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Abstract
As intelligent systems are increasingly entering everyday life, in domains such as transportation, resource distribution,
health care, or retail, developing suitable verification mechanisms for such systems becomes vital. From a formal point of
view, the employed intelligent sensor actuator systems (ISAS) constituting such intelligent systems combine three different
technologies: control systems, distributed systems, and learning and reasoning. While each of the parent domains features
tested and proven verification methods, simply combining the tasks unfortunately leads to a combinatorial explosion of
complexity. This paper presents an overview and classification of currently employed techniques for handling ISAS in terms
of: cyber-physical systems, intelligent autonomous robots, or intelligent agents. The article argues that each of the three
classical perspectives misses one important characteristic of ISAS and proposes to combine the three for a full solution. The
paper argues that in particular twomechanisms are promising: an intelligent environments perspective that verifies local safety
and techniques for context-aware monitoring that allow a mobile system to leverage context-awareness to reduce complexity
for self-monitoring tasks.
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1 Introduction

The last decade for the first time had hardware widely avail-
able thatwas sufficient for runningArtificial Intelligence (AI)
algorithms in end-user applications. Moreover, the prolifer-
ation of networked computing technologies equipped with
sensors throughout all segments of the population, from chil-
dren to retirees, in the form of smart phones, has led for the
first time to large amounts of freely available and represen-
tative data repositories sufficient to train machine learning
classifiers applicable to a majority of the whole population.

A wealth of novel technologies has resulted from this sit-
uation with several common features: systems are equipped
with sensors and network access and provide their services
to users dependent on what is appropriate in a context.
Experimentally but also increasingly with commercial pro-
totypes, smart environment technologies enter safety-critical
domains traditionally reserved to systems tested with the
closest scrutiny, such as the electricity grid (smart grid), the
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transportation system (autonomous vehicles and smart city
infrastructures), and even the health care system (smart hos-
pitals and ambient assisted living). The majority of earlier
successful applications involving machine learning tech-
nologies, such as spam filters, location-aware recommender
systems, and even factory robots were not safety critical, at
least not on a geographic scale. With increasing proliferation
of the new technologies, however, consumers and citizens
are increasingly willing to trust such intelligent sensor–
actuator systems (ISAS), even with their life, as in the case of
autonomous vehicles or smart hospitals. ISASmanufacturers
and associated stakeholders, such as the automobile industry,
cities, or the insurance industry, are struggling with the diffi-
cult task to navigate between consumer/citizen convenience
and trust, on the one hand, and questions of predictability
and consequently responsibility and liability, on the other
hand. From the perspective of safety, ISAS pose considerable
opportunities, e.g., to make driving safer by detecting and
reacting to driver fatigue, or to reduce energy consumption,
but challenges are major: ranging from concrete practical
questions regarding the distribution of liability betweenman-
ufacturers and consumers/citizens to fundamental questions
regarding the responsibility for AI systems.
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A key role in this discussion is played by the question
whether complex robotic AI systems operating within the
complexity of everyday life such as autonomous vehicles
are verifiable at all. This paper surveys the different possi-
ble strategies to approach the verification of ISAS to resolve
this question. We show that none of the conventional strate-
gies are applicable per se, as each is missing one different
crucial component, and that a combination of techniques is
needed that can carefully avoid scalability issues. We argue
that a promising approach is to combine a perspective of
verification of intelligent environments with a novel type of
self-monitoring context-aware mobile AI systems.

Structure of the Article We present a classification of dif-
ferent approaches to ISAS verification (Sect. 2), in general,
and where possible make reference to autonomous trans-
port, in particular. Autonomous vehicles are of particular
importance, given their power to cause fatalities. We out-
line that each type of approach misses a different aspect of
the complex problem. In Sect. 3, we discuss the verification
of algorithms generated by machine learning and reason-
ing. We finally show how the high complexity problem of
general verification of autonomous vehicles can be broken
down spatiotemporally, so as to become a problem solvable
in a piecewise manner (Sect. 4). We discuss the result and
its ethical ramifications in Sect. 5. We argue that a key to a
successful transition into the age of ISAS is to create more
human-like intelligent systems while at the same time avoid-
ing anthropomorphizing AI systems. In conclusion (Sect. 6),
we argue that verification of ISAS is a solvable problem if
it is not seen purely as a computer engineering problem but
also as a civil engineering problem that can only be solved
with a novel type of trustworthy human-like AI systems.

2 Three perspectives on ISAS

From a formal point of view, system verification methods
for ISAS need to address a complex combination of systems.
ISAS combine three different technologies: control systems,
distributed systems, and learning and reasoning (Fig. 1, 2).
While each of the parent domains features tested and proven
verification methods, the combined task unfortunately leads
to a combinatorial explosion of possible situations, in partic-
ular, as classical engineering strategies, such as layering and
modularization approaches, are not applicable to the wealth
of possible situations such a system may face when interact-
ing with the world.

Parts of the research task have been addressed by other
recent subdomains. Three areas lie in the intersection of con-
trol systems, distributed systems, and learning and reasoning.
Cyberphysical systems (CPS) combine control systems and
distributed systems or networking: extensions of control sys-
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Fig. 1 Intelligent sensor–actuator systems in comparison to related
technologies

tems theory with discrete state-based protocols, and program
verification techniques have been proposed to verify the com-
bination of distributed system protocols operating in the real
world, e.g., in factories. However, CPS usually do not involve
AI technologies, or verification of the AI technologies is not
addressed. Intelligent agents combine reasoning and learn-
ing with interaction capabilities—in interactions with human
users or other agents of the same or different type. Veri-
fication techniques focus on consistency of the knowledge
base of the agent and game theoretic evaluation of its inter-
action strategies. However, these systems rarely comprise
sensor–actuator facilities or embodiment. Pervasive comput-
ing systems combine the categories of intelligent agents with
basic cyberphysical systems components, and thus extend
both categories. Classical intelligent autonomous robots, as
a third candidate category, combine control system compo-
nents with reasoning or learning, but are seldom designed
to interact with other robots. Experimental systems, such as
the teams in the RoboCup competition [2], or autonomous
vehicles therefore extend the classical area. Verification of
such systems was classically not necessary, as they had
exploratory rather than product character. Autonomous intel-
ligent robots interacting with human beings, apart from
autonomous vehicles, thus have not entered themarket place,
yet. Evaluation of such robots has been a focus mostly from
a human–robot interaction point of view using methods of
traditional human–computer interaction, in particular, user
studies.

