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Abstract With the help of advanced software, hardware and
cutting-edge communication supports, and the future living
environments such as smart homes are expected to provide
intelligent services and excellent user experiencemuch better
than ever. Ideally, indoor multi-modal interactions and ambi-
ent changes happened in smart homes could be monitored
using ambient intelligence technology for instantaneous
human behavior analysis and following human-centered
interactions. Such quick feedbacks are significant to the
elderly anddisabled people, because a successful smart living
environment could greatly reduce the burden on their home
cares by offering appropriate assistance according to recog-
nized human behaviors. However, due to varied behavioral
patterns and imprecise data acquisition, realizing complex
human activity in real-time without controversy over privacy
is one of the biggest challenges for scientific community. In
this paper, we propose an innovative inference engine based
on formal concept analysis to recognize complex human
activities, including sequential, interleaved, and concurrent
patterns performed by an occupant in non-intrusive smart
homes. Besides the on-the-fly recognition, our engine adopts
a loose coupling architecture that strengthens the software
robustness, reliability, and knowledge reusability.
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1 Introduction

As people live longer and low birth rates all over the world,
population aging has become aworldwide crucial issue in the
recent decades [1].When cheering for the great improvement
in health and longevity, we also need to calmly think about
its tremendous challenges in the social and family aspect
[2]. Elderly people usually require more long-term home
cares because of the gradually weakened physical condi-
tions, especially the aging-related disabilities. As one of the
most typical ones, cognitive disability has attracted much
attention from scientific communities [3]. According to the
recent research [4], most of cognitive impairment symptoms
happened in middle-aged and elderly population are related
to the Alzheimer’s disease, which is also the most common
cause of dementia. Progressively, severe deterioration in cog-
nitive skills makes elderly people who have difficulties in
living independently. Comparing with healthy people, they
tend to produce more abnormal behaviors which make nor-
mal activities become threatening aswell [5]. Themost direct
and efficient intervention is to employ family caregivers to
take care of elderly people day and night. However, it will
increase the burdens of family and lead to significant escala-
tion in home care expenditures.

To get rid of this dilemma, smart environments, a
new paradigm of future living environments, have become
a new promising solution [6,7]. With huge commercial
prospects and fast development of information and com-
munication technologies, smart environments incorporate
multiple cutting-edge techniques such as ambient intelli-
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Fig. 1 Architecture about
intelligent assistance based on
sensor network and expert
system in smart homes

gence (AmI) [8,9], Internet of things (IoT) [10], social
robotics [11] and human–computer interaction [12,13]. They
try to take full advantage of computer science to help elderly
and disabled people live on their own with less nursing care.
Based on the real-time analysis of indoor conditions, appro-
priate feedback such as intervention or assistance will be
duly given out. Thus, the future living environments which
rebuilt into smart homes using AmI technique will become
more comfortable and offer a range of assisted services due
to more consideration about context awareness, human fac-
tors, and ergonomics between occupants and environments
[14].

As one of the core techniques of smart environments, IoT
could build a network of objects embedded with electronic
components such as sensors, actuators, or RFID tags to mon-
itor indoor conditions in real-time [7,10,15] (see Fig. 1).
These objects include home appliances, wearable devices,
household furniture, components of apartment (e.g., door and
windows), and the other daily commodities.

As a consequence, pervasive electronic components con-
tinuously generate enormous amounts of data describing
environmental (positions, movements, temperature, pres-
sure, etc.) and consumption conditions (energy or resources)
[13]. Generated data constitute temporal and sequential pat-
terns which are usually heterogeneous and chaotic. With the
help of ubiquitous sensor networks, most of human behav-
iors performed in smart homes will trigger passive sensor
events and be captured by specific IoT components. Thus,
it is possible to realize real-time activity monitoring as well
as behavioral pattern analysis to avoid potential threats at
their earliest stages. Moreover, for the purpose of provid-
ing appropriate assistance, smart homes can also understand
occupant’s real intentions (i.e., activities willing to do) hid-
den behind observable behaviors by expert system as early
as possible [16].

