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Abstract
Road traffic has been exponentially growing with surging people and vehicle population. Road connectivity infrastructure
has not been growing correspondingly and hence the research endeavors for optimal resource allocation and utilization of
connectivity resources has gained a lot these days. Therefore, insights-driven real-time traffic management is turning out to be
an important component in establishing and sustaining smarter cities across the globe. IT solution and service organizations
have come forth with a number of automated traffic management solutions and the primary problem with them is they
are unfortunately reactive and hence an inefficient solution for the increasingly connected and dynamic city environments.
Therefore, unveiling real-time, adaptive, precision-centric and predictive traffic monitoring, measurement, management and
enhancement solutions are being insisted as an indispensable requirement toward sustainable cities. We have come out with a
novel approach leveraging a few potential and promising technologies and tools such as a reliable and reusable virtual model
for vehicles, a machine learning model, the IoT fog or edge data analytics, a data lake for traffic and vehicle data on public
cloud environments, and 5G communication. The paper details all these in a cogent fashion and how these technological
advancements come handy in avoiding the frequent traffic congestions and snarls due to various reasons.

Keywords Virtual vehicle (VV) model · Edge or fog clouds · Machine and deep learning algorithms · Digital twin · Cloud
computing · Real-time analytics · Intelligent transport

1 Introduction

The emergence of software-defined cloud infrastructures
and scores of integrated platforms along with a bevy of
pioneering digital technologies such as machine and deep
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learning, streaming analytics, micro services architecture
(MSA), container management solutions, the distributed and
decentralized IoT architectures, fog or edge data analytics,
and5Gcommunication leads to a variety of digital disruption,
innovation and transformation for the worldwide corporate
and cities. The nations across the globe setting up and sustain-
ing smarter cities are empowered with the faster maturity and
stability of game-changing technologies and tools. With the
continued advancements and accomplishments in the ICT
(information and communication technologies) space, the
speed and sagacity with which the establishment of smarter
cities is really praiseworthy. The rising complexities due to
the arrival and usage of heterogeneous andmultiple technolo-
gies for realizing smart cities are on the climb. Therefore, the
adoption of complexity-mitigation and value-adding tech-
nologies helps planners, decision-makers, and administrators
come handy in surmounting those complications to quickly
and easily bring forth people-centric, extensible, adaptive,
knowledge-driven, innovation-filled, cloud-enabled, and safe
cities.
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1.1 The transformative technologies for transport
and traffic domains

Traffic management becomes an intimate and intense affair
for accomplishing smarter city projects. With the growing
population of cars and vehicles, our connectivity infrastruc-
tures such as roadways, expressways, tunnels, bridges, and
underground passages are experiencing a different kind of
stress. Traffic snarls, congestions, and blockages damage the
productivity of people. There is huge fuel wastage because
of many stops and slow movements of vehicles at several
junctions on the way to the destination. There have been con-
certed efforts by research scholars and scientists to bring forth
strategically sound solutions for real-time intelligent traffic
management solutions. However, they are found insufficient
due to various causes and reasons. Now with the emergence
of path-breaking technologies, automated tools, optimized
processes and integrated platforms, researchers across the
globe have started to focus on breakthrough solutions tomin-
imize the traffic congestions and road blockages. There is a
unified view that real-time decision-enabling, value-adding,
and actionable data-driven insights are the need of the hour to
regulate and rectify traffic issues. That is, capturing all kinds
of vehicle movement data, road capacities, driver intention,
destination, and any local traffic information and subjecting
them to a variety of mining, processing, and analytics is the
way forward for smarter traffic management.

The continuous maturity of artificial intelligence (AI)
technologies such as machine and deep learning also con-
tribute to the smartness of traffic management. Finally, the
recent concepts of fog or edge analytics, digital twin and
blockchain are getting a lot of attraction and attention. This
paper is to describe new automated transport management
solution that is to gain the intended prominence and dom-
inance through the seamless and smart integration of the
above-mentioned transformative technologies.

