formal security verification of the proposed protocol
by using the Automated Validation of Internet Security
Protocols and Applications (AVISPA) tool has been pro-
vided.

• An informal security analysis of the proposed protocol
has also been carried out with respect to several security
attributes such as mutual authentication, device privacy,
impersonation attack, replay attack, offline password
guessing attack, many logged-in device attacks, insider
attack, session key agreement, perfect forward secrecy,
etc., and compared with the existing protocols to estab-
lish the supremacy of our work over the existing ones.

• The performance analysis of the proposed work has been
compared with the existing work for computational over-
head, communication overhead, storage overhead and
total computational time. The results of the analysis show
that the proposed protocol outperforms the related work
in this regard.

The remainder of this paper has been structured as fol-
lows: In Sect. 2, related work to the proposed protocol has
been described. In Sect. 3, preliminaries of the ECC have
been summarized. Section 4 describes the methodology
of the proposed protocol. Formal and informal security
analysis of the proposed protocol has been analyzed and
compared with the related protocol with respect to several
security attributes in Sect. 5. In Sect. 6, the performance of
the proposed protocol has been analyzed and compared with
the related protocols to different performance parameters.
Finally, some concluding notes and outline for future direc-
tions have been included in Sect. 7.

2 Related work

Authentication plays an important role for the successful
integration of embedded devices with cloud computing
services. Recently, several authentication protocols have
been proposed for smart devices. Many authentication pro-
tocols based on ECC which apply to smart devices have
been proposed in [8–17]. However, they have their own
merits and demerits. The protocol proposed by Yang et al.
[8] offers mutual authentication and also supports session
key agreement between the user and the server. Afterward,
Yoon et al. [9] analyzed that the protocol [8] does not offer
perfect forward secrecy. Moreover, it gets affected by the
impersonation attack. To overcome these issues, the author
in [9] proposed an improved protocol to provide better secu-
rity. Later, Islam et al. [10] found that the protocol [9] also
fails to provide forward secrecy. Subsequently, the authors
proposed a secure identity-based remote login protocol with
a three-way challenge-response handshake technique. The
protocol in [10] removes the clock synchronization prob-
lems, reduces the computational cost and also provides bet-
ter security than the above protocols. In 2013, Chou et al.
[11] analyzed the protocols [8, 9] and pointed out that users
do not have the appropriate public key in the protocols [8,
9]. Moreover, in [11] the authors developed two ID-based
key agreement protocols for mobile environments based on
ECC. Next, in [12], Farash et al. reviewed the protocol [11]
and found that the protocol [11] is vulnerable to impersona-
tion attack. To overcome the limitations, the author proposed
an enhanced ID-based key exchange protocol. However, the
computational cost of the protocol [12] is higher than that
of the protocol in [11].

Liao et al. [13] proposed an RFID authentication pro-
tocol combined with the ID-verifier transfer scheme. The
authors claimed that their protocol offers mutual authenti-
cation and resist various security attacks. However, Peeters
et al. [14] showed that the protocol [13] does not achieve
mutual authentication and privacy. Moreover, it also gets
affected by server spoofing attack. In 2014, Moosavi et al.
[15] developed a mutual authentication protocol for RFID
system based on ECC. The authors demanded that their
protocol is immune to several attacks. However, Khatwani
et al. [16] analyzed the protocol [15] and proved that the
protocol [15] is affected by a kind of denial-of-service (DoS)
attack, i.e., clogging attack. Abbasinezhad-Mood et al.
[17] proposed a novel ECC-based self-certified two-factor
key management scheme for medical data protection. The
authors have been used ProVerif tool to proof the security
features of their proposed scheme. Moreover, to compute the
execution time, they have implemented the cryptographic
elements on hardware’s. Some other authentication and key
establishment protocols developed in [18, 19] which have

81Journal of Reliable Intelligent Environments (2020) 6:79–94

1 3

been proofed the security features of the protocol by using
ProVerif tool. The efficiency of the both protocols [18, 19]
has been evaluated experimentally by using Advanced RISC
Machines (ARM) platforms.

Meanwhile, many authentication protocols for the IoT
environment have also been proposed. A secure lightweight
mutual authentication protocol for IoT smart home has
been proposed by Alshahrani et al. [20] based on cumula-
tive keyed hash chain. The authors adopt cumulative keyed
hash chain to confirm the identity of the sender. In this pro-
tocol, Automated Validation of Internet Security Protocols
and Applications (AVISPA) and Burrows-Abadi-Needham
(BAN) logic have been used to validate the security of the
protocol. An ECC-based secure authentication protocol with
privacy protection for Industrial Internet of Things (IIoT)
has been developed by Li et al. [21]. The authors presented
a biometric-based authentication with ECC to mitigate the
security flaws. The security of this work has been proved
under random oracle model. Moreover, the work has been
simulated by using NS-3 and the authors claimed that the
protocol is more suitable for IIoT environment. Alcaide et al.
[22] established a decentralized anonymous authentication
scheme for the users in the IoT environment. The scheme
holds some exponentiation operations and is suitable for
powerful platforms. Nevertheless, Lin et al. [23] pointed out
that the adversary can capture the data from data collectors
by impersonating the user. In 2017, a remote-user authentica-
tion protocol by using three factors such as passwords, smart
cards, and biometrics for IoT environments was proposed by
Dhillion et al. [24]. This protocol only uses hash and XOR
operations which are appropriate for the resource-constrained
nodes and devices. The authors proved that it is resistant to
many security attributes such as DoS attack, impersona-
tion attack, stolen smart device attack, and offline password
guessing. To mitigate the security flaws which are shown
in several light weight two-factor or three-factor authentica-
tion and key agreement protocols, Ostad-Sharif et al. [25]
proposed an three-factor authentication and key agreement
protocol for IoT-based Wireless Sensor Network. The formal
security analysis of this protocol has been validated by using
AVISPA tool. The authors claimed that this work is efficient
and appropriate for IoT-based WSN environments.

Based on dynamic reconstruction of metadata, a struc-
ture for preservation of cloud users’ data privacy has been
established by Waqar et al. [26]. The authors also used the
mechanisms of database table splitting, data classification,
and data encryption/decryption for protecting the metadata
stored in cloud’s database. A top-down utility paradigm for
cloud and IoT by using mobile devices and sensor networks
has been established by Distefano et al. [27]. To achieve
efficient communication between the device and cloud, a
framework for integrating the IoT and cloud in a unified
programming model has been proposed by Persson et al.

[28]. Stergiou et al. [29] presented a survey on IoT and cloud
computing by focusing on the security issues of these tech-
nologies. Moreover, the authors integrated both technologies
to determine the common features and to examine the ben-
efits of the combination. Furthermore, the authors proposed
an algorithm to survey the security challenges of the merged
IoT and cloud computing. An authentication scheme was
developed by Chatterjee et al. [30] which uses three-way
approaches for IoT environment based on ECC. The authors
perform the security analysis and claims that their protocol
secure against various cryptographic attack.

