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Abstract
The experience of full automation without explicit user direction may induce anxiety among smart space users. The use of
explicit mediators between users and fully automated systems may help to mitigate users’ anxiety. While robots mediators are
one possible solution, several issues remain, including high complexity and limited collaboration between robots and smart
space platforms, reducing overall system reliability. This paper proposes the Integrated Control Architecture for Robotic
mediator in Smart environments (ICARS) as a solution to improve the integration and reliability of robot mediators within
automated smart spaces. Assuming relatively thin network robots as robotic mediators to enable a wide distribution with
less cost, ICARS provides a well-organized software framework consisting of three layers to integrate robots and smart
spaces: a flexible communication/device model, an adaptive service model for the integrated robot control architecture, and
a behavior-based high-level collaboration model. In this paper, we also present details of the design, implementation, and an
application scenario conducted with ICARS. The results show that ICARS enables flexible integration of the diverse devices
associated with robots and environments, adaptive service provision for collaborative services, and easier development of
high-level collaborative applications with decent performance.
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1 Introduction

Smart spaces are ordinary environments equipped with per-
vasive sensory and actuating devices that can perceive and
react to the daily activities of their occupants. Realizing this
vision requires situation-awaremediators that are able to cap-
ture users’ intents and perform pertinent services proactively
by organizing available resources in the spaces. According
to the vision put forth by Weiser [1] for situation-aware
mediators, the mediator was often seamlessly embedded and
invisible to the user in early implementations. However,
De Carolis and Cozzolongo [2] reported that 80% of sub-
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jects in an experiment they conducted felt uncomfortable
interacting with an invisible presence and without explicit
control over services, when they experience full automation
without explicit delivery of their own intention. In addi-
tion, humans tend to express concerns that complicated but
deficient technological products may harm them [36]. Such
user concerns are a barrier to the widespread real-world
deployment of smart space technology even when based on
successful laboratory-based smart home projects. Recently,
the concept of robotic mediators has been proposed as a
novel alternative to newmediating interfaces in smart spaces
[4,6–8]. The proposal is based on the idea that robots can be
employed as personal assistants acting as mediators between
the user and environment services using their robotic features
such as mobility and multimodal interfaces. More specif-
ically, the robotic mediators act as mobile and intelligent
interfaces to the environment and embody the role of friendly
companions to users. However, developing a robotic medi-
ator system is not straightforward because it must be able
to communicate and collaborate with diverse heterogeneous
devices and systems in the smart spaces. In addition, an ideal
robotic mediator should be lightweight to save resources like
memory and batteries reducing expenses for users. Thus, we
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Fig. 1 Architecture comparison

identify two major goals/challenges for successful robotic
mediator systems:

• The developers of robotic mediator systems should be
able to employ a well-designed software framework that
interweaves devices and services in an efficient manner.

• Some rich capabilities of a robotic mediator may not be
supported directly by the robotic mediator itself, but by
the other resource-rich components of the robotic medi-
ator systems (e.g., servers). However, complicated and
even varying real-world application development that
combines capabilities across devices is prone to extra
faults; thus boilerplate codes should be hidden from the
developers.

Existing software platforms for networked robots [9] are
immediate candidates for software frameworks for robotic
mediator systems. Their typical architecture commonly pro-
vides three abstraction layers: a communication model, a
device model, and an application model (Fig. 1a). The
communicationmodel hides the complexity of low-level pro-
tocols and provides uniform communication interfaces. The
device model encapsulates low-level device-specific details
and provides high-level device abstraction. The application
model provides a programming and execution environment
for applications built by device components. However, we
argue that existing robot software platforms are not suit-
able for robotic mediator systems for the following reasons.
First, communication models such as CORBA [10], UPnP
[11], and SOAP [12] used in existing platforms are for
general purpose and thus inherently heavy and complex. Sec-
ond, in terms of utilizing performance and functionalities
of robotic features, device models based on the general-
purpose communication models are also inefficient—e.g.,
support for streaming, event delivery, exception handling,
and Asynchronous Method Invocation (AMI). Finally, and
most importantly, we found that the component-oriented
application models in existing robot software platforms pro-
vide neither an explicit collaboration model at build time
nor integrated control architecture at runtime, each of which
is crucial to enable various types of collaboration among
devices and systems in robotic mediator systems.

To tackle these problems, we have developed a new
software framework for robotic mediator systems, called
the Integrated Control Architecture for Robotic mediator in
Smart environments (ICARS), supporting four abstract mod-
els as shown in Fig. 1b. We presented a series of interim
results of work-in-progress in previous papers [13–15]. In
Suh et al. [13], we introduced a new communication middle-
ware for robotic systems, called PLANET, which presented
our design rationales and performance evaluation for the pro-
totype implementation for processing primitive data types.
In Suh et al. [14], we presented a conceptual overview
of ICARS’s system architecture and experimental results
obtained in a proof-of-concept scenario. However, the sys-
tem architecture was not yet cleanly organized into the four
abstraction layers shown in Fig. 1a in Suh et al. [14], and
thus the collaboration among experimental systems was vir-
tually hard-wiredwithout a general collaborative framework.
In Suh et al. [15], we conducted performance evaluations
of PLANET, focusing on processing BLOB messages with
respect to simultaneous throughput, bandwidth occupancy,
and forward congestion.