We discuss methods from the three perspectives in the
following three subsections. While we reference some text-
books regarding the verification methods for the three fun-
damental technologies, control systems, distributed systems,
and reasoning and learning, it is beyond the scope of this sur-
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vey to provide an introduction or more detailed discussion
of standard techniques. We highlight the fundamental differ-
ences between the three perspectives each approach takes,
but focus on the ways proposed to interface between them.
This necessarily leaves out interesting advances that have
been proposed in each area.Mathematical and computational
tools for solving or approximating differential equations, for
instance, drive advances in classical control systems verifica-
tion and allow increasingly complex systems to be modeled
in this manner. Distributed systems verification is based on
the logical analysis of a discrete process abstraction and pro-
vides a wealth of approaches applicable in different phases
of the product development. Learning and reasoning have
their foundations in millennia of research on logic and the
theory of science, and are verified using tools of logics, game
theory, and statistics.

The key reason for leaving out a more detailed discussion
of the parent areas is that eachmakes considerable simplifica-
tions that are broken with a complex ISAS scenario, such as
autonomous vehicle verification. A pure distributed systems
approach, for instance, can verify fundamental program and
network protocol constraints, but cannot handle verification
of the actuator response or sensor properties, or verification
of the machine learning behavior of an autonomous vehicle.

We here survey verification perspectives rather than spe-
cific approaches, and reference specific tools or systems only
as examples, as there is a general problem in integrating the
three different perspectives. Most approaches, for instance,
neglect or simplify the system intelligence and/or the mod-
eling of the continuous world, which poses, as we will try to
motivate, both a problem and an opportunity for a solution.

In the discussion, we will take a birds-eye perspective try-
ing to bring together different approaches rather than going

deeper into more specific proposals, as there are categorical
shortcomings having their roots in the underlying perspec-
tives. To give concrete examples, employing the systems
modeling language SysML, an extension of theUnifiedMod-
eling Language (UML) to embedded systems design, for
instance, allows embedded system specifications to be ana-
lyzed and verified during the design process [41], but does
not support verification of system intelligence. Coronato and
Pietro [12], to give another example, such as many other pro-
posals in Ambient Intelligence leverages a network process
abstraction, such as Ambient Calculus [8], Bigraphs [64], or
π -calculus [33], extended to handle space in the same man-
ner as networks or folder hierarchies, extending the notion
of concurrency to capture mobile devices. This simplifies
the problem of handling continuous domains as well as the
intelligent reasoning capabilities considerably. By focussing
on the underlying formalisms—sporadically drawing upon
specific proposals as examples, but sacrificing any attempt
to do justice to the wealth of approaches—and the perspec-
tives they entail, we can address generic properties in a more
targeted way and with a neutral birds-eye perspective.

2.1 ISAS as CPS

The type of system that is maybe most similar to a sys-
tem operating within a physical context is a control system
or more specifically a cyber-physical system. In both ISAS
and control systems, the difficult task is to evoke actuation
in response to input from sensors. Cyber-physical systems,
such as modern aircraft, factories, or vehicles, in contrast to
classical control systems and similar to ISAS, contain more
complex computational components that influence how the
system invokes actuation depending on sensory input. Cyber-
physical systems (CPS) are systems that combine a software
(cyber) with a control (physical) component and often also a
network component. They play an important role in today’s
advanced control systems with applications ranging from
pace makers to power grids [42] and are indispensable as
fundamental components of ISAS. The classical approach
to verification of cyber-physical systems uses reachability
analysis to compute over the (possibly infinite) set of all
reachable states whether for any given situation an unsafe
state is reachable. Modeling both the continuous, dynamic,
physical side of the control systempart and the discrete, state-
based, programmatic side of the computational system part,
such models describe systems in a hybrid manner in terms of
both finite state machines and partial differential equations.

While control theory traditionally described and verified
systems in terms of mathematical descriptions of their phys-
ical behavior [7], networks are usually verified by analyzing
properties of the state space [36]. More complex networks,
however, already suffer from an explosion of state space
size [55], and advanced methods are required for reduc-
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ing the number of states [29]. This problem increases with
networked control systems [91], e.g., if networks connect
sensing and actuation.

Embedded system software design takes a similar
approach [23] focussing on verification of concurrency
requirements using reachability analysis of the state space of
an automaton or Petri net. On the programming side, compu-
tational complexity for this type of lightweight devices has to
be minimal so as to be highly predictable. Embedded device
software, thus often has constant runtime requirements so as
to ensure real-time compliance in network response as well
as actuation and sensing tasks [23].

Hybrid approaches were designed to provide better anal-
yses [47] of cyber-physical system performance. A hybrid
approach for the verification of intelligent environments tak-
ing a CPS perspective was proposed by del Mar Gallardo et
al. [60]. A critical conceptual gap exists, however, between
the continuous time of control systems and the discrete time
assumedwith state spacemodels [1],which—whenconsider-
ing larger systems—requires dealing with different temporal
and spatial scales [50,71]. The latter problem is still unsolved
within the cyber-physical systems domain.

Hybrid approaches of cyber-physical systems design and
description [6,47] thus require the combination of the tradi-
tional control system verification with a distributed systems
verification in a two-layered architecture focussing on the
interface between continuous and discrete. The focus is on
the integration of the distributed system state as used in ver-
ifying a protocol into the control system. The model of the
discrete system in the hybrid systems literature is simplified
to an automaton [6]. From this perspective, the networked
computational components appear in the form of potential
network computational delays [47] or as triggers switching
control behavior depending on state [6].

Control systems are designed and tested using equations
that describe their behavior in terms of relationships between
input and output variables [7, cf.]. Accordingly, they can be
verified by mathematical analysis with respect to proper-
ties such as stability, robustness to disturbance, overshoot,
or steady-state errors. Mathematical analysis is only pos-
sible if the complexity of the controller allows it: simple
classical controllers can be described with linear equations,
whereas non-linear adaptive controllers or non-linear fuzzy
controllers may require other approaches, including simula-
tion.