Another ECC-based authentication protocol for IoT and
cloud environments has been developed by Kalra et al. [31].
The authors claimed that their protocol offers mutual authen-
tication using the HyperText Transfer Protocol (HTTP)
cookies. Additionally, they proved that the protocol is
resistant to several security attacks. However, Chang et al.
[32] found that the protocol in [31] failed to achieve mutual
authentication and the session key agreement is infeasible.
The authors also tried to overcome the security flaws of
the protocol [31] by establishing an improved authentica-
tion protocol for IoT and cloud environments. Afterward, in
2017, Wang et al. [33] reviewed the protocols [31, 32] and
pointed out that both of the protocols [31, 32] are insecure.
Subsequently, the authors proposed a secure authentication
protocol for IoT networks and ensured the security of their
protocol. However, the protocol in [33] failed to achieve
device privacy and vulnerable to impersonation attack and
many logged-in devices’ attack. Kumari et al. [34] ana-
lyzed and found that the protocol [31] does not offer mutual
authentication, affected by various security attacks and ses-
sion key agreement is infeasible. To overcome these secu-
rity flaws, the authors proposed an improved authentication
protocol for IoT environment based on ECC. However, this
protocol consumes more computational cost and storage cost
as compared to the protocol [31]. In 2018, Bhubaneswari
et al. [35] also analyzed the protocol [31] and showed that
the protocol is vulnerable to several security attacks and
subsequently approached an enhanced mutual authentica-
tion protocol for IoT network. However, this protocol does
not provide mutual authentication and also unable to offer
perfect forward secrecy.

The advantages and disadvantages of the most relevant
authentication schemes to the proposed protocol are sum-
marized in Table 1.

3 Preliminaries

3.1 Elliptic curve cryptography (ECC)

Elliptic curve cryptography is a public key cryptography
technique which depends on the algebraic structure of

82 Journal of Reliable Intelligent Environments (2020) 6:79–94

1 3

elliptic curves over finite fields Zq [36]. Most of the current
cryptographic systems prefer to use ECC to achieve greater
security and efficient computation. The security strength
of the ECC mainly lies in the difficulty involved to solve
the elliptic curve discrete logarithm problem (ECDLP). It
can provide an equivalent level of security as of RSA by
using fewer key bits [36], i.e., the 160-bit elliptic curve key
achieves the equivalent level of security strength as RSA key
size of 1024 bits [37]. A brief overview of ECC is analyzed
below:

The equation of the elliptic curve Eq(a, b) over Zq is writ-
ten as y2 mod q = x3 + ax + b(modq) , where q is a large
prime number and a and b are two constant (a, b ∈ Zq) such
that the condition 4a3 + 27b2 ≠ 0 should be satisfied. Any
point (x, y)∈Eq(a, b),x, y ∈Zq together with O forms an addi-
tive cyclic group Eg = {(x, y) ∈ Eq(a, b)} ∪ {O} , where
O is defined as ‘point at infinity.’ The point multiplication
on the cyclic group is computed by repeated addition, i.e.,

m ⋅ P =

m times

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

P + P ⋅ ⋅ ⋅ ⋅ + P . The further details of the elliptic
curve cryptosystem properties are analyzed in [36].

The computational problems over Eg have been described
below [36, 38, 39]:

Definition 1 (ECDLP: Elliptic Curve Discrete Logarithm
Problem): Given P, Q ∈ Eg , difficult to find an integer m ∈
[1, n − 1], such that Q = m ⋅ P.

Definition 2 (CDHP: Computational Diffie Hellman Prob-
lem): For a, b ∈ [1, n − 1], given P, aP and bP , difficult to
compute abP.

4 The proposed protocol

In this section, a secure authentication protocol based on
ECC has been proposed for the IoT environment. Here,
various phases of the proposed protocol have also been
described. The notations which are used in the proposed
protocol are listed in Table 2.

The operational workflow diagram of the proposed pro-
tocol is presented in Fig. 1. The proposed protocol consists

Table 1 Analysis of relevant authentication protocols

Literature Authentication scheme Advantages Disadvantages

Hafizul et al. [10] An efficient and secure ID-based
remote mutual authentication with
key agreement scheme for mobile
devices on elliptic curve crypto
systems

Removes the clock synchronization
problems

Reduces the computational cost
Resistant to replay, insider, imper-

sonation and many logged-in
device’s attacks

Provides perfect forward secrecy and
achieves mutual authentication

Computational overhead is little high

Liao et al. [13] A secure ECC-based RFID authen-
tication scheme integrated with
ID-verifier transfer protocol

Secure against replay and many
logged-in device’s attacks

Provides perfect forward secrecy

Does not achieves Mutual authentica-
tion

Affected by server spoofing attack
Kalra et al. [31] Secure authentication scheme for

IOT and cloud servers
Resistant to replay attack Failed to achieve mutual authentication

Absence of device anonymity
Chang et al. [32] Notes on secure authentication

scheme for IOT and cloud servers
Secure against replay attack
Achieves mutual authentication
Provides perfect forward secrecy

Vulnerable to password guessing,
impersonation, insider and many
logged-in devices attack

Absence of device anonymity
Wang et al. [33] A secure authentication scheme for

internet of things
Resistant to replay attack.
Achieves mutual authentication
Provides perfect forward secrecy

Failed to achieve device privacy
Affected by impersonation, and many

logged-in devices attack
Kumari et al. [34] A secure authentication scheme

based on elliptic curve cryptogra-
phy for IoT and cloud servers

Secure against replay, password
guessing attack and insider attack

Provides perfect forward secrecy and
achieves mutual authentication

Achieves device privacy

Vulnerable to impersonation, and many
logged-in devices attack

Bhubaneswari et al. [35] Enhanced mutual authentication
scheme for cloud of things

Resistant to replay attack, password
guessing attack and insider attack

Achieves device privacy

Does not achieve Mutual authentication
Affected by impersonation, and many

logged-in devices attack
Fails to provide perfect forward secrecy

83Journal of Reliable Intelligent Environments (2020) 6:79–94

1 3

of two phases: (1) Registration phase and (2) Login and
authentication phase. These phases are described as follows:

4.1 Registration phase

Step 1 (EDi → CS): EDi

1. At the initial stage of the network entry, to register with
the cloud server CS , the embedded device EDi computes
protected identity Ii = H(IDi) and generates a unique
password PWi for each device EDi . Then, it computes
the password verifier PVi = PWi ⋅ P and sends { Ii,PVi }
to CS, where password verifier PVi has been computed
and sends to achieve the device privacy and to prevent
the impersonation attack and many logged-in devices’
attack.

Step 2 (CS → EDi): CS

1. After receiving the registration request, CS stores { Ii
,PVi } and a status bit into a write protected mode as
defined in Table 3. Here, the status bit signifies the cur-
rent status of the device, i.e., when the device is logged
into the server, the status bit is set to one ‘1,’ otherwise
it is set to zero ‘0.’

2. Generates a random number RS and computes the cookie
CK,

3. Calculates the other security parameters as follows:

4. S t o r e s { ETi = Ti ⊕ XCS , EA
�

i
= A

�

i
⊕ RS a n d

EET = ET ⊕ RS } corresponding to Ii of the device EDi in
its database. Here, the security parameters are encrypted
and then stored to avoid the impersonation attack.

5. Afterward, CS sends CK ′ to the embedded device EDi in
a secure channel.

Step 3 EDi

1. After receiving CK ′ , the embedded device stores CK ′ in
its memory.

4.2 Login and authentication phase

Step 1 (EDi → CS): EDi

1. Before every login, it generates a random nonce R1 and
then calculates the values of P1,P2 using the formulas:

2. It encrypts Ii such as, EIi = Ii ⊕ KPV where,
KPV = PVx ⊕ PVy . Here, KPV has been derived by per-
forming the XOR of the ECC point (PVx,PVy) and used
to encrypt the protected identity Ii.