1.2 Research problem description

The various traffic statistics across cities say that the num-
ber of road accidents is on the rise, the traffic congestion
is becoming alarming, the car population is growing fast,
the time being spent on the roads is increasing, and the fuel
and time wastage due to traffic snarl is definitely higher. On
the other hand, pleasure trips and joyrides also contribute
to more vehicles on the roads. Roadside hotels and motels
are increasing in numbers. The number of traffic signals is
steadily growing to regulate the escalating traffic. There is a
growing family of traffic management systems that automate
several aspects.

There is a realization that for further and deeper automa-
tion, big and streaming data analytics is the viable approach
and answer. There are integrated platforms (commercial-

grade and open source) for enabling both the activities. These
platforms are being made readily available in cloud envi-
ronments. Collecting all kinds of road, car, and traffic data,
carrying them to cloud platforms, subjecting the collected,
curated, and cleansed data to a variety of investigations to
arrive at decision-enabling insights, taking decisions on time,
and plunging into appropriate actions are the major compo-
nents in the workflow. However, with clouds being operated
at remote locations, the idea of real-time data capture, com-
munication, processing, decision enablement, and actuation
is out of question. Therefore, analytics professionals are of
the opinion that instead of leveraging off-premise, online and
on-demand cloud infrastructure, edge device clouds are rec-
ommended as the best fit for real-time data collection and
crunching to facilitate real-time decision-making and actu-
ation. Thus the faster the maturity and stability of the IoT
edge/fog computing signals, the more advanced are the traf-
fic management capabilities.

That is, there is a high synchronization between cloud-
based big data analytics and the IoT edge data analytics
through edge device clouds. But then, the pronounced advan-
tages of this design are not to be boasted, because the big
data analytics typically does deterministic, diagnostic, and
historical processing and mining. That is, the processing and
analytics logic have to be codedmanually and deployed. Still,
there are challenges in arriving at competent traffic manage-
ment systems. This paper has proposed a fresh and futuristic
attempt at producing viable, self-learning, and automated
traffic management systems.

1.3 Embarking on next-generation intelligent
transport systems (ITS)

Conventional IT-enabled ITSs are found insufficient and
obsolete in the increasingly connected and complicated trans-
port world. The fast-growing traffic conundrum insists on
highly sophisticated and technology-intensive solutions for
the transport world. Fortunately, the technology domain is
also on the fast track producing breakthrough technolo-
gies and tools for simplifying and streamlining the process
toward producing highly competitive and cognitive transport
systems and services. This section illustrates the famous
technologies enormously contributing to the faster realiza-
tion of next-generation transport solutions.

Traffic lights have become very prominent and perva-
sive in urban areas for enabling smooth flow of pedestrians
as well as vehicle drivers. There are high-fidelity video
cameras in plenty along the roads, expressways, tunnels,
etc. to activate and accelerate a variety of real-time tasks
for pedestrians, traffic police, and vehicle drivers. Wire-
less access points such as Wi-Fi, 3G, 4G, roadside units,
and smart traffic lights have been deployed along the roads.
Vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I)
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interactions enrich the application of this scenario. All kinds
of connected vehicles and transport systems need action-
able insights in time to derive and deliver a rich set of
context-aware services. Safety is an important factor for
car and road users and there are additional temporal as
well as spatial services being worked out. With driverless
cars under intense development and testing, insights-driven
decisions and knowledge-centric actions are very vital for
next-generation transports.

Every vehicle is connected. The in-vehicle infotainment
system is being fit in every kind of vehicle on the road.
This in-vehicle system acts as the centralized controller and
gateway for the outside world. They contribute to the com-
munication module capturing and communicating all kinds
of operational, health, and performance parameter values of
every significantmodule of the vehicle to faraway cloud envi-
ronments. A cloud-hosted intelligent traffic system (ITS) has
to be in place to act as the data cruncher, decision-maker, and
actuator. The ITS has to be highly introduced.

1.3.1 Fog/edge analytics through device clouds

Typically, cloud computing prescribes centralized, consoli-
dated, and sometimes federated processing through a vari-
ety of cloud models ranging from public, private, hybrid,
and community clouds to fulfill new-generation computing
needs. Now with the accumulation of distributed and dis-
similar devices emerging as the new viable source for data
generation, collection, storage, andprocessing, the cloud idea
is getting expanded substantially and skillfully toward the era
of edge or fog clouds, which is a kind of distributed yet local
clouds for proximate processing. That is, the growing device
ecosystem of resource-constrained as well as powerful fog
devices (smartphones, device and sensor gateways, micro-
controllers such as Raspberry Pi, etc.) in close collaboration
with the traditional clouds are emerging as a venerable force
for accomplishing the strategic goal of precision-centric data
analytics.