Because of the periodicity caused by people’s habit, the
majority of behavioral patterns describing an activity are reg-
ular and predicable from the historical data [17]. A series
of cognitive assistance can be offered based on the activity
recognition and prediction given observations, namely, the
captured sensor data.

The objective of behavioral pattern analysis is to recognize
ongoing activities rather than classify the completed ones
[18]. Activity prediction is essential to help occupants pre-
vent dangerous situations before they occur. Once current
behavioral pattern tends to be anomalous or threatening, we
hope the smart homes could determine whether it is nec-
essary to implement preventive interventions or notice the
family members, neighbors, or caregivers.

However, complex behavioral pattern analysis is always
a great challenge for smart home applications [19]. In most
cases, human behaviors are basically planed and performed
in continuous and complex ways. Compared with the behav-
ioral patterns of independent activities, the complex ones are
usually sequential without clear boundaries, sometimes even
interweaved due to personal thinking ability and advanced
planning such as interleaved or concurrent ways.

Besides, before the widespread commercialisation, the
reliability of smart homes is another important factor [20]. It
includes activity recognition from ambiguous and unreliable
sensor data, high modularity, flexibility, etc. As summarized
in [21], a good smart home must provide reliable positioning
and measurement of sensor data and have reliable algo-
rithms for evaluating the occupant’s lifestyle. Considering
these requirements in reliability, ourmain contribution of this
paper is to propose a robust activity inference engine mining
complex behavioral patterns in non-intrusive sensor-based
smart homes. The innovative inference engine is based on
formal concept analysis and could recognize ongoing activ-
ities using partially observed unreliable sensor data from a
heterogeneous sensor network. Its modeling is an attempt to
retrospect sequential patterns of historical sensor data stream
to construct a reliable case-based model. It takes advan-
tage of context-aware rules to prompt individuals for well
scheduling and carrying out complex activities. Moreover,
the design of inference engine uses a loose coupling architec-
ture to strengthen the reliability in robustness and knowledge
reusability.

The remainder of this paper is organized as follows. Sec-
tion 2 outlines the related works about complex activity
recognition in smart environments. Section 3 introduces the
background of activity recognition and knowledge represen-
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tation by formal concept analysis. The proposed inference
engine is also presented in the section. Section 4 presents our
experimental results. Section 5 discusses the performances
and emphasis the reliability of our methods. Finally, the con-
clusion is reported in Sect. 6.

2 Related work

Because of numerous generated data, ubiquitous computing
technique, especially large-scale data analysis, has become
an efficient solution to handle with AmI problems. Most of
raw data contain valuable information including regular pat-
terns or useful cases. At the same time, they are usually
difficult to use directly to solve practical problems due to
the lack of efficient knowledge discovery and retrieval strate-
gies. Thus, it is essential to choose an effective representative
form to index, organize, and retrieve unstructured informa-
tion [15].

With the help of knowledge representation and data min-
ing techniques, useful information can be discovered from
large-scale continuous data stream. On the one hand, dif-
ferent types of data stream need to be analyzed by suitable
approaches on the basis of varied data features. On the other
hand, the features are normally related to the ways of data
acquisition.

For example, the vision-based one uses facilities like cam-
eras, webcams, kinects, or social robots to capture sequences
of images [22]. Each image is a set of pixel values. Vision-
based solutions capture more details about environments
and contexts in the data stream containing high informa-
tion entropy [23]. Thus, their performances are also better
than others. Those pixel values indicate the meta-data such
as the real-time positions of monitored objects and as the
latest states of moving objects. Image processing and pattern
recognition [24–26] are common methods to handle with
pixel data stream. However, because vision-based solutions
directly acquire highly sensitive personal information, the
trade-off between privacy and excellent performances has
always aroused controversy [27]. That is whymore andmore
research about AmI applications in smart homes has adopted
the non-intrusive data acquisition such as sensor-based solu-
tions.