The main characteristic of the control systems description
is the quantitative nature of descriptions. A classical simple
control system, such as a temperature controller in an HVAC
or the cruise control in a vehicle, can be a simple analog elec-
tronic feedback circuit translating quantitativemeasurements
of temperature or velocity into quantitative actuator response.
When looking at the interface to the discrete system, differ-
ent types of interactions are possible [6] from two-layered

systems consisting of a discrete system communicating with
a controller over DA/AD transformers to controlled general
hybrid dynamical systems which can switch between differ-
ent controlled behaviors based on state.

A special rolewithin the control systems area falls to fuzzy
control [69]. Fuzzy membership functions add a layer of
abstraction transforming measurement values, not into dis-
crete values like an AD transformer, but into values in the
interval [0, 1]. Fuzzy controllers thus remain in the contin-
uous, quantitative domain of controllers, while performing
operations guided by a logical formalism. This allows fuzzy
controllers to be evaluated both on the quantitative control
level—where, however, the non-linearity of the transforma-
tionmakes verification a complex task—andona logical level
allowing automated logical proof methods. Fuzzy controlled
hybrid systems are thus of particular interest with respect
to ISAS, which feature a logic-based learning or reasoning
component.

2.2 ISAS as intelligent autonomous robots

Robots controlled by simple automata switching between
controlled behaviors can be studied using hybrid control
systems approaches, as cyber-physical systems. Intelligent
autonomous robots, however, such as self-driving vehi-
cles usually contain additionally a learning or reasoning
component that controls the state change. If the reasoning
component is logic-based, logical consistency as well as
entailment of desirable properties can be decided using a
logical approach. Moreover, the design of the robot can be
derived as a logical consequence of the description of a par-
ticular environment [44,45], thus at the same time proving
that the robot is fit for its purpose within this environment.

In the case of logic-based intelligent robots, reasoning is
qualitative. We will look at this closer below with respect
to intelligent agents. Most learning mechanisms, in contrast,
operate on quantitative input vectors, either classifying, i.e.,
producing qualitative output, or predicting, i.e., producing
quantitative output, e.g., for actuator control. Both methods
pose interesting questions for verification, especially if such
systems are to interact with human beings. Taking a black-
box perspective, a trained classifier or prediction system is
not different from a system developed by an engineer. The
control mechanisms it implements can, in theory, be ana-
lyzed using the same techniques. The main issue is the high
complexity a machine learning mechanism may introduce
and the unconventional approach it may take, as machine
learning, in contrast to a human engineer, is not required
to produce human-readable designs, easy to interpret and
verify by human engineers. The issue of high complexity
of verification for autonomous robots partially arises from
the recently increased power of hardware and thus machine
learning and reasoning mechanisms, but it also appears in
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more classical autonomous robot applications designed by
engineers. Where robots are deployed for critical tasks, e.g.,
in defense or rescue missions, lightweight verification meth-
ods have been proposed that evaluate a robot’s behavior with
respect to an environment and mission specification[59], a
methodology we propose to transfer to autonomous vehicles.

The examples cited above, exhibit only a rudimentary
level of intelligence and autonomy. Robots with more
advanced reasoning abilities and thus verification potential
were developed in the area of qualitative reasoning (QR).
Given the computational limitations of early robots and the
intractability of many AI problems in a complex world,
the focus of QR was on providing lightweight yet power-
ful reasoning capabilities to autonomous robots and other
AI systems. The focus of qualitative reasoning is directed
on domains that are classically handled using quantitative
approaches. It emerged following the Naive Physics Mani-
festos [31,32] and aimed to facilitate reasoning about space,
time, and measurements or estimates of quantities in a simi-
lar way to how human beings are able to reason about these
domains, i.e., without the complexity of solving difference
equations. Qualitative reasoning comprises temporal [22]
and spatial [10] reasoning, as well as combinations of these
with sensory value domains [19,24]. As a domain of particu-
lar importance to autonomous robot applications, Qualitative
Spatial Reasoning (QSR), in particular, targets autonomous
way-finding and also allows robots to create qualitative rep-
resentations of space [46].

Verification of systems developed automatically by
machine learning techniques has not received much interest
from research, yet. These systems were traditionally widely
employed only in non-critical domains, such as spam fil-
ters, or as systems supporting but not replacing a human
professional. Liability and responsibility thus are lying with
the human user. The interaction with humans accordingly
has received much interest [81], given that, e.g., a smart car
operates not within a plant maintained by engineers but in
the socio-technical everyday environment of consumers. The
problem of system verification from this perspective can then
also be framed as a usability issue, i.e., as lying within the
area of human–computer interaction (HCI). An increasing
number of papers and venues1 within the areas of intelligent
autonomous robots and ISAS, such as pervasive computing
systems, thus looks at the issues of fitness for purpose froman
HCI point of view using classical HCImethodology, evaluat-
ing technologies, e.g., by user studies. The metrics proposed
bySteinfeld et al. [86] assess navigation, perception,manage-
ment, manipulation, and social performance. As an example,
they discuss the evaluation of a remote control application
following a user study approach, experimentally evaluating
the number of errors (collisions), time to complete a naviga-

1 http://humanrobotinteraction.org

tion task, and subjective ratings by the user regarding effort,
learnability, and confidence.

A domain inwhich robots communicate and collaborate is
swarm robotics. Dependability and reliability of swarms has
been ensured for swarms using failure mode and effect anal-
ysis and reliability modeling [97]. In autonomous vehicles,
coordinated swarm behavior exists in the form of platoons
or convoys of autonomous vehicles. Verification is possible
by combining model checking and agent-based verification
techniques [40].