The next-generation data analytics is being expected to be
achieved through extended clouds, which is a hybrid version
of conventional and edge clouds. That is, the sophisticated
analytics happens not only at the faraway cloud servers, but
also at the edge devices so that the security of data is ensured
and the scarce network bandwidth gets saved immeasurably.
The results of such kinds of enhanced clouds are definitely
vast and varied. Primarily insights-filled applications and
services will be everywhere all the time to be dynamically
discoverable and deftly used for building and delivering
sophisticated applications to people. There are convincing
and captivating business, technical, and use cases for edge
clouds and analytics for discovering and disseminating real-
time knowledge.

1.3.2 Relevant and real-time vehicle and traffic information
through edge clouds

Edge analytics is gaining a lot of momentum these days.
With the edge devices being embedded with sufficient pro-
cessing, storage, and I/O power, they are individually as well
as collectively readied to participate in the mainstream com-
puting. These devices can collect and process any incoming
data and emit useful information in real time. The shared
information can help the various participating sensors and
actuators to plan and indulge in performing their activities
with cognition, clarity, and confidence. Vehicles on the road
are being stuffed with a number of purpose-specific and
agnostic sensors and actuators to proactively and preemp-
tively capture all the right and relevant data. The centralized
infotainment system or OBD dongle contributes immensely
to making smarter vehicles. The road infrastructure is also
fitted with various cameras, sensors, Wi-Fi gateways, and
other electronics to enable data gathering, aggregation, and
communication. The in-vehicle infotainment system readily
communicates, cooperates, corroborates, and correlates with
the road infrastructure modules to get synched up with one
another to collectively do the real-time and secure data cap-
ture, cleansing, filtering, decision enablement, and actuation.

Vehicles talk to one another as well as with the roadside
IT and electronics equipment to recognize and relay the real-
time situation on the road. The roadside infrastructure also
comprises a variety of sensors to measure the distance and
the speed of approaching vehicles from every direction. The
other requirements include detecting the presence of pedes-
trians and cyclists crossing the street or road to proactively
issue “slow down”warnings to incoming vehicles and instan-
taneously modifying its own cycle to prevent collisions.
Besides ensuring utmost safety and the free flow of traffic,
all kinds of traffic data need to be captured and stocked to
do specific analytics to accurately predict and prescribe the
ways and means of substantially improving the traffic sys-
tem. Ambulances need to get a way out through traffic-free
open lanes in the midst of chaotic and cruel traffic.

1.3.3 Digital twin

This is the latest buzz in the IT space. The ground-level
entities (physical elements) are being integrated with cloud-
based applications (cyber applications). This formal integra-
tion accordingly empowers the physical entities to join in
the mainstream computing. This is the overall gist of cyber-
physical systems (CPSs) and the Internet of things (IoT).
Primarily, scores of industrial and manufacturing machines
get integrated with remotely held applications and data
sources. This setup enables themachines to be extremely and
elegantly sensitive, responsive, and adaptive in their actions.
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Now, the idea of the digital twin is to have a correspond-
ing virtual image for a physical asset at the ground. That is,
the virtual entity has all the structural as well as behavioral
properties as the corresponding physical element. The digi-
tal twin is to have a dynamic virtual/digital representation for
each of the physical systems. This cloud-based virtual repre-
sentation helps to gain a better and deeper understanding of
all kinds of ground-level physical,mechanical, electrical, and
electronics systems and how they team up to collaborate, cor-
roborate, and correlate with one another in the vicinity. The
actions and reactions of these ground-level elements can be
easily visualized, modeled, studied, and articulated through
their corresponding virtual entities. There are other benefits
of having a virtual replica of physical things. Ultimately, the
fresh concept of digital twin takes the current IoT capability
to the next level.