The sensor-based one depends on the wireless sensor net-
work to build ubiquitous computing environments. Most
of the non-intrusive components only capture the states of
attached or embedded objects, react passive activation and
transfer numerical, binary, or categorical values through
wireless communication. All the captured data contain a little
personal information and generate sensor data stream.Unlike
homogeneous pixel values of vision-based one, it is difficult
to process large-scale heterogeneous sensor data in a unified
data structure. In this paper, we focus on the sensor-based

pattern analysis to exploit useful behavioral patterns from
historical data and to recognize activities from real-time data
stream.

Due to the difficulties of complex behavioral analysis
in non-intrusive smart environments, there are only a few
studies in this domain. Ruotsalainen et al. [28] introduced
a genetic algorithm for detecting interleaved patterns from
event sequences. The algorithm has been utilized in parti-
tioning the event sequence and matching subsequences with
the specific pattern templates. Thus, this method is limited
by the low generalization performance.

Gu et al. [29] built activity models based on Emerging
Patterns describing significant changes of itemset supports
and differences between two classes to recognize sequen-
tial, interleaved, and concurrent activities. Rashidi et al. [30]
introduced an unsupervised method of discovering frequent
interesting patterns of activity and grouping similar discov-
ered patterns into activity definitions. A boosted version of
a hidden Markov model is created to represent and recog-
nize the activities and their variations. The limitation of these
methods is that they only considered specific subsequences
occurring frequently, and ignored some important ones with
imbalanced distribution in the data set.

Interleaved hidden Markov models were introduced for
recognizing multitasked activities [31]. After a small modifi-
cation of the classical HMMmodel, the improved model was
able to better predict transition probabilities by recording the
last object observed in each activity. Hu and Yang [32] pro-
posed a two-level probabilistic framework for multiple-goal
recognition including concurrent and interleaved activity
recognition. They used skip-chain conditional random fields
(SCCRF) and a correlation graph for modeling interleaved
and concurrent activities. A detailed performance compar-
ison of different techniques involving naive Bayes and the
variations of hidden Markov Model was given in [33]. These
methods usually have strong noise immunity. The imper-
fection mainly surrounds computational difficulties in the
training phase. It is usually difficult to train models with a
large number of parameters or large state spaces.

For the other methods, Hall et al. [34] used finite-state
automaton to decompose the total power load and distin-
guish each individual usage of appliances. Thus, interleaved
activities related to the energy consumption are indirectly
discriminated. However, it could not handle with the other
kind of activities without the usage of electrical devices.

Riboni et al. [35] proposed an unsupervised method to
recognize complex activities by exploiting the semantics of
activities, context data, and sensing devices through ontolog-
ical and probabilistic reasoning. Roy et al. [36] proposed a
hybrid recognition model based on probabilistic description
logic. Okeyo et al. [37] combined ontological and temporal
knowledge representation to recognize composite activities.
The ontological activity modeling establishes relationships
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between activities and involved background knowledge. The
temporal one defined correlations between constituent activ-
ities of a composite activity. Saguna et al. [38] proposed
a conceptual framework for spatio-temporal context-aware
systems to infer interleaved and concurrent activities. How-
ever, these knowledge-based methods require more extra
knowledge or predefined inference rules defined by domain
experts. Their high requirement about domain knowledge
makes the maintenance or extension difficult for domain
freshmen.

A logic framework based on four-level lattice was defined
for plan recognition in our earlier studies [39]. Although its
complexity determines that it cannot be widely used in ubiq-
uitous computing, it also prompts the research to solve AmI
issues through more mature lattice-based models. Another
interesting research introduced byYe andDobson [40] inves-
tigated the performance of semantic data structure called
context lattices to recognize activities in smart homes. Fur-
ther research proposed a knowledge-driven approach for
concurrent activity recognition [41]. However, their meth-
ods largely depend on domain knowledge, predefined logic
expressions, and operations; these factors greatly reduce the
efficiency and flexibility.