2.3 ISAS as agents

Software agents [98] can be viewed as another predeces-
sor of ISAS. Like intelligent autonomous robots they can
act autonomously within an environment, this environment,
however, is not the physical world but, e.g., a network: soft-
ware agents lack the hardware to interact with the real world.
The focus accordingly is on their social behaviorwithin a net-
work populated by other agents or human users. Depending
on the degree of intelligence the agent has, any distributed
system can be viewed as a type of software agent, with ver-
ification criteria for network protocols such as fairness in
access to resources arising as minimal conditions. Agents of
higher levels of intelligence feature a knowledge base con-
sisting of one or more ontologies that guide their behavior.
Ontologies are logical systems specifying the vocabulary and
itsmeaning for a domain [26].A knowledge base accordingly
can be verified using logical proof of consistency. Moreover,
interactive behavior of the agent in a certain environment
can be analyzed using methods for analyzing the interaction
of strategies with game theory [68], adherence to norms and
legal codeswith deontic logics [57] and legal ontologies [82],
and the development of knowledge states with epistemic log-
ics [17].

To obtain a formal verification method for multi-agent
systems (MAS), the logical components of the agent need to
be integrated with a formalism for verification of distributed
systems [58] such as computation tree logic (CTL) [9] or
temporal logic of actions [48]. While agents are sometimes
written in purely logic-based formalisms [98] and verifica-
tion can thus remain largely on the logical level, distributed
systems, including some MAS and ISAS, e.g., in perva-
sive computing, have imperative program parts. Formalisms
for handling imperative programs leveraged include, e.g.,
Floyd–Hoare Logic [18,35]. However, such systems can be
evaluated in a two-level process, by proving first that the
imperative subsystems provide desired properties and behav-
iors, which can then be reasoned about on the logical level
[30,79].
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3 Machine learning and logical reasoning

The notions of an intelligent environment, intelligent system,
or artificial intelligence all refer to the presence of intelli-
gence in the behavior of the system. While the notion of
intelligence seems elusive, it is clear that an intelligent sys-
tem requires reasoning capabilities, whether from machine
learning or logic, to accomplish the complex variety of tasks
we associate with intelligence. The last decades made con-
siderable advances in both areas. The family tree of logical
languages was considerably expanded since the discovery of
the expressiveness-tractability tradeoff, and developments in
deep learning and reinforcement learning, in particular, led
to the current proliferation of AI technologies.

Much of the progress made in AI products over the last
decade was made in the machine learning (ML) area. But
the gap between learning and reasoning has a deeper corre-
spondence in the gap between perception and logic in general
cognitive systems, which is at the heart of such fundamental
problems as the symbol grounding problem [28], the ques-
tion how the symbols of logic and language are grounded in
perception.ML is fundamentally perceptual. Complex ISAS,
such as autonomous vehicles, operate using classifiers that
process sensory input into classes, which in turn can be asso-
ciated with behaviors, either in the same step or in multiple
steps. The resulting intelligence is that of trained behaviors,
leaving uncertainty about how the system will behave under
unusual situations as the key question. The gap between
learning and logic making it hard to apply verification tech-
niques, which are logic-based.

The symbol grounding problem seems easily solved from
a perceptual, ML perspective [85,89]: two systems trained
with the same data in the same manner will obtain the same
classifiers, that is, will agree in their judgement of new input
data and the reactions they initiate. From a logical point of
view, grounding seems to be much harder: how can we know
whether a person actually means what they are saying. The
lack of trust in AI systems is on this level. We do not doubt
the systems’ ability to, e.g., statistically classify reliably, we
doubt that they have a sense of what they are classifying
or why a certain reaction is trained over another. One may
argue that these questions are academic rather than concrete
questions for engineering. However, attached to these ques-
tions are the crucial notions of trust and responsibility, and
the ability to generate explanations, main points in question
for ISAS and a focus of increasing attention. In contrast to
ML-based systems, logic-based systems can generate expla-
nations for their actions and provide guarantees. In fact, logic
underlies all of the above mentioned verification techniques,
except those for control systems.

Logical languages have a long tradition. From a historical
point of view, the modern, most widely employed first-order
logic is young, and dates back to the mid nineteenth cen-

tury. Before that time, the most widely used logic in Europe
and the Middle East was term logic, a logic dating back
to Aristotle [for an analysis in modern terms cf.11]. Term
logic has limited expressiveness as discovered already by
Leibnitz [52]. Propositional logic was formalized by Boole
[4], first-order logic with a clear set-theoretical semantics
by Frege [20]. The expressive power of formal logics led to
the endeavor towards a formalization of the fundamental of
mathematics started in [83,96]. The discovery of undecid-
ability of even the seemingly simplest mathematical system
that contains only thePeano axioms inGoedel’s famous proof
[65] as well as conceptual considerations regarding the set-
theoretical underpinnings [96] led tomultiple endeavors over
the twentieth century focussing on decidable, yet expressive
logical axiomatizations for specific domains of interest, such
as time [70] and space [87]. Computational considerations in
the area of artificial intelligence rekindled interest in weaker
languages that have a tractable proof mechanism of PTIME
or lower complexity [54], which led to the invention and
particularly fruitful study of the broad class of Description
Logics and their properties at the end of the twentieth century
and in the beginning of the twenty-first century [66].

Description logics being designed for the representation
of conceptual hierarchies and particularly useful in domains
such as object-oriented software engineering, however, do
not provide adequate support for representing continuous
domains, such as time, space, or temperature, which is a
fundamental requirement for reasoning in ISAS. While the
objects and classes in ISAS are usually simple and do not
require much modeling, in contrast to other domains, ISAS
receive sensory input, which is usually continuous numeric,
e.g., amount of light, acceleration, noise level, and also output
continuous numeric information, such as desired tempera-
ture, shade level. This type of information has been modeled
in DL as the so-called concrete domains [27] which are not
well integrated into the overall theory and lead to a language
of high complexity [95].