The contribution of this paper is the complete and thor-
ough technical description of the design, implementation,
and evaluation of ICARS by extending and developing the
results of our previous work. The focus of our work is
twofold. First, we developed a new, efficient, and lightweight
communication middleware and a flexible device abstrac-
tion model that can effectively support a broad spectrum of
data types, control mechanisms, abstraction levels, etc., pro-
vided from low-level sensors to high-level legacy systems in
robotic mediator systems. Second, we try to provide smart
space application developers with full-stack-like abstraction
by devising the two-layered application model, a collabora-
tionmodel and control architecture. In addition to abstracting
out the resource limitation of thin robot mediators, this
approach enables more organized and reusable abstract com-
ponents such that programmers of robotic mediator systems
can develop a variety of situation-aware applications that col-
laborate with diverse devices and systems equipped in smart
spaces.

The remainder of this paper is organized as follows: Sect. 2
introduces related work. Section 3 presents a high-level
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Table 1 Comparison among major software frameworks for robotic mediator systems [15]

Solution Communication
model

Device abstraction Application
model

RT-Middleware [16] CORBA RT component Component composition

MARIE [17] ACE [18] MARIE component

OROCOS [19] CORBA OROCOS component

Orca [20] Ice [21] Orca component

Miro [22] CORBA CORBA IDL

ROS [23] RPC services ROS IDL

Player [24] Proxy object Device repository Service composition

RobAIR [25] UPnP OSGi [26] component

UPnP Robot Middleware [27] UPnP UPnP device

Semantic URS [28] SOAP Web service

PEIS ecology [29,30] Tuple space PEIS component Task planning and self-configuration

ICARS (proposed) PLANET PLANET IDL State transition among composite
behavior trees

overview of ICARS’ architecture and the functional roles
of each layer. Section 4 gives a detailed description of each
layer of ICARS. Section 5 presents experimental results asso-
ciated with the implementation of ICARS. Finally, Sect. 6
concludes this paper.

2 Related works

As illustrated inTable 1, this section covers several categories
of abstraction models which might have been adopted for
robotic mediator system software frameworks.

2.1 Middleware-based compoment platforms

RT-Middleware, MARIE, OROCOS, Orca, Miro and ROS
are all middleware-based component platforms, supporting
general collaboration of robots and the environments. Since
every constituent device is mapped to a reusable component,
application programmers can compose such components
to build more complex and composite components. The
communication model among the components is based on
general-purpose middleware such as CORBA, ACE, and Ice.

Although this approach seems sufficient to serve for
robotic mediator system software frameworks in the sense
of abstraction, it has some limitations: first, sufficient flexi-
bility or extensibility is not provided for the robotic mediator
systems, because any devices in the engaging smart envi-
ronment must follow the component model, which is strictly
dedicated to a specific robot software platform. Moreover,
because existing robot software components are provided at

levels that are relatively too low, modeling higher-level col-
laborations just by composing them entails high levels of
complexity.

2.2 Service-oriented device abstraction frameworks

Service-oriented device abstraction frameworks like Player,
RobAIR,UPnPRobotMiddleware, andSemanticURSmight
be the next candidates for robotic mediator system software
frameworks. They adopt communication middleware tai-
lored for their service models and provide device abstraction
models based on common object-oriented service interfaces.
In these approaches, robots can be regarded as multi-capable
service containers, rather than as collaborating counterparts
having their own control architectures.

However, these approaches lack collaboration models or
robot control architectures, which might be serious limita-
tions as roboticmediator system software frameworks; appli-
cation programmers in this case have to develop everything
they need to collaborate. Especially low level integration
of heterogeneous devices would become serious burden to
application programmers.

In addition, general purpose service-oriented communica-
tion protocols (like SOAP and RESTful interaction) between
robots and middleware are not appropriate for robot medi-
ators at all, because a thin and lightweight robot mediator,
often emulating their capabilities located in remote servers,
might handle different kinds of data from traditional service-
oriented systems; it should send and receive continuous
sensory event streams and asynchronous controls at once.
Similarly, we found that modern publish/subscribing inter-
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action between typical devices (like MQTT) dedicated to
message queues for quick, but relatively unreliable conver-
sations are not appropriate either for robot mediator system
software framework, because such protocols are not robust
enough to support sequential information on controls while
handling sensory event streams.

2.3 Task planning frameworks

Task planning frameworks like PEIS ecology differ from
other service-oriented approaches in that they support task
planning and self-configuration. Namely, to achieve a high-
level goal, a component generates an action plan to perform
the task and dynamically composes components to execute
each action sequence by generating a suitable configuration,
i.e., a set of connection between components. Thus, a task
planning framework is adaptable to highly dynamic environ-
ments in which available components are self-configured to
cooperatewith others to perform a sequence of actionswhose
control flow can be formally defined such as fetch and carry
tasks.

When it comes to robotic mediator system software
frameworks, however, it is not applicable to the tasks that
have complex and ad hoc control flows such as a number
of human–robot interactions and composites of sequential
and/or concurrent executions. In addition, PEIS does not
provide any task selection mechanism that is prerequisite
for robotic mediators to mediate situation-aware services
between users and smart environments.

2.4 IoT frameworks

Recently, AWS IoT [31], Google Brillo [32], Allseen/Alljoin
[33], Eclipse SmartHomes [34] and more software frame-
works for Internet of Things and ubiquitous systems [37]
have been suggested for practical usage. These trendy IoT
frameworks could be deployed for robotic mediator sys-
tem software frameworks, considering a robotic mediator
just as a Thing. However, with highly different goals, they
have limitations when used as robotic mediator system soft-
ware frameworks. Most of all, their major target applications
depend on sensors rather than actuators; yet, it would be a big
burden to the application developers to implement complex
behaviors of robotic mediators like moving around subjects
and doing missions collaborating with subjects and frame-
works at once.