Based on the above considerations, formal concept analy-
sis (FCA) has become our first choice to represent and extract
knowledge from large volume of unstructured data for the
reason of its excellent performance [42]. It is widely used in
various domains like knowledge discovery, ontology learn-
ing [43], semantic annotation [44], information retrieval, and
recommender system [45], to construct a knowledge graph
or graphical ontology for data organization, visualization, or
mining. Similar to association rule learning, formal concept
analysis can fast discovers useful itemsets. Nevertheless, it
lacks efficient method to retrieve them. Thus, in [5,46,47],
FCA first introduced to recognize singleton activity with
clear boundary from sensor event stream and to detect abnor-
mal patterns on-the-fly. The treated stream is required to be
well segmented with clear boundary. Moreover, each sensor
stream must only have one activity. These assertions are too
ideal to be satisfied in reality. Thus, in this paper, we propose
an improved algorithm based on FCA to recognize complex
behavioral patterns from continuous sensor events.

3 Inference engine for activity recognition

In this section, first of all, we introduce some notions about
simple and complex ADLs in Sect. 3.1. Then, a common
multilevel granularity to solve activity-centered problems in
smart environments is highlighted in Sect. 3.2. And then,
we apply the formal concept analysis theory to the AmI
issues and explain the principles in Sect. 3.3. Next, we import
an innovative search algorithm to retrieve knowledge in the

FCA-based knowledge base in Sect. 3.4. After that, on the
basis of our previous work, we demonstrate how to recognize
complex ADLs on-the-fly by our new approach in Sect. 3.6.
Finally, we highlight a method called RMSD to refine the
predictive activities in Sect. 3.7.

3.1 Background of activity recognition in smart homes

To live independently in their own home, elderly people
should at least be able to individually complete basic Activ-
ities of Daily Living (ADLs) [48]. ADLs refer to people’s
daily self-care activities. As a term used in health care, the
quality of ADLs performance has been regarded as an impor-
tant measurement of one person’s functional status. It is also
the minimum requirement for living independently.

According to the comprehensive research of Lawton et
al. [49] in the behavioral assessment of elder people, ADLs
could be classified by human functionality as two types:

• Basic ADLs simple tasks about functional mobility and
physical self-maintaining activities such as toilet, feed-
ing, dressing, grooming, ambulation, bathing, etc.

• Instrumental ADLs complex tasks that are not necessary,
but more complicated than basic ADLs which need more
thinking, planning and interactions. For instance, tele-
phone, food preparation, housekeeping, laundry, respon-
sibility for own medication, etc.

Basic ADLs are usually the short-term behaviors with
short execution times. Moreover, they seem to be indepen-
dent and not collaborative with each other.

Furthermore, two or more instrumental activities could
generate more complex behavioral patterns. These patterns
with collaborative interactions are more close to the real sce-
narios [19]. In the following definitions, we suppose that each
mode is taken by only one occupant. Similar definitions have
also been proposed in the other AmI researches [32,50,51].

• Sequential ADLs activities are performed one after
another in a continuous and sequential mode without
interweaving execution (see the executionof activitiesax ,
by in Fig. 2). For example, an occupant prepared toasts
after preparing a cup of coffee. Moreover, each ADL is
independent and there is no shared behavior between any
two successive ADLs.

• Interleaved ADLs the performance of ADLs interweaves
together with pauses. As shown in Fig. 3, an occupant
will temporally suspend current ongoing ADL and turn
to do another one, after a while, the suspended ADL will
be done sooner or later. In reality, when an ongoing ADL
needs to wait for the processing or results, the occupant
usually do another ADL during the waiting time (e.g.,
during the waiting of cooking spaghetti, the occupant
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Fig. 2 Sequential mode of ADLs execution

Fig. 3 Interleaved mode of ADLs execution

Fig. 4 Concurrent mode of ADLs execution

turned to prepare a cup of tea). Behaviors belonging to
different ADLs are frequently scheduled among execu-
tion processes.

• Concurrent ADLs in this mode, more than one activity is
carried out simultaneously in a period of time. Although
it is similar to the interleaved ones, the biggest differ-
ence is that different behaviors could be done at the same
time (see Fig. 4). Because of no conflict, a person could
telephone by mobile phone while cooking.