3. Next, it sends the login request with { P1 , P2 , EIi } to the
server.

Step 2 (CS → EDi): CS

1. After receiving the login request, it decrypts Ii by using
KPV and validates by checking Ii to know whether EDi
is a legal device or not. If not, rejects the login request.
If yes, it retrieves the data associated with received Ii
from its database. Then, calculate different parameters
as follows:

CK = H(RS ∥ XCS ∥ ET ∥ Ii)

CK
�

= CK ⋅ P.

Ti = RS ⊕ H(XCS)

Ai = H(RS ⊕ H(XCS)⊕ CK
�

)

A
�

i
= Ai ⋅ P.

P1 = R1 ⋅ PWi ⋅ P

P2 = H(R1 ⋅ PWi ⋅ CK
�

)

Ti = ETi ⊕ XCS

Table 2 Notations used in the proposed protocol

Notations Descriptions

EDi An embedded device
CS The cloud server
IDi The identity of the device EDi

E An elliptic curve equation
Eq(a, b) An elliptic curve, where a and b are two constant
Eg An elliptic curve group over E
P Public point/generator point of the elliptic curve

group with order n such that n ⋅ P = 0

q, n Large prime numbers
Zq A finite field over a large prime number q
PWi Password of device EDi

PVi Password verifier of device EDi , where PVi = PWi ⋅ P

XCS Server’s secret key select from [1, n − 1]

RS Server’s random number
R1,R2 Random numbers select from [1, n − 1]

H() One-way cryptographic hash function
CK Cookie information
ET Expiration time of the Cookie
SK Session key individually generated by EDi and CS

84 Journal of Reliable Intelligent Environments (2020) 6:79–94

1 3

RS = Ti ⊕ H(XCS)

ET = EET ⊕ RS

2. Computes P∗
2
= H(P1 ⋅ CK) and verifies P∗

2

?
=P2.

3. If the above condition is not valid, it discards the mes-
sage; otherwise, it generates a random nonce R2 and
computes the values of P3 , P4 and T ′

i
 as follows:

A
�

i
= EA

�

i
⊕ RS

CK = H(RS ∥ XCS ∥ ET ∥ Ii).

P3 = R2 ⋅ P

P4 = H(P1 ∥ R2 ⋅ A
�

i
)

Fig. 1 The operational flow dia-
gram of the proposed protocol

Table 3 The verifier table with device status bit

Device identity (pro-
tected)

Password verifier Status bit

I1 PV1 = PW1 ⋅ P 0/1
I2 PV2 = PW2 ⋅ P 0/1
I3 PV3 = PW3 ⋅ P 0/1
– – –

85Journal of Reliable Intelligent Environments (2020) 6:79–94

1 3

4. Afterward, CS sends { P3,P4,T
′

i
 } to EDi for authentica-

tion.

Step 3 (EDi → CS): EDi

1. After receiving { P3 , P4 , T
′

i
 }, it calculates Ti = T

�

i
⊕ KPV

and then Ai = H(Ti ⊕ CK
�

).
2. Computes P∗

4
= H(P1 ∥ Ai ⋅ P3) and verifies P∗

4

?
=P4.

3. If above condition is not satisfied, discard the message
{ P3 , P4 , T

′

i
 }; otherwise, EDi authenticates CS and con-

tinues the process.
4. Af te r ward , i t computes the sess ion key

SK = R1 ⋅ PWi ⋅ P3 = R1 ⋅ R2 ⋅ PWi ⋅ P and compute
and sends a verifier Vi = H(SK ∥ R1 ⋅ PWi ⋅ P3) to CS
for authentication.

Step 4 CS

1. After receiving the verifier Vi , it calculates the session
key SK = R2 ⋅ P1 = R1 ⋅ R2 ⋅ PWi ⋅ P.

2. Computes V∗
i
= H(SK ∥ R2 ⋅ P1) and verifies V∗

i

?
=Vi.

3. If the above condition is false, Vi is discarded. Else, CS
authenticates EDi to achieve mutual authentication.

4. After mutual authentication between EDi and CS , the ses-
sion key SK = R1 ⋅ PWi ⋅ P3 = R2 ⋅ P1 = R1 ⋅ R2 ⋅ PWi ⋅ P
is shared between them and all the consequent messages
are transmitted between them by performing XOR oper-
ation with SK.

5 Security analysis

This section presents the attack model to show the capabili-
ties of adversary, formal security verification using Auto-
mated Validation of Internet Security Protocols and Appli-
cations (AVISPA) tools to show the proposed protocol is
secure against various attacks and also analyzes different
security attributes related to the proposed protocol by the
informal security analysis.

5.1 Attack model

Security is the most important part while designing the IoT
model. In order to design attack free and more secure IoT
devices and applications below issues should be addressed
[24]:

• Denial-of-Service attack An adversary may disturb
the network by overloading with the fake messages to
degrade the performance of the network and making ser-

T
�

i
= Ti ⊕ KPV .

vice unavailable. This will help the adversary to make the
resources unavailable to the intended users.

• Eavesdropping attack The adversary may intercept the
messages and read the ongoing communication between
embedded device and cloud server. Subsequently, adver-
sary may store the information and used that to launch
the eavesdropping attack.

• Password guessing attack By using offline dictionary
attack, an adversary can try to guess the password of the
legal device to make feasible the attack.

• Impersonation attack By sending the valid messages of
the previous communications with in the valid entities,
an adversary can impersonate as a legal device.

• Man-in-the-middle attack At the time of live commu-
nication is going on with in two legitimate entities, an
adversary can try to listen it. Later on, he can delete, alter
or delay the transmission messages.

5.2 Formal security verification using AVISPA

The formal security verification of the proposed protocol
through the simulation using the AVISPA [40, 41] tool
has been performed. AVISPA is a push-button tool for
automated validation of internet security protocols, which
is a commonly accepted tool for formal security verifica-
tion [42]. It integrates four back-ends: On-the-fly Model-
Checker (OFMC), Constraint Logic-based Attack Searcher
(CL-AtSe), SAT-based Model-Checker (SATMC) and Tree
Automata based on Automatic Approximations for the Anal-
ysis of Security Protocols (TA4SP). The detailed analyses of
these back-ends are described in [40]. The role oriented lan-
guage such as High-Level Protocol Specification Language
(HLPSL) [40] in AVISPA has been used for implementing
the security protocols. This language contains the basic roles
and composition roles representing each participant role and
the scenarios of basic roles, respectively. An intruder (i) is
modeled by using the Dolev–Yao model [43]. Consequently,
in the protocol run time, the intruder (i) is permitted to act
a legitimate role. In HLPSL, some basic roles, a number of
principals and a number of sessions are defined. The HLP-
SL2IF translator is used to convert HLPSL to intermedi-
ate format (IF). The IF is then used as input to any one of
the four back-ends which produces output format (OF). The
detailed description of the OF is presented in [40].

The proposed protocol is simulated by using the Secu-
rity Protocol Animator for AVISPA (SPAN) [40] under
the OFMC and CL-AtSe back-ends. To check the chance
of a replay attack, both the back-ends verify if the speci-
fied legitimate agents can execute the specified protocol by
performing a search of a passive intruder. The back-ends
provide the intruder (i) about the information of some nor-
mal sessions between the legitimate agents. Subsequently,
both the back-ends also verify if there is any possibility of a

86 Journal of Reliable Intelligent Environments (2020) 6:79–94

1 3

man-in-the-middle attack by the intruder for the Dolev–Yao
model checking. The simulation has been done to show the
proposed protocol is secure and safe against various security
attacks.

The HLPSL code developed for simulation is shown
in Fig. 2, 3 and 4. The simulation results of the analysis
under both back-ends are presented in Fig. 5. The simulation
results ensure that the proposed protocol is safe from replay
and man-in-the-middle attack.