Some of the vendors above also support separate robotic
APIs. However, such APIs are dedicated to specific devices
(that is, robots) and aim for the device-specific applications
like robot arms, but there have been no noticeable attempts
of the vendors to link them tightly to IoT frameworks yet.
For instance, AWS Robotics [35] is dedicated to a specific
device and aiming for the device-specific applications like

robot arms, but without any noticeable attempts of the ven-
dors to link them to IoT frameworks yet.

Model-driven approaches for ubiquitous applications [37]
introduce well-defined middleware which hides complex
details like network supports from developers of ubiquitous
system-based applications. However, having a different goal
from ours, this paper does not seem to have a device model or
separate models like ICARS. It does not have to concentrate
on handling moving objects like robots either; thus problems
including network disconnection by moving objects do not
have to be considered to solve in their works.

3 System overview

Figure 2, a detailed version of Fig. 1a, shows the system
architecture of ICARS. ICARS consists of three layers, each
of which communicates with adjacent layers based on the
communicationmiddleware, called PLANET.While the bot-
tom layer (device framework) is for various devices equipped
in the robot and smart environments, the two upper layers
(collaboration model and control architecture) are for the
mediating server. In the figure, an arrow denotes the direc-
tion of an event, data, or a control flow. Note that there is no
direct communication among devices including a robot in the
physical environment, but instead, all the sensory events are
delivered to a smart space server, which controls devices by
invoking their remote interfaces. This means that the server
can be installed on a separate platform, such as a home server,
and can operate remotely through the communication mid-
dleware.

In this section, we present a high-level overview of the
system and the functional roles of each layer with an intro-
ductory robotic mediator system scenario. In this scenario,
we assume that there are four devices in the environment and
a robotic mediator, as shown in Fig. 3. Utilizing the capabili-
ties provided by the devices, the role of the roboticmediator is
to perceive two modes of the user’s situation, i.e., rest mode
and sleep mode. In the case of rest mode, the smart space
server controls (turns on/off, changes channels, and volume
up/down, etc.) the TV and/or plays music according to the
voice commands from the users. When a user is located in
the bedroom and it is time for the user to sleep, it should turn
off the interior lightings, play calm music for a while, and
patrol the house by getting around some waypoints.

3.1 Communication framework: PLANET

We developed a new TCP-based remote object invocation
framework that enables a robotic mediator to communicate
with the various devices in the target environment. For exam-
ple, in Fig. 3, by invoking a remote object’s method, the
mediator can receive the user’s voice commands through
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Fig. 2 The overall system
architecture of ICARS

Fig. 3 System configuration of a simple service scenario

the microphone device and control the television device
according to the commands. The four types of objects in the
ICARS architecture—Device, Service, Behavior, and Task—
collaborate with each other using PLANET (The four types
are explained in more details in later sections.).

3.2 Device Framework (DF)

To enhance the flexibility and extensibility of device inter-
operability, we separate the process of device interoperation
into two phases: device abstraction and device adaptation.
Device Framework (DF) provides a device abstractionmodel
to interoperate with heterogeneous devices by extracting the
common capabilities of each device’s type. The rectangles
inside device framework in Fig. 4 represent Device objects,
each of which is the abstraction for the device’s capabilities.
Each device in the physical environment exports its capa-

Fig. 4 Objects in each framework of ICARS’ implementation of a sim-
ple service scenario

bilities to the smart space server by registering its reference
to a service registry in the Collaboration Model (CM) layer.
During the registration process, the reference of each device
object is adapted to a Service object, which results in logi-
cal pairing between the two. For example, in Fig. 4, theMic
device has sensory capabilities for recording sounds. When-
ever a microphone detects sounds in a physical environment
it delivers the recorded data in the form of a sound event
to the SoundSensor service object in CM. Because the TV
device exports its capabilities for controlling a television,
the TVControl service object in CM can remotely control a
television in a smart environment.
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3.3 CollaborationModel (CM)

Between device abstraction in DF and actual application
development in CA, we let an intermediate layer called
Collaboration Model (CM) bridge them, supporting Service
objects as the circles inside CM in Fig. 4, and a behavior
model to support collaboration among the multiple Service
objects represented. CM consists of two sub-layers, a Ser-
vice Framework (SF) and a behavior abstraction model. SF
provides an adaptive servicemodel and a unified service con-
tainer for service providers.

The adaptive servicemodel adapts the registered low-level
device capabilities into more complex high-level services.
The service container provides the upper layerwith a uniform
service model by integrating and managing the adapted ser-
vices. For example, in Fig. 4, the SoundSensor service detects
speech segmentation, records it into PCMdata, and publishes
a sound event; then, the SpeechRecognizer service receives
speech data as input and recognizes the speech. In this case,
the two services can be combined into a new and more com-
plex service type called SpeechSensor, which detects speech
segmentations, recognizes the speech, and publishes a speech
event containing a symbol of the recognized speech, e.g.,
“turn on the TV”.