1.3.4 The machine and deep learning methods

This is the hottest topic on the planet Earth at this point in
time. The data being generated and collected from different
and distributed sources are growing exponentially. That is,
it is the big data era. The data are simply multi-structured.
The data size, speed, scope, structure, and schema vary and
the hence it is a tremendous challenge to extract useful and
usable information out of big data for data engineers and
management professionals. There are a number of standard-
ized big data analytics solutions in the form of enabling tools
and integrated platforms. These analytical solutions typically
perform batch processing, which is not liked by many. We
are tending toward a real-time analytics of big data. That is,
extracting actionable intelligence in time out of big data is the
motto behind the recent advancements in the analytical space.
Another interesting and intriguing trend is the automated ana-
lytics. That is, next-generation analytics platforms are being
stuffed with a variety of learning algorithms to empower the
analytical platforms to self-learn, reason, train,model, under-
stand, and articulate newer evidence-based hypotheses.

1.3.5 Data lake for transport and traffic data heaps

Data lakes are becoming commonplace across industrial ver-
ticals. All kinds of multi-structured data get stocked in a
centralized place to be found, accessed, and used for extract-
ing useful insights out of data heaps. Data scientists are using
data lakes greatly in their everyday job. For setting up and sus-
taining insights-driven transport management systems, data
lakes are essential. We have object storage facilities in cloud
environments to facilitate the realization of data lakes. Appli-
cation programming interfaces (APIs) are being attached to
open up for the outside world to find and bind with data
collections to envision futuristic things.

1.3.6 Blockchain technology

This is quite a newparadigmgaining a lot ofmomentum these
days. This has found a lot of followers across various industry
sectors. This newly introduced technology brought in newer
possibilities and opportunities for the transport sector. There
are forecasts that as many as 54 million autonomous vehi-
cles will be on the road by 2035. As the number of vehicles
increases, so too will the volume of data. Also, by 2020,
there will be 8.6 million connected features in cars and there
are also estimates that there are up to 100 electronic con-
trol units in today’s cars. That equates to 100 million lines of
code.There are strategic use cases for the automotive industry
through the fast-evolving blockchain paradigm. Smart con-
tracts are being coded to bring in the required intelligence to
vehicles, traffic systems and databases, drivers, owners, etc.
All kinds of interactions and transactions between the vari-
ous participants get securely stored through the blockchain
database. Thus, in the days ahead, there will be closer and
tighter integration between vehicles and the fast-growing
blockchain technology.

The noteworthy factor here is that the smarter traffic sys-
tem has to learn, decide, and act instantaneously to avert any
kind of accidents. That is, the real-time reaction is the cru-
cial need and, hence, the concept of edge clouds out of edge
devices for collaboratively collecting different data and pro-
cessing them instantaneously to spit out insights is gaining
widespread and overwhelming momentum. Another point
here is that data flows in streams. Thus, all kinds of dis-
crete/simple, as well as complex events need to be precisely
and perfectly captured and combined to be subjected to a
bevy of investigations to complete appropriate actions. The
whole process has to be initiated at the earliest through a
powerful and pioneering knowledge discovery and dissem-
ination platform to avoid any kind of losses for people and
properties. Here, collecting and sending data to remote cloud
servers to arrive at competent decisions are found inappro-
priate for real-time and low-latency applications. However,
the edge data can be aggregated and transmitted to powerful
cloud servers casually in batches to have a historical diag-
nostic and deterministic analytics at a later point in time.

2 The proposed solution approach

We have come out with a real-time and cognitive traffic
congestion avoidance solution. Having studied the current
lacunae in the traffic management solutions, we have come
out with an advanced, extensible, and AI-inspired solution
to precisely and perfectly measure the traffic situation in real
time and the driver intention by leveraging the localized fog
analytics, the power of the digital twin along with the big
data processing using competent machine learning methods.
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Fig. 1 Solution approach diagram

The reference architecture for our solution is shown in Fig. 1.

2.1 The solution architecture description

There are three principal ingredients for enabling congestion
discovery and dispersal, avoidance, and prediction.

1. Gathering situational information in real time—the cur-
rent road and vehicle data through fog or edge data
analytics.

2. Gaining driver history, behavior, and intention through
machine learning (ML) and deep learning (DL).

3. Data lake at cloud for stocking historical information.
4. Intelligent transport system (ITS).
5. The virtual vehicle (VV) model—digital twin.
6. Blockchain as a service for vehicles.