5.3 Informal security analysis

This section analyzes different security attributes related to
the proposed protocol and compares them with the other
related protocols [10, 13, 31–35]. The result of the analysis
is summarized in Table 4.

5.3.1 S1: mutual authentication

In the proposed protocol, during login and authentication
process, cloud server authenticates embedded device by
verifying P∗

2

?
=P2 and V∗

i

?
=Vi . In step 1 of login and authen-

tication phase, the device computes P2 = H(R1 ⋅ PWi ⋅ CK
�

)
which is only computed by a legal device and sends it to the
cloud server. Then, the server computes P∗

2
= H(P1 ⋅ CK)

where, P1 = R1 ⋅ PWi ⋅ P and verifies P∗
2

?
=P2 . Simi-

larly, in step 3 of the login and authentication phase, the
device computes Vi = H(SK ∥ R1 ⋅ PWi ⋅ P3) and sends it
to cloud server. Next, the cloud server verifies V∗

i

?
=Vi to

authenticate embedded device. Also, the device authen-
ticates the cloud server by verifying P∗

4

?
=P4 . In step 2 of

the login and authentication phase, the server computes
P4 = H(P1 ∥ R2 ⋅ A

�

i
) where, A�

i
= Ai ⋅ P and sends it to

device. After this, the device computes P∗
4
= H(P1 ∥ Ai ⋅ P3)

Fig. 2 HLPSL code for role
specification of Edi

 role embedded_device (EDi, CS: agent,SK: symmetric_key, H: hash_func, SND, RCV: channel(dy))

played_by EDi
def=

local State: nat,
IDi, Ii, PWi, PVi, CK, CK1, Rs, XCS, Et: text,
P, R1, R2, P1, P2, P3, P4, PVx, PVy, KPV, EIi, Ti, SK1, Vi: text,
E: hash_func
const s1, s2, ed_cs_r1, cs_ed_r2 : protocol_id
init State := 0
transition
% Registration phase

1. State= 0 /\ RCV (start) =|>
State':=1/\ IDi':=new ()

 /\ PWi':=new ()
 /\ Ii':=H (IDi)

 /\ PVi':= E (PWi'. P)
 /\ secret ({IDi, PWi}, s1, EDi)

 /\ SND ({Ii'. PVi'} _SK)

2. State=1 /\ RCV ({CK'} _SK) =|>
 State':=3 /\ secret ({XCS, Et}, s2, EDi)

% Login and Authentication phase
 /\ R1':= new ()
 /\ Ii':= new ()
 /\ P1':= E (R1'.PWi.P)
 /\ CK1':={{ CK’} _SK} _SK
 /\ P2':= H (R1'.PWi.CK1')
 /\ KPV':= xor(PVx, PVy)
 /\ EIi':= xor(Ii', KPV')
 /\ SND ({P1'. P2'. EIi'} _SK)
 /\ witness (EDi, CS, ed_cs_r1, R1')

3. State= 3 /\ RCV ({Ti'. P3'. P4'} _SK) =|>
 State':= 5 /\ R1':= new ()

 /\ R2':= new ()
 /\ SK1':= E (R1' . E (R2'. E (PWi . P)))

 /\ Vi':= H (SK1' . E (R1' . E (PWi . P3')))
 /\ SND ({Vi'} _SK)
 /\ request (CS, EDi, cs_ed_r2, R2')

end role

87Journal of Reliable Intelligent Environments (2020) 6:79–94

1 3

and verifies P∗
4

?
=P4 to authenticate cloud server. By

observing this process, it is found that above conditions
are satisfied. Hence, it is concluded that the proposed
protocol provides proper mutual authentication. In con-
trast, in the existing protocols [31, 35], the embedded
device cannot compute Ai = H(Ti ⊕ PWi ⊕ CK

�

) and
Ai = H(Bi ⊕ CK

�

⊕ H(S_IDi|PWi)) since it does not have
the knowledge of PWi and Bi . Hence, the verification P∗

4

?
=P4

is not possible. Thus, the protocols [31, 35] failed to provide
the mutual authentication.

5.3.2 S2: replay attack

In the proposed protocol, an adversary may try to capture
the transmission message { P1,P2,Ii } which is transmitted
from device to server. The adversary may login as a legal
device by re-transmitting the captured message to affect the

replay attack. After receiving the login request, the server
will assume that replay attack has been occurred as the status
bit is already set to ‘1’ for the previously logged device. If
it is assumed that by any means adversary impersonates the
legal device, then, after receiving adversary login request,
CS retrieves the data associated to Ii and computes CK and
P∗
2
 . Afterward, CS verifies P∗

2

?
=P2 and delivers { P3,P4 ,

T
′

i
 } to EDi . However, upon receiving the message { P3 , P4 ,

T
′

i
 }, the adversary is unable to calculate Ai = H(Ti ⊕ CK

�

)
without the knowledge of Ti because of the encrypted
Ti where, T �

i
= Ti ⊕ KPV is sent through the channel and

KPV is only computed by EDi and CS . Moreover, it will
not be easy for the adversary to calculate the session key
SK = R1 ⋅ PWi ⋅ P3 = R1 ⋅ R2 ⋅ PWi ⋅ P and the authentication
parameter Vi = H(SK ∥ R1 ⋅ PWi ⋅ P3) . Thus, the proposed
protocol is free from replay attack.

Fig. 3 HLPSL code for role
specification of CS

role cloud_server (EDi, CS: agent, SK: symmetric_key, H: hash_func, SND, RCV: channel (dy))
Played_by CS
def=

local State: nat,
IDi, Ii, PWi, PVi, RS, CK, CK1: text,
XCS, ET, P, R1, R2, P1, P2, P3, P4, Ai, Ai1, EIi, Ti, Ti1, PVx, PVy, KPV, Vi: text,
E: hash_func
const s1, s2, ed_cs_r1, cs_ed_r2: protocol_id
init State := 0
transition
% Registration phase

1. State=0 /\ RCV ({Ii'. PVi'} _SK) =|>
 State':=2 /\ secret ({IDi, PWi}, s1, EDi)

 /\ RS’:= new ()
 /\ CK’:= H (RS’. XCS . ET . Ii')
 /\ CK1':= E (CK’. P)
 /\ secret ({XCS, ET}, s2, CS)

 /\ SND ({CK1'} _SK)
% Login and Authentication phase

2. State= 0/\ RCV (P1’. P2’. EIi') =|>
 State':= 4 /\ R2’:=new ()

 /\ RS’:=new ()
)(wen=:’KC\/

 /\ P3’:= E (R2’. P)
 /\ Ai’:= H (xor(xor(RS', H(XCS)), CK'))
 /\ Ai1':= E (Ai'. P)

 /\ P4’:= H (P1'. E (R2'. Ai1'))
 /\ KPV':= xor(PVx, PVy)
 /\ Ti’:= xor(RS, H(XCS))
 /\ Ti1':= xor(Ti', KPV')
 /\ SND (P3'.P4 .Ti1')

 /\ witness (CS, EDi, cs_ed_r2, R2')

3. State= 4/\ RCV ({Vi'} _SK) =|>
 State’:=6 /\ R1’:=new ()

 /\ R2’:=new ()
 /\ P1’:=new ()
 /\ SK’:= E (R1’. E (R2’. E (PWi . P)))
 /\ Vi’:= H (SK’. E (R2’. P1'))