However, developing collaboration applications bydirectly
exploitingSF is still non-trivial because application program-
mers have to understand all the semantics of the low-level
service interfaces and events. Moreover, even when they
know the semantics, the applications tend, in general, to be
complex and non-modular, which results in poor reusabil-
ity. To address these problems, we introduce an additional
layer that encapsulates the low-level details of the service
layer and provides high-level abstraction for the collabora-
tive services. A Behavior, the smallest unit of collaboration,
has its own service logic by which it discovers required
service objects and coordinates their execution. For exam-
ple, in Fig. 4, a VoiceTVControl Behavior receives speech
events (“turn on/off the TV”, “changes channels”, “volume
up/down”, etc.) from a SpeechSensor Service object and
invokes remotemethods (“setPower”, “setChannel”, “setVol-
ume”, etc.) of a TVControl Service object accordingly.

3.4 Control Architecture (CA)

Control Architecture (CA) helps application programmers to
develop a variety of applications collaborating with diverse
services of the robot and smart environments more easily.

Task framework provides a situation-aware application
model. A Task represents a top-level collaborative applica-
tion that the robotic mediator should execute in a certain
situation. It ismodeled as a composite ofBehaviors, as shown
in Fig. 4. The tree structure of a Task is organized in such
a manner as to achieve its unique goal in the given situa-

tion. For example, in Fig. 4, a RestMode task has the goal to
“provide users with relaxation”. In the execution of the Rest-
Mode task, the VoiceControl behavior is executed as a child
behavior and subsequently executes two child behaviors, the
VoiceTVControl behavior and the VoiceAudioControl behav-
ior, in a nested manner.

Task Execution Engine provides statechart-based envi-
ronments for task selection and task execution in which a
variety of Task objects are loaded and executed according to
their own collaboration policy. A Coordinator coordinates a
number of Task objects to be selected and scheduled appro-
priately according to the current situation and the intent of
the user. For example, in Fig. 4, the Coordinator will switch
the current task, RestMode, to another task, for instance the
SleepMode, considering the user location (bedroom) and the
current time.

4 Software framework

In this section, we describe each layer of ICARS with more
details.

4.1 PLANET

Considering the lessons learned from field studies and expe-
rience in the robotic mediator domain, we argue that a
communication framework for robotic mediators in smart
environments should support the following robot-specific
features:

• Lightweight The entities communicating with each other
in a robotic mediator system include not only general
computing systems, but also embedded systems whose
computing resources are relatively limited. Therefore,
a lightweight protocol is needed to marshal/unmarshal
messages to/from compact binary format tominimize the
size of the message payload.

• Platform independence The devices in the robotic medi-
ator system can be implemented in various programming
languages over the different kinds of OS platforms.
Therefore, a communication framework that is not bound
to a specific platform and programming language is
needed. Specifically, support for heterogeneity with
the operating systems and programming languages is
required.

• Disconnected operation The sensors and actuators in
the robot platform may resort to the wireless network
because of their mobility. Because wireless communica-
tion channels are inherently unreliable and intermittent,
the framework should not only support disconnected
operations but also provide application developers with
a transparent reconnection mechanism.
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Fig. 5 The two-layered architecture of PLANET

• Support for binary, stream, and event data In the robotic
mediator system domain, a typical message payload
transmitted among devices varies from small-size con-
trol data to large-size multimedia binary data. Thus, the
communication framework needs to consider efficient
means of transmitting or streaming large-sizemultimedia
data such as voice and image. Moreover, the framework
should support event delivery of complex sensory data
from diverse sensors in the environment.

• Support for thin client/server Smart environments consist
of a broad spectrum of device platforms that have diverse
computing power. The framework needs to provide a
flow control mechanism to regulate the performance gap
between the client device and the server device.

• Support forAsynchronousMethod Invocation (AMI)Typ-
ically, a robot may perform operations of a long duration
(multi-seconds) to complete amission, such as robot nav-
igation and speech synthesis. Thus, it is required that a
client should be able to handle these operations asyn-
chronously so that the need to block it until operations
are completed does not arise.

Considering these requirements, therefore, we propose a
newcommunication framework, i.e., PLANET.PLANET is a
general-purpose communication middleware that is based on
the object-oriented remote object’s method invocation. How-
ever, it is distinguished from existing middleware in that it is
tailored to accommodate robot-specific features for a robotic
mediator collaborating with smart environments. Figure 5
shows the layered architecture of the framework and the key
components of each layer.

4.1.1 Message transfer layer

The role of this layer is to support reliably the connection
with multiple communication peers and efficiently exchange
messages bi-directionally through the connections. Figure 6
shows the encoding structure of amessage header in themes-
sage transfer layer. The magic field is a four byte integer

Fig. 6 Encoding protocol of a message header in the message transfer
layer

Fig. 7 Encoding protocol of six types ofmessages in themessage trans-
fer layer

value to discriminate PLANET messages from others. The
length field is the total message size, including the header
itself. The msg# a unique identifier for a PLANET message
that is needed to identify frames in the same message. The
frame# a frame sequence number divided from a message.
The final field signifies whether the frame is the final frame
of a message. Followed by version numbers, the code indi-
cates the type of amessage. There are six types ofmessages in
the transport layer: CONNECT, CONNECT_ACK, HEART-
BEAT, HEARTBEAT_ACK, DATA, and
DATA_ACK.