The situational details are being captured through a vari-
ety of multifaceted cameras deployed along the road and
route. Secondly, the driven intention is captured and decided
through the VVmodel, which was explained above in detail.
The key device is the vehicle telematics system that acts as
the primary gateway between the car and the outside world.

2.2 Edge analytics-based virtual vehicle (VV)
networks

To address the traffic challenges, here is a viable proposal.
With the availability of powerful cameras and sensors along
the roads, bridges, expressways, tunnels, signals, etc., a
massive amount of real-time as well as historical data get
captured, collected, cleaned, and stocked to be crunched.One
of the decision-enabling factors for proactively and preemp-
tively avoid traffic congestion and snarl is to get the drive

Fig. 2 VV architecture

intention. Figure 2 vividly illustrates how the driver intention
is deduced from the various data collection and the digital
twin, which is formed through a virtual vehicle (VV) model.
The need here is to formulate a flexible and futuristic VV
model to enable machine and deep learning algorithms to
predict the driver intention with accuracy.

Since the proposed VV model makes decisions, it needs
detailed driver information, such as preferences as to which
lane the driver or automated vehicle is likely to select and
route plans that are together considered as ‘intention’. The
VVmodel can obtain scalable, real-timedriver intention data,
both captured locally from the vehicle, edge cloud, and the
remote cloud; by processing them in the edge and by interact-
ing with other VVs, VVs can predict other drivers’ intentions
in such a way that this intention information can be used for
a variety of scenarios. The VV is a virtual state of the vehicle
and driver, which is processed in the edge and exists in the
cloud.

The VV can interact with other VVs in the edge, where it
is not limited by communication and computation resources.
VVs for driverless vehicles can make decisions about path
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planning and interaction with other vehicles, while VVs for
non-autonomous vehicles can help driversmake decisions by
mining other drivers’ intentions. By obtaining data directly
from the cloud and actively communicating with other VVs,
the VV can coordinate with others to form a VV network
(VVN). The physical vehicle or traffic controller behaves
like an actuator on the road, acting upon directions from the
VVN to the edge.

The role of the digital twin in the form of virtual rep-
resentation for various physical, mechanical, electrical, and
electronics assets and artefacts is to grow further in the days
to come. The cloud centers emerge as the best-in-class IT
environment for activating and accelerating the digital twin
capability to produce actionable insights in time. The VV
model, the digital twin for the transport industry vertical, is
to be realized through integration with various contributing
systems to be adaptive.

That is, theVVmodel orchestrates through several entities
to be accurate and authentic. A variety of parameters are
incorporated to make the VV approach viable and venerable.

The localized data, being captured and filtered through
edge or fog devices, convey the realistic and real-time situ-
ation at the ground level. The traffic scenario, the road and
the vehicle data, and other useful information are collected
by fog devices and subjected to a variety of investigations to
extricate usable and useful information that can be commu-
nicated to the faraway and powerful clouds to synchronize
with the historical data to enhance the accuracy of the deci-
sions. The VV model comes in hand in contributing to the
knowledge discovery and dissemination. Finally, the ITS acts
based on the insights accrued.

2.3 Virtual vehicle (VV) model

Having discussed the various ingredients of the solution,
this section describes the VV model. In this VV model, we
describe various variables and parameters to arrive at a com-
petent VV model.

For more than a decade, multi-agent systems have been an
active area of research [1–5, 6, 7]. Agent technology, which
relies on distribution, provides a natural solution to the highly
distributed anddynamically changingproblemof trafficman-
agement and control. Although some existing approaches
utilizemulti-agents to solve traffic congestion, thesemethods
rely on traffic control centers; traditional agents cannot make
decisions for users. However, in our proposed model, the VV
is a virtual state of both driver and vehicle, and has personal-
ized knowledge of each vehicle, so that it can make effective
decisions compared to the existing agent-based models.

We have designed and developed approaches based on
multi-agent systems for several related problems [8–10]
and will leverage these approaches for the proposed VV
model. These agents can provide distributed data mining and

autonomous data to decisions using minimal computing and
networking resources without moving huge amounts of data
to analytic codes.