 /\ request (EDi, CS, ed_cs_r1, R1')
end role

88 Journal of Reliable Intelligent Environments (2020) 6:79–94

1 3

5.3.3 S3: password guessing attack

The password guessing attack is a vital problem in any pass-
word based secure authentication scheme. In the proposed
protocol, the password verifier PVi = PWi ⋅ P is stored in
the server in a write protected file and it is difficult for the
adversary to retrieve the password PWi from PVi due to the
hard of ECDLP. Hence, the password guessing attack is not
possible in the proposed protocol. In contrast, in the existing

protocol [24], the adversary retrieves a password PWi in a
following manner;

Assume that EDi ’s password is PW1 and it is used to cal-
culate A∗

i
= H(Ti ⊕ PW1 ⊕ CK

�

) . Next, P∗
4
= P3 ⋅ A

∗
i
 is com-

puted and the condition P∗
4

?
=P4 is verified to find the correct

value of PW1 . If the condition is satisfied, the adversary will
consider PWi = PW1 . Otherwise, the process will continue
till the adversary obtains the proper password PWi . Similar
process can be followed for the protocol [32] to obtain the

Fig. 4 HLPSL code for role
specification of session, goal
and environment

role session (EDi, CS: agent, SK: symmetric_key, H:hash_func)
def=

local SE, RE, SC, RC: channel(dy)
composition

embedded_device (EDi, CS, SK, H, SE, RE)
/\ cloud_server (EDi, CS, SK, H, SC, RC)

end role
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
role environment()
def=

const edi, cs:agent,
sk: symmetric_key,
f: hash_func,
p1, p2, p3, p4, ti, eii, vi: text,
s1, s2, ed_cs_r1, cs_ed_r2: protocol_id

 intruder_knowledge = {edi, cs, f, p1, p2, eii, p3, p4, ti, vi}

composition
session(edi, cs, sk, f)

 /\ session (i, cs, sk, f)
 /\ session (edi, i, sk, f)
end role
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
goal

secrecy_of s1
secrecy_of s2
authentication_on ed_cs_r1
authentication_on cs_ed_r2

end goal
environment ()

Fig. 5 The simulation results
of the proposed protocol using
OFMC and CL-AtSe back-ends

% OFMC
% Version of 2006/02/13
SUMMARY
 SAFE
DETAILS
 BOUNDED_NUMBER_OF_SESSIONS
PROTOCOL
 /home/span/span/testsuite/results/Proposed_IoT.if
GOAL
 as_specified
BACKEND
 OFMC
COMMENTS
STATISTICS
 parseTime: 0.00s
 searchTime: 0.26s
 visitedNodes: 244 nodes
 depth: 4 plies

SUMMARY
 SAFE

DETAILS
 BOUNDED_NUMBER_OF_SESSIONS
 TYPED_MODEL

PROTOCOL
 /home/span/span/testsuite/results/Proposed_IoT.if

GOAL
 As Specified

BACKEND
 CL-AtSe

STATISTICS

 Analysed: 0 states
 Reachable: 0 states
 Translation: 0.01 seconds
 Computation: 0.00 seconds

89Journal of Reliable Intelligent Environments (2020) 6:79–94

1 3

password PWi . Hence, these protocols can get affected by
password guessing attack.

5.3.4 S4: device privacy

To ensure the privacy of the device, the identity of the device
should not be transmitted directly without protection. In the
login and authentication phase of the proposed protocol,
device transmits { P1 , P2 , EIi } to the server. Here, EIi is the
encryption version of protected identity Ii i.e. EIi = Ii ⊕ KPV ,
where, KPV = PVx ⊕ PVy . Moreover, KPV is calculated from
PV which is difficult to calculate by an adversary due to
the fact that PV is never transmitted through any messages
in the login and authentication phase. Therefore, the pro-
posed protocol preserves the device privacy. However, in the
existing protocols [31, 33], the identity of the device IDi is
transmitted directly from EDi to CS through the login request
message { P1 , P2 , IDi } during login and authentication phase.
Thus, these protocols fail to preserve device privacy.

5.3.5 S5: insider attack

Insider attack can occur when a privileged insider steals the
password from the server’s information to use it for access-
ing other servers (where the device is previously registered
with the same information) by making a login request. In the
proposed protocol, a password verifier table has been main-
tained which contains protected device identity Ii , password
verifier PVi = PWi ⋅ P and a status bit. The retrieval of the
password PWi from the password verifier PVi is impossible
due to the hard of ECDLP. Hence, the proposed protocol
prevents the insider attack. In the existing protocols [31,
32], password PWi is generated by CS for every EDi during
the registration phase. Consequently, the insider of CS eas-
ily gets the password PWi which can be misused. Hence, the
protocols [31, 32] are vulnerable to insider attack.

5.3.6 S6: man‑in‑the‑middle attack

In the proposed protocol, due to the achievement of mutual
authentication between EDi and CS , man-in-the-middle
attack is not feasible. However, the existing protocols [13,
14, 35] do not achieve mutual authentication. Thus, man-in-
the-middle attack is feasible for the existing protocols [13,
14, 35].

5.3.7 S7: impersonation attack

If the adversary accesses the security parameters stored in
the server, the impersonate attack takes place. In the pro-
posed protocol, the server stores { PVi , ETi = Ti ⊕ XCS ,
EA

�

i
= A

�

i
⊕ RS and EET = ET ⊕ RS } corresponding to Ii of

the device EDi in its database. Let us assume that the server
compromises the stored value. Under this situation also the
adversary cannot access the values of { Ti , A

′

i
 , ET } because

these are protected by the random nonce RS and the secret
key XCS of the cloud server and PVi is stored with a status bit
in a write protected mode. Moreover, without knowing the
value of { Ti , A

′

i
 , ET }, RS and XCS , it is impossible to obtains

the cookie CK = H(RS ∥ XCS ∥ ET ∥ Ii) to validate the login
request. Furthermore, it is not possible to communicate fur-
ther for authentication. Therefore, the proposed protocol is
immune to impersonation attack. In contrast, in the existing
protocol [31], during registration process, the cloud server
stores { A′

i
 , Ti , IDi and ET } in its database. If the server com-

promises these values, the adversary can impersonate as
server as follows: In the login and authentication process,
the adversary intercepts the login request message { P1 , P2 ,
IDi }. Then, it retrieves the values associated with IDi from
the captured values. Afterward, the adversary selects a ran-
dom number Rx , computes P3x = Rx ⋅ P and P4x = Rx ⋅ A

�

i

and subsequently sends{P3x , P4x , Ti } to EDi . Upon receiv-
ing { P3x , P4x , Ti }, device EDi would calculate P∗

4x
= Ai ⋅ P3x .

Since, P∗
4x
= Ai ⋅ P3x = Ai ⋅ Rx ⋅ P = Rx ⋅ A

�

i
= P4x , device

Table 4 Security comparison
of the proposed protocol with
other existing protocols

Yes: prevents the attack or supports a specific attribute; No: unable to prevent the attack or does not sup-
port an attribute; —: not applicable in a protocol

Reference protocols Security attributes

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

Hafizul et al. [10] Yes Yes – Yes Yes Yes Yes Yes Yes Yes
Liao et al. [13] No Yes – Yes – No No Yes Yes Yes
Kalra et al. [31] No Yes No No No No No No No No
Chang et al. [32] Yes Yes No No No Yes No No Yes Yes
Wang et al. [33] Yes Yes – No – Yes No No Yes Yes
Kumari et al. [34] Yes Yes Yes Yes Yes Yes No No Yes Yes
Bhubaneswari
et al. [35]

No Yes Yes Yes Yes No No No No No

Proposed protocol Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

90 Journal of Reliable Intelligent Environments (2020) 6:79–94

1 3

will confirm that it is connected to the legal server. Thus, it
is easy for the adversary to impersonate as server. By follow-
ing the similar process, it can be said that the impersonation
attack is feasible for the protocols [32–35].