Figure 7 shows the encoding structure of messages for
each of the six message types in the message transfer
layer. The Connection Manager is in charge of connect-
ing/accepting connection requests to/from servers/clients. A
client sends a CONNECT message to a server to connect
with it, and the server sends back a CONNECT_ACK mes-
sage to the client as a means of handshaking. A 〈connect〉
is a message from a client to a server to request establish-
ment of a PLANET connection. The PUN field is the unique
identifier of the client, which corresponds to a string com-
posed of 〈ip〉‘:’〈 port#〉 〈connect_ack〉 is a message from
the server that receives a 〈connect〉 message from a client
in reply. After receiving a 〈 connect〉 message, the server
can accept or deny the request for connection. In the case of
acceptance, the server sends the byte code 0x00 followed by
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Table 2 Encoding the protocol
of message payloads for data
types supported in PLANET

Type name Encoding (Backus–Naur Form)

Byte 〈byte〉::= b8 # 8 bit

Short 〈short〉::= b16 b8 # 16 bit, big-endian

Int 〈int〉::= b32 b24 b16 b8 # 32 bit, big-endian

Long 〈long〉::= b64 b56 b8 # 64 bit, big-endian

Float 〈float〉::= b32 b24 b16 b8 # floating number

Double 〈double〉::= b64 b56 b8 # floating number

Boolean 〈boolean〉::= 0x01 | 0x02 # (true | false)
String 〈string〉::=〈int:length〉 b*length # UTF−8 encoded

Binary 〈binary〉::=〈int:length〉 b*length # BLOB

Enum 〈enum〉::=〈int:ordinal〉
Valued 〈Valued〉::= {〈field〉}

〈field〉 ::= 0x00

| 0x16 〈short:ref_number〉 # to other field

|〈typed〉 # type

Remote 〈remote〉::=〈string:identifier〉 # identifier

〈string:path〉 # identifier

Stream 〈stream〉::=〈int:channelId〉
Exception 〈exception〉::=〈string:exception_typecode〉〈string:details〉
event 〈event〉::=〈Sequence〈string〉:event_type_class_names 〉

〈int:event_property_count〉
(〈string:event_property_namei〉〈typed:Event_property_value〉)*
〈Event_property_count〉

Sequence 〈sequence〉::=〈int:count〉 (〈nestable:elm_data〉)*count

its ownPUN;otherwise, it sends the code0xff followedby the
reason for denial. Robots and devices in smart environments
usually resort to unstable wireless networks, which are prone
to intermittent disconnection. TheConnectionManager peri-
odically exchanges heartbeatmessageswith all the connected
devices to detect unexpected disconnection. On detecting an
abrupt disconnection, the Connection Manager notifies the
occurrence of failure to the listeners so that they can han-
dle the exception in their own way. Moreover, it supports
graceful recovery from failures by periodically attempting
to connect to the disconnected devices until they are recon-
nected. Finally, it also notifies the listeners about the new
connection.

After establishing a connection, the two connected peers
exchange data through the connection. More specifically, the
client/server sends requests/replies to the server/client in the
form of DATA messages. A 〈data〉 is a message exchanged
between a client and a server after a connection is established
by the 〈connect〉 message and the 〈 connect_ack〉 message.
A 〈data_ack〉 is a message from the receiver of a 〈data〉mes-
sage to acknowledge receipt of the 〈data〉message. In devices
such as robotswith both sensors and actuators, both large-size
binarymultimediamessages and small-size controlmessages
are usually processed simultaneously in the same connec-
tion. In such cases, the small-size messages may suffer from

congestion owing to the large-size messages. To avoid the
congestion, every message is divided/merged into/from the
fixed-size (16 K) frames by the Frame Divider/Merger. Sub-
sequently, the I/O scheduler multiplexes/demultiplexes the
frames based on the frame# in the message header to pre-
vent exclusive use of a connection. Furthermore, the Flow
Controller controls the flow of message transfer by applying
a handshaking protocol in the course of message exchanges
based on the control code field of the 〈data_ack〉 message.

4.1.2 Remote method invocation layer

This layer provides a typical mechanism (employed in RPC
systems) for remote method invocations between remote
objects: stubs and servants. A stub for a remote object acts
as a client’s local proxy for the remote object. The caller
invokes a method on the local stub, which is responsible for
carrying out the method call on the remote object. A servant
for a remote object implements the same set of interfaces
that a remote object implements. Table 2 shows the encod-
ing protocol of message payloads for data types supported in
PLANET. The Serializer/Deserializer is in charge of encod-
ing/decoding message payloads. PLANET supports various
user-defined data types as well as primitive data types. The
primitive types include void, Boolean, byte, short, int, long,
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Fig. 8 Encoding the structure of amessage header in themessage trans-
fer layer

float, double, string, binary, and stream types. Sequence
types for every data types are also supported. The user-
defined types include enum, valued, event, exception, and
remote. Among the user-defined types, enum, valued, and
event types follow “pass-by-value” when they are passed as
arguments or return values of a method invocation, whereas
the remote type follows “pass-by-reference”. Support for
streaming is very important in smart environments as it
reduces the response time for processing multimedia data.
Thus, PLANET supports stream type as a native primitive
type. Once a set of stream data is passed as an argument or
the return value of a remote method invocation, a channel
for a remote input stream is constructed over the network
between the local caller and the remote callee. Subsequently,
the receiver of the stream data can read data from the channel
as much as it needs by receiving the streammessage. Finally,
events are the most efficient method of delivering sensing
information from sensor devices in robots and environments.
PLANET also supports event type. An event consists of a set
of properties. Once a set of event data is passed as an argu-
ment or a return value, the receiver can get the value of the
properties using the name of the property as a key.