One of themajor challenges in the design of theVVmodel
is how to capture the intent information tomake decisions and
predictions for real-time control. We will leverage the exist-
ing approaches [11–20, 21–29] to capture the vehicle and
driver intentions and improve upon them to ingest the inten-
tion data for the proposed VVmodel. Most of the challenges
in VV modeling are technical problems that come from han-
dling large amounts of information and modeling highly
dynamic interactions. For example, the model constructed
should satisfy all potential VVs; the same vehicle with differ-
ent drivers, and different vehicles with the same driver, forms
different VVs. There are, therefore, a large number of VVs
to track and model. An additional layer of complexity comes
from the fact that each VVmust intelligently make decisions
according to dynamic traffic information, such as the flow of
the vehicles and their related information. Therefore, each of
the multitudes of VVs should have personalized knowledge
about the driver and the vehicle, another source of high infor-
mation load. The need forVVs to interact with each other and
achieve cooperation only increases the model’s complexity.
Another key challenge is how to describe the data—both the
objective information VV needs to operate and subjective
driver preference.

To address these challenges, we have designed the VV
model as shown in Fig. 3, with our rule engine at the core.
In the proposed VV model, network data would include the
information related to edge network, such as bandwidth and
boundary data. Sensor data would include the current GPS
coordinates, current speed, and average speed of the vehi-
cle. This dynamic vehicle information is captured in the
fact database, and the cache of these facts needed by the
knowledge session is stored in the working memory. The
knowledge base would include the interest reference, such
as scenic route; path preference, such as fastest route; and
driving characteristics information, such as rash driving. The
fact database and the knowledge base information would be
used by the learning agent to learn about the VV and cap-
ture the vehicle/driver intentions. Examples of the features
thatwould be captured in the individual action learning (IAL)
phase include the current speed, make, model, and year of the
vehicle. Example of the features that would be captured for
the joint action learning (JAL) phasewould include the emer-
gency situation.The features captured in the fact database and
knowledge basewould be processed in the rule engine to gen-
erate actions. An example of actions that would be generated
from the rule engine would include informing other VVs in
VVN of known traffic accidents, lane closures, etc. The VVs
coordinate with edge devices, cloud, and other VVs through
the execution agent (where the decision/action is generated)
and interaction interface (where the decision/action is exe-
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Fig. 3 VV model
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cuted through network). Please refer to the other resource
section of the facilities, equipment and other resources sec-
tion for one or more features that we identified as important
for a given action based on the preliminary study.

There are some key solutions needed to construct the VV
model, including the technology to translate the different
formats of incoming data, such as data from the roadside
sensor and the network data from the intelligent transporta-
tion systems (ITS). To meet these technological needs, we
plan to introduce the ontology needed to model the enor-
mous dataset that the proposed project will handle. Similarly,
the VVmodel requires technology to accurately describe the
driver’s knowledge. In the VV model, knowledge provides
the matching rules, and the VV makes decisions accord-
ing to the result of fact matching. However, different drivers
may have different knowledge, and drivers’ knowledge may
change from interaction with other VVs. The matching rule
must be accurate in describing the driver’s knowledge, min-
ing the user’s intentions, and capturing them in the VV
information space. Finally, VV interaction is another key
technology. In our interactive VV model, each VV may take
different actions in the same scenario, depending on each
driver’s intentions.

2.4 Virtual vehicle and driver intention learning
model

Since VV is a virtual state of both vehicle and driver, it must
learn the features of each through interaction; it must do the
samewith otherVVs, interactively learning their current state
and their intentions. Thus, the higher the number of VVs, the
easier and more effective would the learning be. Machine
learning (ML) algorithms have been traditionally applied for
learning [30–38, 39].