The issue of ADLs recognition is a very active topic in
the application of ambient intelligence [13,52,53]. Activity
tracking and recognition are also the most desirable require-
ment of family caregivers for smart home technology [54]. It
refers to the long-term behavioral intention recognition from
various sequential patternswhich are constituted by temporal
behavior-related data. Given a sequence of observations, the
ADLs recognition task is to associate activities with part of
observations. Moreover, it can be characterized by the rela-
tionship that exists between the observed occupants and the
observing agent,whichmeans the ubiquitous sensor network.

For the reason of varied living habits, personal prefer-
ences or the other physical, mental, and culture factors [55],
an ADL could have multiple behavioral patterns to describe
itself. Even if having almost the same participant actions,
two patterns could be totally dissimilar because of different
execution orders, recurrent or optional actions.

3.2 Multilevel granularity in smart environments

Figure 5 depicts a common multilevel granularity to solve
activity-centered problems in smart environments [46,56,
57]. Three levels of granularity represent different kinds of
behavioral elements. Fine-grained components are located at
lower levels in the structure and coarse-grained ones are posi-

tioned at higher levels. Each coarse-grained supercomponent
is composed of one or more fine-grained subcomponents.

The objective of ADLs recognition is to identify the most
probable coarse-grained ADLs generating the observed fine-
grained subcomponents. Normally, an ADL is composed of
more than one observable action. In other words, several
short-term targets have joined together to form a long-term
intention. An action is atomic, which indicates a meaning-
ful element describing a short-term target. In addition, each
action is measured by one or more sensor events. Thus, in the
case of ADLs recognition, the coarse-grained target classes
should be the high-level ADLs and the fine-grained features
could be either sensor events or actions.

3.3 Knowledge representation and modeling

Formal concept analysis (FCA) is a mathematical theory that
derives concept hierarchies from a given data set. It aims at
first clustering similar targets variables of interest sharing
the same ontological features, and then indexing these clus-
ters by a structural preorder called partial order. Correlations
between the individuals and features could be represented
as homogeneous binary relations. In reality, binary relations
describing two sets of different things widely exist in most
of the scene.1 When we use FCA to construct knowledge
base, FCA requires to choose suitable target classes and cor-
responding features for modeling due to the restriction of
binary relations.

After the brief introduction about FCA, in the following
words, FCA components including formal context, concept-
forming operations, formal concept, formal lattice, andHasse
diagram will be presented, as well as their roles in modeling
and the constructions of the inference engine.

3.3.1 Knowledge storage by formal context

To construct the inference engine by FCA, first, unstructured
knowledge must be stored in a specific data structure called
formal context for the easier utilization and indexation.

A formal context K is the mathematical abstraction of a
scene. It aims to transfer unstructured information into struc-
tured data. It could be represented as a triplet K(G, M, I )
that consists of two disjoint sets G and M . Set I represents
their Cartesian products as binary relations, which defines
the different issues of ADLs recognition. The elements of G
representing coarse-grained target classes are called objects,
and the elements of M representing fine-grained features are
called attributes. Attributes are the descriptors of objects. To
express that object g is related with attribute m, we write
gI m [58].

1 For example, in linguistics, each subject establishes a binary relation
with its object (or predictive) by the (linking) verb.
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Fig. 5 Multilevel granularity in
smart environments

Fig. 6 Matrix representing the
activities gi carried out in the
kitchen and their atomic actions
mx

Activities about preparing breakfast

a:
bo
il
w
at
er

b:
pr
ep
ar
e
ta
bl
ew

ar
e

c:
ad
d
co
co
a
po
w
de
r

d:
po
ur

ce
re
al
s

e:
ta
ke

ou
tb

re
ad
s

f:
ta
ke

ou
tt
ea
ba
gs

g:
ta
ke

ou
ts
pa
gh
et
ti

h:
ad
d
su
ga
r

i:
ad
d
m
ilk

j:
ad
d
sa
uc
e

k:
us
e
to
as
te
r

l:
us
e
m
ic
ro
w
av
e
ov
en

PrepareHotChocolate g1 × × × × ×
PrepareMilkTea g2 × × × × ×
PrepareSpaghetti g3 × × × ×
PrepareCaffèMocha g4 × × × × ×
PrepareCereals g5 × × × × ×
PrepareToast g6 × × ×
PrepareSandwich g7 × × ×

The triple K(G, M, I ) could be represented and visual-
ized as a |G|×|M |matrix. Thematrix representing contextK
provides an opportunity to encode unstructured or heteroge-
neous information to a machine-recognizable data structure.
With the help of formal context, FCA can further discover the
dependencies between target classes G and feature variables
M .