Figure 8 shows the encoding structure of a message
header in the message transfer layer. Message Handler
encodes/decodes the header of messages in the RMI layer.
There are five types of messages in the RMI layer: CALL,
REPLY, ERROR, NOTIFY, and STREAM. The CALL
message and the NOTIFY message correspond to request
messages. Thus, they are encoded/decoded by the Request
Manager. As depicted in Fig. 8, the request messages con-
tain the servant path of the target remote object as well as
information about the function call such as method name and
argument lists. The encoding of a NOTIFY message is the
same as that of a CALL message. The only difference is that
the NOTIFYmessage is a one-way method call that does not
wait for a reply to the call. In the case of CALLmessages, the
Request Manager registers the request to the pending request

Fig. 9 Device abstraction model in DF of ICARS [14]

list using the request_id of the message as a key. The REPLY
message and the ERROR message belong to the reply mes-
sages handled by the Reply Manager. The Reply Manager
encodes/decodes the reply messages and passes them to the
Serializer/Message Handler. The REPLYmessage is a return
value for a remotemethod call and the ERRORmessage con-
tains the exception object thrown by the remote method. The
Message Handler passes the return value/exception object to
the caller object by referring to the pending requests list.

4.2 Device Framework (DF)

Device abstraction inDFenables device providers to focus on
implementing the minimal primitive functionalities of each
device based on common device models without considering
interoperability issues. As shown in Fig. 9, a Device is com-
posed of a number of Capabilities. A Capability is required
to provide a Remote Interface that has Operations, each of
which performs an actuating function. Optionally, a Capa-
bility can publish an Event that has Properties, each of which
contains sensing data. Consequently, the proposed device
abstraction model does not impose any restriction on data
types, control methods, abstraction levels, and others, but
simply specifies remote method interfaces to perform func-
tionalities and event types to deliver sensing information.
Consequently, device providers can model a broad spec-
trum of devices, i.e., from low-level embedded sensors to
high-level legacy systems. Furthermore, the device model
can exploit robot-specific features such as native support for
stream and event types by using PLANET IDL.

4.3 CollaborationModel (CM)

4.3.1 Service Framework (SF)

Device adaptation in SF adapts (extends/shares/composes)
the device’s capabilities into the more complex high-level
services. Figure 10a depicts an example of device adapta-
tion. When a device exports its capabilities to the device
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Fig. 10 Examples of service framework

Fig. 11 Behavior abstraction model and its example

registry of SF, SF creates a service container for adaptor
objects by wrapping the remote reference of each capability
of the device to be inserted. In the case of sensory capabili-
ties, the adaptor object subscribes to the event channel of the
sensor to receive events. The adaptation process may involve
device capabilities augmentation, as shown in Fig. 10b. A
robot device provides only a Camera capability, which is
then adapted to aCameraFactory service to make it sharable.
Another device also provides vision-based recognition capa-
bilities. By combining these two device capabilities, two new
high-level services are augmented in the service container.
Object(Face)Sensor captures an image from a camera, rec-
ognizes objects (faces) in the image, and publishes an event
containing information about the objects (faces).

4.3.2 Behavior abstraction model

Whereas a service is a passive object that performs the oper-
ations invoked through remote interfaces, a behavior is an

active object that has its own lifecycle. As shown in Fig. 11a,
a behavior starts with execution of an entry function. While
running, it reacts to a number of ECA rules. Specifically,
when it receives an event (Event), it evaluates the expressions
of the condition (Condition) whose values are updated from
properties of the event. According to the evaluation result,
it performs actions (Action) such as service invocations and
event propagation. Finally, it ends with the exit function. In
the entry, a behavior typically tries to discover actuator ser-
vices to control and it subscribes to sensor services to receive
events therefrom. In contrast to entry, a behavior releases
all the resources obtained from actuator services and unsub-
scribes from sensor services in the exit function. For example,
LookAtSound (see Fig. 11b) is a behavior of a robot that turns
its head to the direction of a sound source. In the entry func-
tion, it discovers aMoveHead service and a SoundLocalizer
service andbinds them to itsmember variables.As theSound-
Localizer is a sensor, it subscribes to the SoundLocalizer so
that it can receive sound events. In the handleEvent function,
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Fig. 12 Composite behavior
model

the behavior reacts to a single ECA rule represented by an
if clause. The rule checks whether the received event is an
instance of SoundLocalized event or not and, if true, it turns
the head to the direction of the sound source obtained from
the event property. In the exit function, it unsubscribes from
and releases the services.

Figure 12adepicts the behavior-based collaborationmodel
with a composite structure. The non-terminal nodes in a tree
structure are composite behaviors whose execution seman-
tics are either sequential or concurrent. Whereas in the case
of the sequential composites every child node is executed in a
predefined order, all child nodes start executing in parallel in
the concurrent composites. The life cycle of a child behavior
is completely dependent on its parent’s life cycle. Specifi-
cally, any child behavior can only be created by a parent and,
when that parent is destroyed, it is automatically destroyed
as well.

Figure 12b shows event propagations among nodes in a
behavior tree. The general rule is as follows: “Every event
that a node propagates will be sent to its parent and all the
siblings”. The rule implies that, in a behavior tree, every
event originated from a node is propagated to ancestors and
their siblings until it reaches the root node. A behavior can
perform some kinds of event processing in the course of event
propagation. In this way, low-level events from the bottom-
level nodes are interpreted to more abstract events as they are
propagated toward the top-level nodes of a tree.