5.3.8 S8: many logged‑in device’s attack

If the identity and password of the legal devices are exposed
by any means to many adversaries, then, by using that infor-
mation the adversaries can access the account of the legal
device resulting in many logged-in devices’ attack. In the
proposed system, many adversaries can try to access the
account by using the proper identity and password of the
legal device but only a single adversary can access the
account. This is due to the fact that when a device logs in,
the status bit is set to ‘1.’ In the meantime, if other adversar-
ies use the same information to log into the server, then the
server rejects the attempt because the status bit indicates that
some device is already logged in. Hence, the proposed pro-
tocol is free from many logged-in devices’ attack. However,
for the protocols [10, 31–35], if the identity and password
are leaked, they are unable to prevent the many logged-in
devices’ attack as they have not included the concept of set-
ting the login status of the logged device.

5.3.9 S9: session key agreement

In the proposed protocol, during the authentication process,
the device and the server individually generates the session
key SK = R1 ⋅ PWi ⋅ P3 = R2 ⋅ P1 = R1 ⋅ R2 ⋅ PWi ⋅ P and
shares it. Since the computation of the session key depends
on the device password PWi and the random nonce R1 and
R2 , it is impossible for the adversary to compute the session
key. Thus, the session key agreement is achieved properly.
However, in the existing protocol [31] the computation of
session key SK = H(XCS ∥ IDi ∥ R1 ∥ R2) is not possible due
to the fact that neither EDi has the knowledge of R2 and XCS
nor CS has the knowledge of R1 . Correspondingly, in the
protocol [35], the verification V∗

i

?

=
Vi is false and hence ses-

sion key cannot be generated. Thus, the session key agree-
ment is not feasible in the protocols [31, 35].

5.3.10 S10: perfect forward secrecy

Perfect forward secrecy indicates that the session keys
should not be affected by the adversary even if the device’s
password PWi and the cloud server’s secret key XCS
are exposed. In the proposed protocol, the session key
SK = R1 ⋅ PWi ⋅ P3 = R2 ⋅ P1 = R1 ⋅ R2 ⋅ PWi ⋅ P has been
generated by the device and the server individually. Assum-
ing the adversary has the knowledge of PWi and XCS , it is
impossible to generate the session key because it requires

random nonce R1 and R2 . If the adversary tries to retrieve
R1 and R2 from the pair (P1 , P2) = (R1 ⋅ PWi ⋅ P , R2 ⋅ P), it
is difficult to find due to the hard of CDHP. Therefore, the
proposed protocol achieves perfect forward secrecy. In con-
trast, the protocols [31, 35] cannot achieve perfect forward
secrecy because session key agreement is not feasible as
mentioned in S8.

6 Performance analysis

In this section, the performance of the proposed protocol has
been analyzed and compared with the existing related pro-
tocols [10, 13, 31–35] with respect to computational over-
head, bandwidth consumption, storage overhead and total
computational time.

6.1 Computational overhead

A comparison of the computational overhead of the pro-
posed protocol with the existing related protocols is pre-
sented in Table 5. Since, in an authentication protocol, the
login and authentication phase is executed more frequently
as compared to other phases, only this phase has been con-
sidered for the purpose of calculation. In this regard, TH ,
TEPM and TECA have been denoted as the computational time
of hash operation, elliptic curve point multiplication and
elliptic curve point addition, respectively. During calcula-
tion, the computational overhead of some lightweight opera-
tions such as XOR, concatenation, comparison, etc., have
been ignored because of their insignificant impact as com-
pared to other operations.

From Table 5, it is found that the computational overhead
of the proposed protocol is lesser than the related protocols
[10, 32, 33]. However, the computational overhead of the
proposed protocol is little higher than the protocols [13, 31,
34, 35]. This is due to the fact that, the proposed protocol
achieves forward secrecy through the session key agreement
between embedded device and cloud server which is not
feasible in the protocol [31, 35]. Moreover, the proposed
protocol adopts password verifier and uses more security
function to avoid some of the security flaws which are cannot
prevent by the protocol [13].

6.2 Communication overhead

Bandwidth consumption is the essential measure of com-
munication overhead. Bandwidth consumption of the pro-
posed protocol is equivalent to the total size of the login
and authentication messages. For calculating the size of the
login and authentication messages, the length of following
parameters has been assumed:

91Journal of Reliable Intelligent Environments (2020) 6:79–94

1 3

• The length of the each of the random nonce (R1,R2,Rs) is
160 bits.

• The length of device identity IDi is 160 bits.
• The length of the each of the security parameters { CK ′ ,

T
′

i
 , Vi } is 160 bits.

• The length of the output of hash function (SHA-1) [44]
is 160 bits.

• Since the security strength of 160 bit ECC is equivalent
to 1024 bit RSA cryptosystem [37, 45], an ECC point
P = (Px,Py) needs (160 + 160) = 320 bits [46].

The calculation of the size of the login and authentica-
tion messages of the proposed protocol has been analyzed
bellow:

Message 1 = P1 ∥ P2 ∥ EIi = 320 + 320 + 160 = 800 bits
Message 2 = P3 ∥ P4 ∥ T

�

i
 = 320 + 320 + 160 = 800 bits

Message 3 = Vi = 160 bits
Therefore, bandwidth consumption of the proposed pro-

tocol is:
Bandwidth =

∑3

i=1
Message(i) = 1760 bits.

The bandwidth consumption of the proposed protocol and
the related protocols [10, 13, 31–35] is presented in Table 6.

Table 6 shows that the bandwidth consumption of the pro-
posed protocol is the same as the related protocols [31–35]
and little larger than the protocols [10, 13]. Hence, the pro-
posed protocol has equivalent communication overhead as
compared to the protocols [31–35] and competitive value
with the protocols [10, 13].

6.3 Storage overhead

In this section, the storage overhead of the proposed protocol
and some related protocols has been presented and com-
pared. Here, the storage overhead of the embedded device
has been considered for the purpose of calculation since
it has minute memory as compared to the server memory.
In the proposed protocol, the cookie CK ′ is stored in the
embedded device (EDi). The memory required by the EDi
to store the cookie CK ′ is 320 bits. Similarly, in the proto-
cols [31, 33] the EDi stores CK ′ = 320 bits in its memory.

However, in the protocol [32], the EDi stores { CK ′ , H(PWi)

} = 320 + 160 = 480 bits in its memory. Correspondingly,
in the protocols [10] and [13], the device stores 1120 bits
and 480 bits, respectively [31]. Comparison of the storage
overhead of the embedded device of the proposed protocol
with respect to the related protocols is illustrated in Table 7
and Fig. 6.

Figure 6 shows that the storage overhead of the embedded
device in the proposed protocol is equivalent to the stor-
age overhead of the protocols [31, 33, 35]. Moreover, the
memory required by the embedded device in the proposed
protocol is much lesser than the protocols [10, 13, 32, 34].

6.4 Computational time

The total computational time of the proposed protocol and
the other related protocols is presented in Fig. 7. Here, the
simulation has been performed by using MATLAB 2015a
environment.