Application 1
In our case, both observable sensor events and atomic actions
could be treated as the fine-grained features of target classes
G. To facilitate the following introduction, we suppose that
the fine-grained features M indicate the observed sensor
events, then binary relations I define the issue as activity
recognition in the stream of sensor events.

Considering the architecture in Fig. 5, ∀g ∈ G represents
target activities, and ∀m ∈ M could be indexed sensor events
or atomic actions. Given a concrete example, there are seven
activities about preparing breakfast: PrepareHotChocolate
(g1), PrepareMilkTea (g2), PrepareSpaghetti (g3), Prepare-
CaffèMocha (g4), PrepareCereals (g5), PrepareToast (g6)
and PrepareSandwich. There are also 12 actions shared
among these activities: boil water (a), prepare tableware
(b), add cocoa powder (c), pour cereals (d), take out breads
(e), take out teabags ( f ), take out spaghetti (g), add sugar
(h), add milk (i), add sauce ( j), use toaster (k), and use
microwave oven (l). If a sensor event or action m is in the
sequence describing activity g, then a cross is filled in row
g and column m. For example, α ={b ≺ b ≺ d ≺ c ≺

d ≺ i ≺ l} is a sequence describing g5, then five crosses are
automatically filled in row g5 (see Fig. 6).

3.3.2 Similarity maximization by concept-forming
operations

In the conventional clusteringmethods, similaritymetrics are
essential to generate clusters [59]. Likewise, there also exists
the metrics in FCA to cluster similar target classes sharing
the same ontological features.

To exploit useful information from the FCA matrix and
maximize their similarities, a pair of closure operations, so-
called the concept-forming operators, is induced to discover
associations.

For a subset of objects G1 ⊆ G, we define

G ′
1 := {m ∈ M | for all g ∈ G1, gI m} (1)

as an operation to find out the common features G ′
1 ⊆ M

shared by all the objects in G1. Likewise, for M1 ⊆ M , we
define

M ′
1 := {g ∈ G | for all m ∈ M1, gI m} (2)

as another operation to find out all the objects M ′
1 ⊆ G

sharing the common features M1 at the same time [58].
Their combination could maximize the dependency and

similarity in a pattern itemset and make it a stable closure,
which is also a cluster.
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Application 2
M ′

1 indicates all the possible activities sharing the common
features M1. In other words, if M1 are partially observed
data, M ′

1 reveals all the possible activities given those obser-
vations.

For instance, if actions {bc} are detected by the sensor
network, according to {bc}′ = {g1g4g5}, the most possi-
ble ongoing activities are g1, g4, and g5. However, itemset
{bc, g1g4g5} is not a stable cluster due to {g1g4g5}′ = {bci}.

3.3.3 Cluster representation by formal concept

After the definition of similarity metrics, FCA can cluster
similar target classes in ontology for knowledge discovery.

A concept is a pair (G1, M1), where G ′
1 = M1, M ′

1 = G1.
G1 and M1 are called the extent and the intent of a concept
[58]. Because of (G ′

1)
′ = (M1)

′ = G1, each concept is
a closure under the concept-forming operations. B(G, M, I )
denotes a universe containing all the concepts of a contextK.

Concepts are the smallest FCA units having discovered
knowledge. Each concept is a cluster corresponding to an
inference. Its intent refers to all the observable features indi-
cating the centroid of cluster, and the extent refers to all the
similar objects sharing the intent M1. The properties of clo-
sure ensure that the internal ontological similarity of cluster
between the extent and intent is maximized.