These results are in contrast to the evolutionary hierarchy
of cognitive abilities in nature [25]. In natural cognitive sys-
tems, such as in autonomous robots, the interaction with the
physical environment has to be handled in real-time with a
mechanism of the lowest complexity, while reasoning about
classes, as focused by Description Logics, can be provided
more time. The Context Logic program [78] is an attempt to
follow the cognitive hierarchy, providing a layering of lan-
guages, stretching from a real-time compliant representation
and reasoning mechanism in the Horn-fragment of propo-
sitional logic [76] for reasoning about continuous domains,
such as space and time but also measured quantities from
sensors such as temperature, to a quantified language with
the expressiveness of first-order logic, and sufficient to rep-
resent a granularity-dependent characterization of geometry
[74] oriented on a mereological base theory [83].
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A key result from research in Context Logics (CL) is
the recent result [75] suggesting a potential link between
logic and analogous representations. The surprising result
shows that truth table and DNF for propositional formulae
corresponding to formulae of the most fundamental CL lan-
guage [76] have a quantitative property that is analogous to
the content of the formulae, a result that sheds new light
on the grounding problem from an unexpected angle. Log-
ical formulae thus could be grounded in reality in a more
literal manner than expected pointing towards the potential
for a new category of AI system that unites ML-based per-
ceptual intelligence with logical reasoning. This type of AI
system could have the potential to generate explanations for
its actions and provide guarantees, which would make it both
self-explainable and thus more trustworthy. While the cur-
rent ML-based systems thus are the first feasible real-time
reactive ISAS, but due to their black-box character lack pre-
dictability, explainability, and verifiability posing a high risk,
the new AI systems, such as the CL-based systems, able to
closely integrate perception and logic would allow a direct
integration of verification and monitoring strategies due to
their logic-based component. Given [75], such systems may
be considerably closer than previously assumed.

4 Verification of ISAS

As discussed, ISAS are different from cyber-physical sys-
tems in that they require a reasoning component; they are
different from intelligent agents in that they require interac-
tion with quantitative domains; and they are different from
autonomous intelligent robots in that they require interaction
with other ISAS and human beings within a larger concur-
rent network domain. Logic plays a dominant role both as
the framework for conventional computational verification
mechanisms and as the language of logic-based reasoning.
In reasoning, the intelligent system determines how it reacts
given a specification of desired behaviors and the complex
context of situational factors at a time. This aspect gives addi-
tional flexibility to the way the system reacts under different
circumstances and with different other devices present.

Figure 3 illustrates the architecture of an ISAS in con-
trast to earlier sensor–actuator systems. Whereas an ISAS
is a more generic intelligent system (Fig. 3a) with compo-
nents for interaction with the environment on several layers
and the actual functionality embedded in the reasoning and
learning components, the classical controller (Fig. 3b) and
CPS (Fig. 3c), in contrast, are developed for a more narrowly
defined specific task. Figure 3 uses the often invoked HVAC
example to illustrate this: a classical analog control system
regulates temperature on the basis of a hardware that directly
relates input to output (Fig. 3b); a cyber-physical system is a
control system that additionally involves a software compo-

nent whose states influence theway the system reacts to input
and controls different components (Fig. 3c); the context-
aware ISAS in contrast creates behavior from a specification
of knowledge about desirable behavior (Fig. 3a).

To take the HVAC example: an ISAS building will regu-
late the heaters, lights, windows, shades, and air conditioning
based on the building administrators’ specification, but also
taking into account specific users’ and groups of users’ situa-
tional needs. In general, good office working conditions, for
instance, require sufficient light; however, when the ISAS
meeting room detects that a presentation is about to start,
shadeswill be activated to dim the light to a level that is below
this general work level. To perform actuation, the ISAS will
itself rely on control systemsorCPS functionality on its lower
levels to successfully perform subtasks. The system, how-
ever, detects and reacts to a complex situation in a way that
fulfills requirements of the situation enabled to handle error
conditions or contradictions on several levels. For example,
when multiple components belonging to users with different
preferences about an environmental parameter, expressing
different specifications, are present the system may need
to arbitrate between conflicting specifications, leveraging
means of meta-level reasoning and communication so as to
resolve conflicts resulting from errors or conflicting informa-
tion from different users.

In basic context-aware systems, the so-called context
models [cf. [3], for a survey] provide basic reasoning func-
tionality. They can be provided in a constraint format [13],
as a tree structure [37,39], or in an explicitly logical format
[34,79]. For verification purposes, constraints can be encoded
in all three cases in terms of logical rules. Depending on
the context, i.e., the informational environment, the system
changes behavior according to such logical rules, which may
be set not only by system designers, but also by local system
administrators, and even by end-users. A reachability anal-
ysis, under these circumstances, becomes an infeasible task,
not only because of the combinatorial explosion of all pos-
sible system configurations, but also because of the system
under study not being fully specified: the ultimate system
behavior in a specific space and situation is thus a function
of the interplay of several subsystems that are not modu-
lar, but logically dependent on one another. As Milner [63]
pointed out, we need to revisit our conceptions ofmodularity,
to understand such systems.

A number of approaches have been brought forward to
verify pervasive computing systems. The prevalent strategy
is to model pervasive computing systems as extensions of
distributed systems. Examples of this approach are ambient
calculus [94], ambient logic [8,73], bigraphs [62,64], or π -
calculus [33,51]. However, the continuous physical reality of
sensors and actuators, space and time, is usually mapped into
discrete states or network devices. Ambient Logic [8] upon
which [73] is built, for instance, assumes tree-based location
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Fig. 3 Architectural components of an ISAS a in comparison to a classical control system b and a cyber-physical system c for the standard HVAC
example

hierarchies as its representation of space. This requires a clear
partitioning which is problematic from a point of view that
takes sensory uncertainty and the continuity of physical space
into account [77].

Other approaches derived from a classical distributed sys-
tems perspective focus on system design or monitoring.
Kawahara et al. [41], for instance, propose to use the systems
modeling language (SysML) for embedded system specifi-
cations to be analyzed and verified during the design process.
The monitoring using runtime verification [53] of intelligent
environments is another way to ensure reliability or at least
controlled shutdown mechanisms [12]. Self-monitoring is a
key design component of advanced ISAS (Fig. 3a).

Few approaches [5,60] represent the sensor point of view.
Boytsov and Zaslavsky [5] propose a geometric approach to
characterize sensor value state spaceswhich are partitioned to
yield the states of automata that thus formalize the context-
dependent reaction component. Similarly, constraint-based
hybrid automata are leveraged by del Mar Gallardo et al.
[60]. This perspective is very close to the control theoretic
andCPS perspective, and as in CPS, the expressiveness of the
contextual reasoning system is limited to the expressiveness
of automata. The intelligence of the systems, which with the
human ideal plays an important role for the trust we have,
e.g., in human drivers, does not play a prominent role in either
approach [5,60].