From Fig. 7 it is noticed that the computational time of the
proposed protocol is little larger than the protocols [31–35]
which consumes 465.39 s. This is due to the fact that the
proposed protocol adopts the concept of password verifier

Table 5 Computational
overhead of the proposed
protocol and related protocols

Protocols Login and authentication phase Total

Embedded device Cloud server

Hafizul et al. [10] 3TH + 2TECA + 3TEPM 3TH + 2TECA + 4TEPM 6TH + 4TECA + 7TEPM

Liao et al. [13] 2TECA + 3TEPM 5TECA + 3TEPM 7TECA + 6TEPM

Kalra et al. [31] 4TH + 3TEPM 5TH + 4TEPM 9TH + 7TEPM

Chang et al. [32] 5TH + 4TEPM 5TH + 4TEPM 10TH + 8TEPM

Wang et al. [33] 5TH + 4TEPM 6TH + 4TEPM 11TH + 8TEPM

Kumari et al. [34] 3TH + 4TEPM 4TH + 4TEPM 7TH + 8TEPM

Bhubaneswari et al. [35] 3TH + 4TEPM 5TH + 4TEPM 8TH + 8TEPM

Proposed protocol 4TH + 4TEPM 5TH + 4TEPM 9TH + 8TEPM

Table 6 Bandwidth consumption of the proposed protocol and related
protocols

Protocols Bandwidth consumption

Number of mes-
sages

Number of bits

Hafizul et al. [10] 3 1440
Liao et al. [13] 3 1280
Kalra et al. [31] 3 1760
Chang et al. [32] 3 1760
Wang et al. [33] 3 1760
Kumari et al. [34] 3 1760
Bhubaneswari et al. [35] 3 1760
Proposed protocol 3 1760

92 Journal of Reliable Intelligent Environments (2020) 6:79–94

1 3

with the status bit and also uses some more security param-
eters to protect the system from various security attacks such
as impersonation attack, device privacy, password guessing
attack, insider attack, many login device’s attack and provide
perfect forward secrecy as well as achieves proper mutual
authentication which the protocols [31–35] cannot prevent.
Hence, it can be said that the proposed protocol achieves
greater security than the protocols [31–35] with the competi-
tive computational time.

6.5 Discussion

The overall outcomes of the above analysis have been sum-
marized below:

Table 7 Comparison of storage overhead of the proposed protocol
with related protocols

Protocols Storage
overhead
(bits)

Hafizul et al. [10] 480
Liao et al. [13] 1120
Kalra et al. [31] 320
Chang et al. [32] 480
Wang et al. [33] 320
Kumari et al. [34] 480
Bhubaneswari et al. [35] 320
Proposed protocol 320

Fig. 6 Comparative storage
overhead

Fig. 7 Total computational time of the proposed protocol and the related protocols

93Journal of Reliable Intelligent Environments (2020) 6:79–94

1 3

1. The proposed protocol achieves mutual authentication
where the protocol [31] does not.

2. The proposed protocol attains better security than the
related protocols [10, 13, 31–35].

3. The proposed protocol outperforms the protocols [10,
32, 33] in terms of computational overhead. The pro-
posed protocol is also superior to the protocols [10, 13,
32, 34] as far as the storage overhead is concerned. How-
ever, the computational overhead of the proposed pro-
tocol is little higher than the protocols [13, 31, 34, 35]
because the proposed protocol attains forward secrecy
through the session key agreement between EDi and CS
which is not feasible in the protocols [31, 35] and also
achieves better security than the protocols [13, 31, 34,
35].

4. The proposed protocol consumes little more time than
the related existing protocols [31–35] for the total
computation. The reason is that the proposed protocol
employs a password verifier and some additional secu-
rity parameters to defend several attacks which the pro-
tocols [31–35] are unable to prevent.

5. Overall, our proposed protocol outperforms the related
protocols [10, 13, 31–35] in all respect.

7 Conclusions and future work

In this work, an ECC-based mutual authentication and
security protocol has been proposed for the IoT and cloud
servers. Earlier related existing authentication protocols for
the IoT and cloud servers failed to provide the necessary
security requirements as required. Simulation for the formal
security analysis of the proposed protocol using AVISPA
tool ensures that the protocol is safe and secure from various
security attacks. Moreover, the informal security analysis of
the present work shows that the proposed protocol attains
higher security than the related protocols [10, 13, 31–35].
The performance analysis of the present work finds that the
computational overhead of the proposed protocol is lesser
than the protocols [10, 32, 33]. Furthermore, the commu-
nication and storage overhead of the proposed protocol is
equivalent to the protocols [31–35] and [31, 33, 35], respec-
tively, and also needs much lesser storage overhead than the
protocols [10, 13, 32, 34]. However, the total computational
time and the computational overhead of the proposed pro-
tocol are little larger than the protocols [31–35] and [13, 31,
34, 35], respectively. Hence, it can be concluded that our
proposed protocol is capable enough to provide an improved
secure mutual authentication model for IoT and cloud server
environments.

In the future, our work can be extended toward the fur-
ther improvement of the total computational time and the
computational overhead of the proposed protocol without

sacrificing the level of security. We would also like to derive
the behavior and reliability model for the proposed protocol
so that the users could have prior knowledge about the sys-
tem behaviors and reliabilities before using the model. The
proposed protocol can be applicable to any IoT industries,
where the data security and the authentication are the prime
important part of the integration of embedded devices and
cloud servers.

References

 1. Atzori L, Lera A, Morabito G (2010) The Internet of Things: a
survey. Comput Netw 54:2787–2805

 2. Al-Fuqaha A, Guizani M, Mohammadi M, Aledhari M, Ayyash
M (2015) Internet of Things: a survey on enabling technolo-
gies, protocols, and applications. IEEE Commun Surv Tutor
17(4):2347–2376

 3. Kouicem DE, Bouabdallah A, Lakhlef H (2018) Internet of Things
security: a top-down survey. Comput Netw 141:199–221

 4. Botta A, Donato WD, Persico V, Pescape A (2016) Integration of
cloud computing and Internet of things: a survey. Future Gener
Comput Syst 56:684–700

 5. Sascha M, Sebastian W (2008) Secure communication in micro-
computer bus systems for embedded devices. J Syst Archit
54:1065–1076

 6. Debiao H, Sherali Z (2015) An analysis of RFID authentication
schemes for Internet of Things in healthcare environment using
elliptic curve cryptography. IEEE Internet Things J 2(1):72–83

 7. Afreen R, Mehrotra SC (2011) A review on elliptic curve cryp-
tography for embedded systems. J Comput Sci Inf Technol
3(3):84–103

 8. Yang J, Chang C (2009) An ID-based remote mutual authentica-
tion with key agreement protocol for on elliptic curve cryptosys-
tem. Comput Secur 28:138–143

 9. Yoon EJ, Yoo KY (2009) Robust ID-based remote mutual authen-
tication with key agreement protocol for mobile devices on ECC.
In: Proceedings of the international conference on computational
science and engineering, pp 633–640

 10. Hafizul SK, Biswas GP (2011) A more efficient and secure ID-
based remote mutual authentication with key agreement scheme
for mobile devices on elliptic curve crypto systems. J Syst Softw
84(11):1892–1898

 11. Chou CH, Tsai KY, Lu CF (2013) Two ID-based authenticated
schemes with key agreement for mobile environments. J Super-
comput 66(2):973–988

 12. Farash MS, Attari MA (2014) A secure and efficient identity-
based authenticated key exchange protocol for mobile client–
server networks. J Supercomput 69:395–411

 13. Liao YP, Hsiao CM (2014) A secure ECC-based RFID authentica-
tion scheme integrated with ID-verifier transfer protocol. Ad Hoc
Netw 18:133–146