We have designed a deep learning technique, recurrent
neural networks (RNN), to harness the knowledge needed for
route selection. Recent studies have shown that deep learning
techniques such as long short-term memory (LSTM)-based
sequence to sequence RNNs perform better for connected
vehicle applications [40–42]. For this reason, we utilized
LSTM-based RNNs for VV learning. In this algorithm, a
fixed number of neural networks are set and neural networks
are used to be trained from new sample data each time. One
proposed research task is to deduce the generalizable theory
that underlies our already developed algorithm and verify
it; another is to leverage the learning approach algorithms
and techniques developed earlier for related problems [43,
44–47].
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2.4.1 Research challenges and future work
recommendations

The VV must interactively learn large amounts of infor-
mation both accurately and quickly. However, the present
approaches to learning all have high time complexity and
cannot be directly adopted for VV knowledge acquisition.
For this reason, fast, efficient learning is a key research chal-
lenge for this objective. To solve this challenge, we divide
the process of VV learning into two phases: the individual
action learning (IAL) phase, which uses an RNN model for
acquisition of knowledge of common functions, and the joint
action learning (JAL phase, which adapts the incremental
learningmodel to allowVVs to acquire other vehicles’ inten-
tions and knowledge through real-time interactions. The IAL
model consists of three layers: (1) the input layer, the fact
database of the vehicle acts as the input for the RNNs; (2)
the hidden layer, where we set an activation function and
a threshold to solve the nonlinear problem; the knowledge
base of the driver initializes the activation function and the
threshold in the RNNs; additional hidden layers can be set to
improve learning accuracy; and (3) the output layer is where
the VVs can obtain common knowledge, which can be stored
to give newly created VVs immediate knowledge. In the JAL
phase, VVs must quickly and effectively acquire knowledge
from the corresponding vehicle and driver and from other
VVs through online interaction using the incremental learn-
ing model. The JALmodel consists of four layers: (1) in JAL
layer one, each node represents an input variable and directly
transmits the input signal to layer two; (2) in JAL layer two,
each node represents the membership value of each input
variable; (3) in JAL layer three, each node represents the “if”
part of if–then rules obtained by the sum-product composi-
tion and the total number of such rules; (4) in JAL layer four,
each node corresponds to an output variable that is given by
the weighted sum of the output of each normalized rule. This
model allows the VV to dynamically learn from other VVs.
Moreover,we have real data, a set of taxicab traces containing
recorded GPS trajectories from more than 7000 taxicabs in
November of 2012 [48] thatwe can use to train ourmodel.We
will use the drivers’ experience and the taxis’ GPS trajecto-
ries as the input for the IALmodel and traffic conditions, such
as vehicle speed and weather, as the input for the JALmodel.

This research objective aims to produce a fast and deep
learning approach that will allow VVs to make correct deci-
sions for the driver and we will design several algorithms to
accomplish this goal. To evaluate this outcome, we plan to
use an existing dataset for testing purposes.

2.5 The intelligent ITS: VV coordination

Some of the existing vehicle cooperation approaches such as
vehicular ad hoc networks (VANET) and navigation-based

approaches lack the ability to coordinate automated vehicles
or communication between vehicles and traffic infrastructure
[6, 49, 50, 51–54] efficiently. Furthermore, data collection,
a key requirement for enabling routing and coordinating
services in the vehicular network, has recently attracted con-
siderable research interest.

3 Experimentation and results

To reduce data redundancy, we propose a VV cooperation
approach that is based on the use of a coalition game algo-
rithm in the cloud. In this approach, as shown in Fig. 2, each
VV need not upload its (possibly redundant) captured data
directly to the data center; instead, each VV interacts with
other VVs, forming a coalition to collect data cooperatively.
In our coalition algorithm, VVs first ascertain how captured
data can be gathered and then form coalitions by exchang-
ing this data gathering information. This coalition formation
means that members can individually contribute to a scalable
view of the data.

Our preliminary experiments were driven by the data from
TAPAS [55], a system that computes mobility plans for an
area population, generated from information aboutGermans’
traveling habits and the infrastructure of the areas in which
they live. We used the traffic simulation software SUMo
[56] to generate vehicle traces from real data. We divided
all the roads into 100 segments in an area of 600 m×600 m,
numbering each segment so that individual vehicles could
be linked to their trace. We used the following three related
algorithms to compare and evaluate the effectiveness of our
approach: (i) the Max Greedy algorithm, where the sensing
center selects a virtual vehicle that has the highest number
of non-repeated data blocks; (ii) the Min Greedy algorithm,
where a virtual vehicle is selected by the sensing center if it
has both the least number of non-repeated data blocks for the
sensing center and the least number of data blocks compared
with the last vehicles; and (iii) the random algorithm, where
virtual vehicles gather data and individually transmit it to the
sensing center in a random manner.