The crucial point is how to build a bridge between equa-
tions formalizing the quantitative domain of sensors and
actuators and the qualitative domain of logics. In collab-
orations with students, the Context Logics (CL) family of
logical languages was built over the last ten years, to facil-
itate this crucial task for both reasoning within ISAS and

Machine
Learning Ontologies Behavior 
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Handbook & 
Training

Intelligent 
Environment

User with 
License

verification

Fig. 4 Ontology-based verification method for intelligent environ-
ments: while administrators’ licenses and trainings have to be extended
to allow them to properly operate advanced robotics applications that
can do much harm, including building automation applications, ver-
ification mechanisms have to be employed to ensure that intelligent
environments can be guaranteed by manufacturers to operate according
to the legal framework before deployment

reasoning about ISAS. From the existence of fast systems
with good ISAS reasoning abilities, it was clear that there
was a class of primary reasoning tasks in context modeling
that was tractable. Formalizing how these systems reasoned,
we therefore developed CL as a simple logical language [80],
similar in style to DL and the simple ancient term logic
as well as the familiar equation formalism for quantitative
domains. The advantage of such a logic was that we thus
could not only make systems more interoperable [38] but
also provide reasoning about ISAS giving rise to the CL-
based ontology-based verification method [79]. This method
can be extended to the intelligent environments domain, as
illustrated in Fig. 4.

In contrast to approaches more oriented towards verifi-
cation of the distributed computing components [8,12,33,
51,62,64,73], the approach [79] focused on allowing greater
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complexity on the side of the contextual reasoning. A key
design goal of the CL family of logics was to have a language
that allows seamless integration of several levels of expres-
siveness that are of high importance for reliable intelligent
environments: the general [80] designed for the reasoning
level of ISAS contains a fragment that directly corresponds
to the real-time reactive light-weight PQSR [76], which was
even developed into a qualitative spatial reasoning (QSR)
calculus [21]. Adding quantifiers [74], in contrast, adds full
first-order logic expressiveness to the decidable [80] allow-
ing the specification of a mereogranular geometry, a formal
framework that facilitates, inter alia, reasoning about trajec-
tories of extended objects.

4.1 Locally safe environments

A key to making ISAS verification possible is the reduction
of complexity. A promising approach well compatible with
the framework of Schmidtke and Woo [79] is the adoption
of detailed models of an environment as used in the verifi-
cation of safety critical robotics applications, e.g., with the
MissionLab editor of Lyons et al. [59].While the approach of
encoding the complete legal traffic framework and employ-
ing reasoning to derive proper behavior in a situation is not
a feasible approach and cannot be real-time compliant, it
is clear that human intelligence also does not function that
way.2 Navigating in unknown environments is harder than
navigating through a well-known environment, for instance.
A driver encountering a specific complex road arrangement
or dynamic situation for the first time is more likely to make
errors than an experienced driver. Applied to the problem of
verification, the key is to verify the proper behaviors as mis-
sion specifications in a spatially piecewise manner (Fig. 5),
i.e., to prove that a vehicle will perform according to spec-
ification with respect to the large but tractable space of a
specific intersection and not the intractable space of all pos-
sible intersections.

The necessary data to geometrically represent intersec-
tions or other parts of a roadnetwork is often already available
from municipalities and other local stakeholders, e.g., in the
form of digital surface models and detailed location sur-
veys. Such information is collected and processed through
geographical information systems (GIS). The quantitative–

2 This is one of the reasons why drivers of autonomous cars fail to
prevent accidents: it takes considerable time for a human being to under-
stand a complex situation, so as to filter and select among the wealth of
available possible actions an appropriate one. While an alert driver han-
dling an ongoing incrementally changing driving context, is at any time
within a properly filtered context and able to react within a one second
delay, a driver relying on self-driving capabilities of an autonomous car,
will require a considerably extended comprehension period for acquir-
ing the specific driving context to be added to reaction time.With respect
to the literature on driver’s reaction times, this case corresponds to one
of reduced visibility [84], known to increase reaction times.
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Fig. 5 Ontology-based verification method for mobile ISAS: while
vehicles operate in autonomous mode, manufacturers carry full respon-
sibility and liability for the vehicle, taking legally the role of the driver.
Ontological specifications of specific locations can be leveraged by
manufacturers to reduce their risk in a systematic way: when vehicles
enter an area or situation, in which the manufacturer does not want
to take responsibility, a well-defined handover process—or, if the user
does not take over, shutdown—is initiated while still within the safe
area. Turning autonomous operation off in a well-defined manner, the
manufacturer does not incur damages from a user’s action or inaction.
The device is maximally safe if used as prescribed

qualitative barrier [19,24] has been a long-standing topic in
efforts to represent space qualitatively, with applications not
only in intelligent autonomous robot research (Sect. 2.2) but
also in GIS [15]. A wealth of dedicated approaches exist to
represent space qualitatively in light-weight calculi [10,14,
21,72]. Within the Context Logic hierarchy of languages a
light-weight spatial reasoning calculuswas presented in [76].
Given that such a language necessarily has limited expres-
siveness but efficient performance [54], it fulfills the criteria
for a real-time component that could be installed for control-
ling and monitoring [53] an autonomous vehicle’s operation.
In order for generally characterizing admissible situations on
an intersection, however, such vehicle-dependent descrip-
tions need to be linked to a complete description of the
intersection, which requires a more expressive language.
Within the Context Logic hierarchy, [74] is an expressive
framework that allows the description of spatial structures
in a flexible and detailed manner, and providing qualita-
tive geometric concepts—not only, e.g., topological notions
[72]—translation from quantitative geometric data is facil-
itated. The qualitative nature of the resulting descriptions
makes it then possible to fully specify an intersection as a
spatiotemporal entity affording certain behaviors.

Based on this formal description of a location, any basic
verification mechanism successfully used for handling con-
currency in intelligent environments can be applied, be it
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Linear Temporal Logic (LTL) as in [60] or Communicating
Sequential Processes (CSP) as in [79].