 14. Peeters R, Hermans J (2013) Attack on Liao and Hsiao’s Secure
ECC based RFID authentication scheme integrated with ID-veri-
fier transfer protocol. Cryptology ePrint Archive. Report 2013/399

 15. Moosavi SR, Nigussie E, Virtanen S, Isoaho J (2014) An ellip-
tic curve-based mutual authentication scheme for RFID implants
systems. Procedia Comput Sci 32:198–206

 16. Khatwani C, Roy S (2015) Security analysis of ECC based authen-
tication protocols. In: Proceedings of ieee international conference
on computational intelligence and communication networks, pp
1167–1172

94 Journal of Reliable Intelligent Environments (2020) 6:79–94

1 3

 17. Abbasinezhad-Mood D, Nikooghadam M (2018) Efficient
design of a novel ECC-based public key scheme for medical
data protection by utilization of NanoPi fire. IEEE Trans Reliab
67(3):1328–1339

 18. Abbasinezhad-Mood D, Nikooghadam M (2018) Efficient anony-
mous password-authenticated key exchange protocol to read iso-
lated smart meters by utilization of extended chebyshev chaotic
maps. IEEE Trans Ind Inf 4(11):4815–4828

 19. Abbasinezhad-Mood D, Ostad-Sharif A, Nikooghadam M (2019)
Novel anonymous key establishment protocol for isolated smart
meters. IEEE Trans Ind Electron 67(4):2844–2851

 20. Alshahrani M, Traore I (2019) Secure mutual authentication and
automated access control for IoT smart home using cumulative
Keyed-hash chain. J Inf Secur Appl 45:156–175

 21. Li X, Niu J, Bhuiyan MZA, Wu F, Karuppiah M, Kumari S (2018)
A robust ECC based provable secure authentication protocol with
privacy preserving for Industrial Internet of Things. IEEE Trans
Ind Inf 14(8):3599–3609

 22. Alcaide A, Palomar E, Montero-Castillo J, Ribagorda A (2013)
Anonymous authentication for privacy-preserving IoT target-
driven applications. Comput Secur 37:111–123

 23. Lin X-J, Sun L, Qu H (2015) Insecurity of an anonymous authen-
tication for privacy-preserving IoT target-driven applications.
Comput Secur 48:142–149

 24. Dhillon PK, Kalra S (2017) Secure multi-factor remote user
authentication scheme for Internet of Things environments. Int J
Commun Syst 6:e3323

 25. Ostad-Sharif A, Arshad H, Nikooghadam M, Abbasinezhad-Mood
D (2019) Three party secure data transmission in IoT networks
through design of a lightweight authenticated key agreement
scheme. Future Gener Comput Syst 100:82–892

 26. Waquar A, Raza A, Abbas H, Khan MK (2013) A framework for
preservation of cloud users’ data privacy using dynamic recon-
struction of metadata. J Netw Comput Appl 36:235–248

 27. Distefano S, Merlino G, Puliafito A (2015) A utility paradigm for
IoT: the sensing cloud. Pervasive Mob Comput 20:127–144

 28. Persson P, Angelsmark O (2015) Calvin—merging cloud and IoT.
Procedia Comput Sci 52:210–217

 29. Stergiou C, Psannis KE, Kim B-G, Gupta B (2018) Secure inte-
gration of IoT and cloud computing. Future Gener Comput Syst
78:964–975

 30. Chatterjee S, Samaddar SG (2020) A robust lightweight ECC-
based three-way authentication scheme for IoT in cloud. In: Elçi
A, Sa P, Modi C, Olague G, Sahoo M, Bakshi S (eds) Smart
computing paradigms: new progresses and challenges Advances
in intelligent systems and computing, vol 767. Springer, Singapore

 31. Kalra S, Sood SK (2015) Secure authentication scheme for IOT
and cloud servers. Pervasive Mob Comput 24:210–223

 32. Chang C-C, Wu H-L, Sun C-Y (2017) Notes on secure authentica-
tion scheme for IOT and cloud servers. Pervasive Mob Comput
38:275–278

 33. Wang K-H, Chen C-M, Fang W, Wu T-Y (2017) A secure authen-
tication scheme for internet of things. Pervasive Mob Comput
42:15–26

 34. Kumari S, Karuppiah M, Das AK (2018) A secure authentication
scheme based on elliptic curve cryptography for IoT and cloud
servers. J Supercomput 74:6428–6453

 35. Bhubaneswari S, Ananth NV (2018) Enhanced mutual authen-
tication scheme for cloud of things. Int J Pure Appl Math
119(15):1571–1583

 36. Hankerson D, Menezes A, Vanstone S (2004) Guide to elliptic
curve cryptography. Springer, New York

 37. Mahto D, Khan DA, Yadav DK (2016) Security analysis of elliptic
curve cryptography and RSA. In: Proceedings of the world con-
gress on engineering, pp 1–4

 38. Wu F, Xu L, Kumari S, Li X (2018) An improved and provably
secure three-factor user authentication scheme for wireless sensor
networks. Peer-to-Peer Netw Appl 11(1):1–20

 39. Panda PK, Chattopadhyay S (2019) An improved authentication
and security scheme for LTE/LTE-a networks. J Ambient Intell
Hum Comput. https ://doi.org/10.1007/s1265 2-019-01248 -8

 40. Vigano L (2006) Automated security protocol analysis with the
AVISPA tool. Electron Notes Theor Comput Sci 155:61–86

 41. [Online]. AVISPA: automated validation of internet security pro-
tocols and applications. Accessed Jan (2018). http://www.avisp
aproj ect.org/

 42. Wazid M, Das AK, Odelu V, Kumar N, Conti M, Jo M (2018)
Design of secure user authenticated key management protocol for
generic IoT networks. IEEE Internet Things J 5(1):269–282

 43. Dolev D, Yao AC (1983) On the security of public key protocols.
IEEE Trans Inf Theory 29(2):198–208

 44. Secure hash standard (1995) Nat. Inst. Standards Technol. (NIST),
USA, Tech. Rep. FIPS PUB: 180-1

 45. Panda PK, Chattopadhyay S (2019) A modified PKM environment
for the security enhancement of IEEE 802.16e. Comput Standard
Interface 61:107–120

 46. Challa S, Wazid M, Das AK, Kumar N, Reddy AG, Yoon E-J,
Yoo K-Y (2017) Secure signature based authenticated key estab-
lishment scheme for future IOT applications. IEEE Access
5:3028–3043

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1007/s12652-019-01248-8
http://www.avispaproject.org/
http://www.avispaproject.org/

	A secure mutual authentication protocol for IoT environment
	Abstract
	1 Introduction
	2 Related work
	3 Preliminaries
	3.1 Elliptic curve cryptography (ECC)

	4 The proposed protocol
	4.1 Registration phase
	4.2 Login and authentication phase

	5 Security analysis
	5.1 Attack model
	5.2 Formal security verification using AVISPA
	5.3 Informal security analysis
	5.3.1 S1: mutual authentication
	5.3.2 S2: replay attack
	5.3.3 S3: password guessing attack
	5.3.4 S4: device privacy
	5.3.5 S5: insider attack
	5.3.6 S6: man-in-the-middle attack
	5.3.7 S7: impersonation attack
	5.3.8 S8: many logged-in device’s attack
	5.3.9 S9: session key agreement
	5.3.10 S10: perfect forward secrecy

	6 Performance analysis
	6.1 Computational overhead
	6.2 Communication overhead
	6.3 Storage overhead
	6.4 Computational time
	6.5 Discussion

	7 Conclusions and future work
	References