• Filtering Does not propagate the received event.
• Interpretation Interprets an event, converts it to another
event type, and propagates the new event.

• AggregationAggregates multiple events to another event
type and propagates the new event.

Fig. 13 Control architecture [14]

4.3.3 Control architecture

Figure 13 presents the control architecture of ICARS, in
which every situation-aware application is represented as a
statechart diagram. Each state in the statechart is bound to a
Task that encapsulates a composite behavior for the robotic
mediator to perform in a situation. A Coordinator schedules
the state transition of the statechart diagram according to task
events generated by interpreting the top-level events of each
composite behavior, which enables the robotic mediator to
cope with various situations.

Figure 14 shows the architecture of a runtime engine that
executes situation-aware applications. The tree structure of a
composite behavior of each task in the situation-aware appli-
cation is described in a collaboration policy description file,
as shown in Fig. 15. In the runtime, the Collaboration Man-
ager loads a collaboration policy from the Policy Repository,
creates a Coordinator instance by feeding a policy instance
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Fig. 14 Architecture of runtime task execution engine [14]

Fig. 15 Example of a collaboration policy

parsed by the Policy Parser to the Policy Factory, and starts
the Coordinator instance. The Coordinator instance con-
structs a statechart diagram by assigning a state to each Task.
After constructing the statechart diagram, the Coordinator
initializes the statechart to an initial state. The initial state
creates an instance of the assigned Task and starts the Task
instance. Once the Task instance has started, it again creates
an instance of the top-level composite behavior and starts the
behavior instance. In this way, the nested composite behav-
ior tree will be unfolded down to terminal nodes. During the
process, the behavior instances execute various collaborative
services as well as propagate situation events. Accordingly,
the Coordinator can provide users in smart environments
with situation-aware collaboration services by transiting to
the state appropriate for the user’s intent.

5 Results and discussion

In this section, we describe the overall process of developing
an experimental environment that provides the situation-
aware application introduced in Sect. 3 using the ICARS
framework. The environment is used to verify the functional-
ities and effectiveness of the proposed framework according
to the following three criteria: (1) Can the diverse devices
in the robot and the environment be implemented and inte-
grated in a flexible manner? (2) Can the variety of services
required to compose collaborative services be provided in
an extensible manner? (3) Can the applications performing
high-level collaborative services be developed with ease?

However, meeting these criteria, all together at once, is
hard to measure numerically for programming models as in
usual model-driven programming researches. Thus in this
paper, we try to show the feasibility of our system, by includ-
ing the real-world deployment example instead. We believe
that this effort justifies flexibility, extensibility and structural
usage of the real-world scenario.

5.1 Device implementation

As shown in Fig. 16a, the experimental environment is a
model of a house with one bedroom and one living room.
Each room has two static devices whose positions are fixed
to specific locations. The house also has a mobile platform
that can move around the rooms freely, i.e., a robot, equipped
with four devices. With the device abstraction tool provided
byDFof ICARS,we, in the role of device providers, defined a
device type for each device and implemented the capabilities
of the device type. Table 3 summarizes the device types and
their capabilities for the devices in the experimental house.
At runtime, each device is represented by a Device object,
which is registered to SF of the mediator through PLANET,
as shown in Fig. 16b.

5.2 Service implementation

During the device abstraction phase, all the device types
defined in DF are exported to the SF. We, in the role of ser-
vice providers, defined and implemented a primitive service
type for each exported device type by wrapping the device’s
capabilities as shown in Table 4.

In addition to the primitive service types, we supplement
SF with additional service types that extend the functions
of the other service types, as shown in Table 5. At runtime,
during the device registration phase, SF creates 15 Service
objects, 1 for each of the registered Device objects and the
complex service types, thereby enabling Behavior objects to
select appropriate services from the Service objects in the
service container of SF.
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Fig. 16 Experiment environment and system configuration

Table 3 Device types for the
devices in the experimental
house

Place Device Capability Function

BedRoom WebCam ImageCapturer Captures camera images in JPEG
image format

Luminaire LightControl Controls an interior lighting

LivingRoom TV PowerControl Controls the TV power

ChannelControl Controls the TV channels

VolumeControl Controls the TV volume

WebCam ImageCapturer Captures camera images in JPEG
image format

Robot Mic SoundRecorder Detects a sound, records it in PCM
format, and publishes a
SoundEvent

Speaker PCMPlayer Plays PCM data through a speaker

Wheel Navigation Navigates a robot to a target
position

WebCam ImageCapturer Captures camera images in JPEG
image format

5.3 Behavior implementation

Based on the behavior abstraction model, we defined five
primitive behavior types encapsulating collaboration among
Service objects and implemented a behavior factory for each
behavior type, as shown in Table 6.

5.4 Control architecture implementation

In the role of application programmer, we define and imple-
ment a self-contained task (Observation) to detect the user’s
current situations and two tasks with composite behavior
tree structure (RestMode and SleepMode), each of which
is responsible for handling its own situation, as shown in
Fig. 17a. Finally, we define a state transition diagram among
the three tasks as a control architecture for the experimental
application, as shown in Fig. 17b. At runtime, the applica-
tion is started by entering the initial state, i.e., executing the
Observation task. TheObservation task infers the user’s cur-

rent situation by analyzing his/her contexts, such as current
location and daily schedule pattern.