With a formal verification method possible, a danger-
ous void of responsibility for autonomous vehicles [56],
and ISAS in general, can be addressed: if autonomous
behavior can be guaranteed to be safe for specific verifi-
ably safe locations and situations, manufacturers can take
full responsibility for autonomous operation of their prod-
uct within those situations, including full product liability
for actions committed by the ISAS. Before leaving such a
locally safe area or situation, manufacturers could disable
the autonomous behavior in a controlled fashion so as to not
be held accountable: the transition between safe and unsafe
situations would become a detectable feature. Failure of the
driver to take over, would then be similar to other improper
system operation, such as running a red light or stalling the
engine with the legal code and law enforcement accordingly
updated.

Ontological specifications of locations against which
autonomous vehicle behavior could be verified could come
from a range of sources. Possible sources could be public–
private partnerships or industry consortia. In any case,
manufacturers could decide whether they want to support
autonomous vehicle operation within a specific area and
take responsibility given the risk or not and can then locally
enable or disable the autonomous driving functionality. With
a clearly defined handover phase initiated with sufficient
lookahead, drivers would have the necessary time to acquaint
themselves with the situation so as to be able to take over, and
knowing their vehicle will otherwise come to a halt would
be motivated to do so.

5 Discussion

The CL-based approach unites all three areas: the handling
of quantitative values received from sensors and sent to
actuators, the imperative and network component, and the
reasoning employed by an intelligent system. We discuss in
this section, that this shows that autonomous transportation
system verification is possible Sect. 5.1 and argue that it is a
necessity of responsible engineering Sect. 5.2.

5.1 Safe autonomous transport systems are possible

The last section introduced the notion of locally safe sys-
tems. As location together with other parameters important
for, e.g., traffic light recognition success, such as time of
day, can be determined by GPS, clocks, and other sensors, a
manufacturer can know with high reliability how a given sit-
uation will be handled by the system, and accordingly, what
its probability of success is. If this probability is too low, e.g.,
because the sun has a certain angle with respect to the traffic

lights at a certain intersection as approached from a certain
direction at a certain time, the necessity of sensory compen-
sation, human support, or complete handover to a driver can
be predicted. With a large portion of a situation predictable,
the system runs less like a human-like AI, and more like a
space agencymission, where ideally nothing is left to chance.

Today’s AI is not the human-like robot taxi from science
fiction. In many basic ways, it still is far less sophisticated
than animal intelligence, not to mention human intelligence:
able to reproduce trained patterns like a trained dog, where
the dog is still in many ways superior to the AI, showing
that there is a long way to go to reach a human-like intel-
ligence. The current situation of astonishing performance,
e.g., in games by AI is largely due to the scalability of ML
techniques. ML mechanisms, in contrast to reasoning, for
instance, can make full use of large-scale computing power.
Human intelligence, in contrast, is so remarkable due to its
ability to handle such tasks on the basis of a vastly less power-
ful and fast hardware substrate. It is the ability of the human
mind to beat a vastly more powerful computing platform,
e.g., in chess or go that is remarkable, not that a six or nine
orders of magnitude faster large computing platform can be
constructed that can beat a human being at a single task.

Our attribution of intelligence to this type of system is
a result of anthropomorphism, which is known to increase
trust [93] and inspire forgiveness [92]. It is, at least with the
current state of the art, a misplaced label, whose main benefit
unfortunately is in marketing a technology that is currently
not safe.

Looking at the wider ramifications for transportation sys-
tems, the task of assessing the impact of the new intelligent
versions of classical domains, such as transportation, but
likewise electricity distribution and health care, requires
rethinking assumptions, for example,while somedriversmay
employ certain driving styles, behavior being randomly dis-
tributed is unlikely to systematically impact the functioning
of a municipality’s transportation system. A manufacturer
equipping its autonomous vehicles with a certain behavior, in
contrast, may produce a considerably different transportation
system. This opens new opportunities. Transport simulation
systems, for instance, can feature autonomous vehicle behav-
ior as a controllable parameter.

A disadvantage is that large-scale complex systems, in
particular, when they are the result of machine learning
techniques, are usually difficult to understand even by their
designers. The issues resulting from this have already led to
new legislation, such as the EU’s General Data Protection
Regulation [16], requiring that machine learning systems be
enabled to explain their decisions [cf. [90], for a more in-
depth discussion]. In smart city contexts, for instance, we
want to avoid “buggy, brittle and hackable cities” [43]. Even
more so than with previous Pervasive Computing systems
[63], we need means to understand and control ISAS.
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To do this, verification needs to take a different approach
that not only encompasses system models but also models of
the intelligence operating them. The system model needs to
encompass a suitable description of the involved smart sys-
tems themselves. Until now this was posing the question as
to how the resulting complexity could possibly be handled.
Local safety breaks the problemdown into a large set ofmuch
smaller problems of making a distinct intersection or road
segment safe, potentially even split up further temporally
into times of day and week, or seasons. The first autonomous
vehicles may need to be “Sunday drivers” operating under
considerably restricted conditions only. In this way, the con-
text dependency, which at the first glance seemed to be the
problem, may turn out to provide the solution to making the
verification problem incremental, decomposable, and thus
tractable.

As a second aspect, formal models of systems involved
and verification mechanisms can also allowmuch better traf-
fic control and safety, and considerable interest may exist
from private and public stakeholders to contribute to the
effort. We outlined how a piecewise process and potentially
concerted effort of formal modeling can make verification
computationally tractable. With tractable verification possi-
ble, ISAS manufacturers are enabled to prevent problematic
ISAS behavior that infringes on existing laws, as for any
other device’s malfunctioning.

5.2 The ethical dimension

Before concluding this paper, this section outlines that the
stakes may be even higher than the human lives in danger.
The Universal Declaration of Human Rights (UDHR) [88]
declares in article 12:

No one shall be subjected to arbitrary interference with
his privacy, family, home or correspondence, nor to
attacks upon his honor and reputation. Everyone has
the right to the protection of the law against such inter-
ference or attacks.