We evaluated our algorithm with the related algorithms
using two metrics: the ratio redundancy metric and the suc-
cess rate metric. The ratio redundancy is defined as follows:

ξ �
(∑n

i�1 Mi
) − M

∑n
i�1 Mi

,

where n denotes the number of virtual vehicles that can pro-
vide complete data with M blocks, and Mi (≤ M) denotes
the number of blocks that vehicle i can gather. The success
rate is defined as ρ� 1− nc

N , where nc denotes the number
of virtual vehicles in the stable coalition and n denotes the
total number of virtual vehicles in our experiments. This is
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Fig. 4 Experimental results for VV coordination. a Number of vehicles
vs. ratio of redundancy; b number of vehicles vs. success rate

based on the rationale that coalitions with fewer vehicles can
help achieve coordination faster. The results of our prelimi-
nary experiments, in whichM and n are set to 100 for rate of
redundancy and success rate metrics, respectively, are shown
in Fig. 4, which demonstrates that our approach is an effec-
tive way to solve data redundancy without central control.
Data collection is a relatively simple task for VVs in coor-
dination, but traffic management requires a huge number of
coordinated vehicles, and the coordinating process is more
complex than data collection.

Our paper illustrates a novel intelligent traffic manage-
ment framework. Intelligent traffic management is acquiring
special significance as the number of smart cities across the
countries is growing steadily. The much-needed intelligence
is realized by accurately predicting traffic congestions and
chaos at certain places andbyprescribing theways andmeans
of moderating the traffic jams and snarls.

The technologies and tools used are software-defined
cloud environments, digital twin, artificial intelligence (AI)
(machine and deep learning algorithms), data lake, real-time
data capture, storage, processing, analytics, decision-making
and action through IoT edge analytics, edge and public cloud
integration, etc. By leveraging the proven, potential, and
promising technologies, we arrive at a framework, which
guarantees the much-needed accuracy in decision-making
and subsequent actions. The digital twin is the virtual and
logical representation of physical assets and processes. There
is a direct communication between physical and digital sys-
tems to collect the latest data.

Machine and deep learning algorithms are capable of ana-
lyzing big data in real time to extract actionable insights in
time and the discovered knowledge gets disseminated to the
particular junctions and locations to streamline the traffic
movement in a smooth manner so as to avoid time wastage
in those places.

3.1 Research challenges and future work
recommendations

There are two key challenges to the coordination research
objective: (1) many VVs must achieve coordination with
each other in a short time; and (2) we must consider the
intention of every VV in the process of coordination. In our
VV architecture, as shown in Fig. 2, VVs can cooperate
and send the cooperative results to the vehicles to provide
a safe and pleasant experience for vehicles on the road. We,
therefore, propose an approach based on the contract net pro-
tocol to overcome the challenges of a virtual transportation
network. In our approach, we first assign weights between
two VVs; vehicles that may produce traffic congestion are
assigned traffic dispersion tasks. When a VV accepts the
task, it becomes a manager and is responsible for sending
and allocating the task to other VVs. These vehicles can then
communicate with other VVs to make decisions. We plan to
assess the proposed approach by validating the decisions that
the vehicles make.

4 Conclusion

The transport sector is poised for accomplishing better and
bigger things in the years ahead with the consistent flow of
path-breaking technologies and tools. A bevy of pioneer-
ing technologies in information, communication, sensing,
perception, vision, integration, knowledge discovery and dis-
semination, and decision enablement collectively are bound
to do a lot of greater things for the automotive industry. There
are already intelligent transport systems (ITS) and, now with
the addition of real-time information gathering and analyt-
ics, we can safely expect ground-breaking accomplishments
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for the transport and logistics industry verticals. The faster
proliferation of machine and deep learning algorithms along
with the evolving concept of digital twin and blockchain
goes a long way in bringing more sophisticated and smarter
cars, trucks, buses, ships, trains, rocket and satellites, aero-
planes, and other transport solutions. In short, it is going to be
a technology-splurged and software-defined world bringing
immense and immeasurable benefits for every citizen of this
planet Earth.
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