Figure 18 illustrates the execution of the experimental
application. The Observation task propagates a TimeToRest
eventwhen it detects that a user is sitting on the bed or the sofa
to take rest. On receiving a TimeToRest event, the coordinator
makes a state transition from theObservation task to theRest-
Mode task (see Fig. 17b). Figure 18a shows snapshots of the
execution of a composite behavior tree in the RestMode task,
i.e., the VoiceControl behavior. Specifically, after a mobile
robot arrives at the user’s current location (GoToUser), it
subsequently supports the user with watching TV (VoiceTV-
Control) or listening music (VoiceAudioControl) according
to the user’s voice commands.

In the case where the Observation task detects that a user
is lying on his/her bed at night, it propagates a TimeToSleep
event, which causes a state transition from the Observa-
tion task to the SleepMode task (see Fig. 17b). Figure 18b
shows snapshots of the execution of a composite behavior
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Table 4 Primitive service types
for the exported device types

Service Device Function

Camera WebCam Extends capabilities of a WebCam to be
sharable

TVControl TV Wraps and relays capabilities of a TV

SoundSensor Mic. Wraps and relays capabilities of a Mic

PCMPlayer Speaker Wraps and relays capabilities of a Speaker

WheelConrol Wheel Wraps and relays capabilities of a Wheel

LightControl Luminaire Wraps and relays capabilities of an
Illuminator

Table 5 Complex service types
newly augmented in SF

Service Device Function

MotionSensor Camera Detects a motion and publishes a
MotionEvent

FaceRecognizer Camera Recognizes identifiers of human faces in a
JPEG image

UserTracker FaceRecognizer Keeps track of users locations with
multiple cameras

SpeechRecognizer SoundSensor Recognizes symbols of human speech

WheelConrol Wheel Wraps and relays capabilities of a Wheel

LightControl Luminaire Wraps and relays capabilities of an
Illuminator

SpeechSensor SpeechRecognizer Detects a speech and publishes a
SpeechEvent

MediaPlayer PCMPlayer Plays a media file by converting it to PCM
data

Navigation WheelControl Navigates a mobile robot to a target
position

Table 6 Primitive behavior
types defined in CM

Behavior Service Function

GoToUser UserTracker Navigates a mobile robot to the current
position of a user

Navigation

VoiceTVControl SpeechSensor Controls a TV according to a user’s voice
command

TVControl

VoiceAudioControl SpeechSensor Plays a media file according to a user’s
voice command

MediaPlayer

MoodControl LightControl Adjusts illumination intensity of interior
lightings and plays mood music
according to the current situation

MediaPlayer

PatrolHome MotionSensor Patrols the house by getting around some
designated waypoints

Navigation

tree behavior in the SleepMode task, i.e., the NightWatch
behavior. Specifically, after the mobile robot arrives at the
user’s current location (GoToUser), it subsequently turns off
the interior lightings, plays calm music for a while (Mood-

Control), and then finally patrols the house by getting around
some waypoints (PatrolHome).
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Fig. 17 Experimental application model

Fig. 18 Execution modes in
experimental application

5.5 System deployment and integration

As described above, ICARS interacts with various sensory
and/or actuating capabilities of a robotic mediator system
by implementing Device objects for each device in the sur-
rounding environment. Thus, as shown inFig. 16b, the typical
system configuration generally consists of amediating server
and one or more device managers when deploying ICARS
to every environment such as a home and an office. A device
manager is a program that manages life cycles of Device
objects for a set of devices that need to be managed together
for some administrative reasons. Therefore, integrating with
legacy systems such as home network systems (e.g., OSGi),
the IoT (Internet of Things) systems and commercially avail-
able robotic platforms (e.g., ROS) will be implemented on
the basis of Device objects. Namely, device providers, as

installers of ICARS to an environment, define device mod-
els and implement Device objects for capabilities provided
by legacy systems using DF of ICARS. ICARS do not care
about the internal communication protocols between Device
objects and legacy systems, which means thatDevice objects
can be integrated with legacy systems using their proprietary
protocol.

In Fig. 16b, the system is configured as a centralized archi-
tecture with a single mediating server. However, it should be
noted that all types of ICARS objects are distributed objects
that are capable of communicating with the top of PLANET
communication middleware. Thus, the system can be con-
figured to be scaled well by distributing Service objects,
Behavior objects and Task objects to multiple servers to form
a single logical mediating server.
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6 Conclusions

The experience of full automation without explicit user
direction may induce anxiety among smart space users. A
promising approach to address user concerns is the use
of robots as personal assistants who can act as mediators
between the user and their environments. However, exist-
ing frameworks bonding robots and smart space systems are
unsatisfactory due to the complexity arising from interrela-
tions between multiple components, leading to less reliable
smart spaces. In this paper, we proposed a new software
framework, ICARS, for robotic mediators collaborating with
smart environments. Based on our experimental results,
ICARS enables device providers to flexibly implement and
integrate diverse devices in robots and environments, ser-
vice providers to adapt a variety of services required for
collaborative services in an expandable manner, and appli-
cation programmers to easily develop high-level collabora-
tive applications. The current statechart-based specification
of task scheduling supports only static scheduling, which
is poorly equipped to handle dynamic situations such as
changes in the user’s intent or exceptional failures. Thus,
future research should develop adaptive task coordination
based on dynamic task scheduling to support improved reli-
ability in smart spaces.
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