In today’s reality, this right is considerably limited. Although
it exists in principle, it is not only infringed upon under the
premise of national security reasons in a number of ways, but
we all quasi-voluntarily relinquish it regularly. So much so,
that, in fact, it would be a considerable impediment to every-
day life not to relinquish it. Privacy policies allowus to accept
or decline using a software, but not to choose alternatives that
do not force us to give up on this fundamental right, but the
reason for this is not that alternatives do not exist or have
fundamental technical drawbacks. Alternatives are not only
possible but can be considered technically superior in addi-
tional ways. Langheinrich [49] in his seminal article “Privacy
by Design” proposed several families of mechanisms that are
not only superior in terms of privacy, but also have a lower

environmental footprint and are even more natural and eas-
ier to understand as well as computationally faster than the
solutions we have come to rely on.

While the right to privacy may be lost, the new ISAS
technologies operating in the physical world affect an even
more fundamental right, the right to live. The UDHR [88] in
Article 3 declares:

Everyone has the right to life, liberty and security of
person.

Two drivers of autonomous cars and one pedestrian have lost
their lives so far, with responsibility in each case carried by
the human being sitting in the driver’s seat, the reasoning
being that they should have been taken control to prevent
the accident. In the case of the first human life claimed by
an autonomous vehicle, for instance, the driver was made
responsible, since he was using the self-driving capability
without providing full supervision [67]. Engineering solu-
tions proposed to address the problem seek to control the
driver leading to a situation in which the deceased driver is
discussed like the faulty part in the machine, but has to take
full responsibility for the machine.

Much in this argument hinges on the assumption that for-
mal analysis of ISAS would be intractable and that machine
learning creates non-verifiable technologies. As this paper
has argued, this is not the case. The key issue is that today’s
AI is not yet trustworthy. Similar to the situation before the
first AI winter, what we can achieve is producing solutions
to selected problems of intelligence that work surprisingly
well within bounds not well understood by the public.

Anthropomorphizing a device as still learning, evoking
emotions of forgiveness usually reserved for children, while
withholding compassion for its victims, e.g., with justifica-
tions, such as that they had been jaywalking or taking drugs,
is a path we will not want to take. Bringing products to the
market which are not technically mature should not become
the norm. We have been getting used to increasing frequen-
cies of software product updating. With autonomous robots
this poses a risk to human safety. Decreasing reliability in
software and increasing speed in obsolescence of hardware
due to auto-update functionalities in networked devices are
of considerable concern in safety-critical domains, and for
example, avoided in the defense sector [61].

6 Conclusions

With the first fatalities caused by autonomous cars and dis-
cussions partially suggesting a license agreement type of
solution, formal verification of ISAS has become a research
topic of highest priority. The human user can either be
required to be alert and in control, or relieved from control
and not responsible, a mixture of both creates a contradictory
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legal double bind, which cannot lead to a just solution. In the
case of privacy, strongly felt to be a human right in 1948, an
impossible luxury today, we havewitnessed that it is possible
to erode human rights, and thus human dignity. The argument
that a user can opt out of these new technologies is doubtable.
Like paper maps, travel by horse, and public telephones are
no longer a realistic option for the everyday employee wor-
ried to keep their position, autonomous vehicles and other
autonomous robots will soon be a convenience society as a
whole, including government agencies and employers will
rely on.

Unfortunately, no approach for verifying autonomous car
behavior in its three dimensions of CPS, autonomous robot,
and multi-agent system is currently available. This leaves the
door wide open for new technologies we do not have con-
trol over and license-type agreements to be established as
the norm. This paper aims to propose an alternative path.
We gave a short overview of the different approaches that
could be applicable to the task of analyzing and verifying
intelligent sensor–actuator systems. We outlined the funda-
mental landscape of earlier theoretical perspectives, more
recent attempts to address combined types of systems, such
as cyber-physical systems, agents, and autonomous robots, as
well as recent approaches to address the verification of ISAS
put forward in the area of pervasive computing systems.

We showed that the ontology-based method based on
the Context Logic (CL) family of languages may provide
a pathway to a new holistic approach that unites key prop-
erties of importance for ISAS: logic-based reasoning about
rules, dynamic context-dependent triggering of behavior in
complex multi-actor scenarios, handling of sensory infor-
mation, and a well-defined interface to lower-level and
hardware-related computing components and their verifica-
tion mechanisms. The language was developed specifically
to enable decidable qualitative reasoning over continuous
domains, such as space, time, and sensor values in ISAS.
The CL-framework can support verification of ISAS as it
integrates a mechanism for both reasoning within context,
with the decidable core language usable by ISAS, and rea-
soning about contexts with a first-order variant of the same
language usable in the development stage. The verification
mechanism can thus be connected to an ontology describing
admissible behaviors as well as to a verification mechanism
for the underlying hardware-related context-triggered code
fragments.

The key role, however, is taken by a particularly light-
weight fragment of the language, which is fundamentally
more perceptual in nature than other logical languages. It is
not only suitable formonitoring ISAS in real time as required
for run-time verification, but may provide much more: a log-
ical link to the perceptual component of ISAS.

A crucial problem of any verification method for
autonomous systems verification, the explosion of state-

space complexity for a general specification of behavior in
the real world, was addressed by the proposal of a spatially
and situationally piecewise verification of behavior as locally
safe. While the problem of generic verification of a system
for the complete legal framework for any possible road and
situation is not feasible, distinct situations, such as to turn
right at a given intersection on the basis of the legal code,
are. By restricting autonomous vehicle operation to distinct
locations, whose safe navigability can be guaranteed, full
manufacturer liability for autonomous vehicles can bemade a
requirement without sacrificing the technology. Manufactur-
ers can reduce their risk by turning off autonomous operation
in a controlled and enforced way outside of these distinct
areas, thus requiring a licensed driver to take control and
responsibility, as also recommended by the National Trans-
portation Safety Board [67].

The path to full self-driving vehicles may be prolonged
by several years following these suggestions, and one might
argue that each year we delay costs tens of thousands of lives,
someofwhich immature self-driving carswhile killing others
might save. However, a safer technology will save more lives
in the long run, as it will save our standards and values. The
Universal Declaration of Human Rights [88] declares our
human rights as universal and unalienable. Abandoning these
rights means denying them to the people of the future upon
whose ability to enjoy them we would thus infringe.
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