Application 3
Each concept clusters similar activities based on the shared
sensor events or actions in the intent. Furthermore, if the
observed data belong to the intent, the elements in the extent
indicate all the possible ongoing activities given those obser-
vations:

{ g1g4g5
︸ ︷︷ ︸

predictions

,

observations
︷︸︸︷

bci }. (3)

As shown in Eq. (3), no matter in which order they are
captured by a sensor network, if actions {bci} are observed,
the most probable prediction about the ongoing activity will
be chosen among g1, g4 and g5.

3.3.4 Cluster indexation by formal concept lattice

As of now, similar objects were successfully clustered by
different centroids (i.e., common features). Next, FCA will
order all the discovered clusters by a structural preorder in
order theory. The objective is to index and retrieve all those
clusters efficiently for constructing a graph-based knowledge
base.

A lattice (B,�) is an ordered version of B(G, M, I ).
All the concepts in B are ordered by a predefined partially

ordered symbol � indicating hierarchical relations between
concepts.

Suppose (G1, M1) and (G2, M2) are two concepts of
B, (G1, M1) is called the subconcept of (G2, M2) if either
G1 ⊆ G2 or M2 ⊆ M1, written as (G1, M1) � (G2, M2).
The symbol � is named as the hierarchical order. Mean-
while, (G2, M2) is the superconcept of (G1, M1). It is worth
pointing out that the subconcept and the superconcept of a
concept are not unique in B. The construction of lattice is a
process that discovers all the concepts of a context K by the
concept-forming operations, and orders them by the order.

Application 4
Suppose that three concepts, {g1g5,bcil}, {g1g4g5,bci}, and
{g1g2g4g5,bi}, were discovered from thematrix in Fig. 6. As
shown in Eq. (4), the last two concepts are the superconcepts
of the first one:

{g1g5, bcil} � {g1g4g5, bci} � {g1g2g4g5, bi}. (4)

The relations among inferences are established by the hierar-
chical order.Moreover, the prediction about themost possible
ongoing activities frequently changes according to different
observations in different stages.

3.3.5 Knowledge base visualization by Hasse Diagram

In mathematics, a Hasse diagram is a graph depicting a finite
partially ordered set. In our case, it is a visualization of lattice
(B,�) representing concepts as nodes (see Fig. 7).

There are two special nodes in a Hasse diagram: the top-
most one {G, ∅}2 named Supremum and the lowermost one
{∅, M} named Infimum. Nodes are connected with edges
named Galois connection which denotes the partial order �
between nodes [58]. A Hasse diagrammanages a knowledge
base through its graph structure. For this reason, to manage
knowledge information like unstructuredbehavioral patterns,
first of all, the topic-related target classes and the feature vari-
ables are extracted from unstructured patterns. And then, the
correlations between two sets of variables are maximized by
concept-forming operations. After that, similar target classes
are clustered by different centroids. At last, all the clusters are
indexed by means of the partial order. Once the knowledge
base is built, the next step is about to design efficient algo-
rithms to incrementally retrieve specific behavioral patterns
from the FCA-based graphical knowledge base.

Application 5
As can be seen from Fig. 7, concepts are organized by dif-
ferent levels. From a higher level to a lower one, the amount
of observation increases and the scope of possible activities

2 The Supremum {G, b} in Fig. 7 is a special case, because all the
activities in G have interactions with action b.
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{∅,abcdefghijkl}

{g1g2g3g4g5g6g7,b}

{g5,bcdil} {g1,bchil} {g4,abchi} {g2,abfhi}

{g1g5,bcil} {g1g4,bchi} {g2g4,abhi} {g3,abgj}

{g1g4g5,bci} {g1g2g4,bhi} {g7,bej} {g6,bek}

{g1g2g4g5,bi} {g2g3g4,ab} {g3g7,bj} {g6g7,be}
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2 3 4 5
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10 11 12 13

14 15 16 17

18

Fig. 7 Hasse diagram of matrix in Fig. 6

shrinks. Using successively observed data to incrementally
infer ongoing activity is the core idea of the inference engine.

3.4 Inference process

In the followingwords, we present an innovative search algo-
rithm to retrieve knowledge in the knowledge base.

3.4.1 Principle of real-time knowledge inferences

As summarized earlier, all the inferences about the possible
ongoing activities given partial observations are encapsu-
lated in the nodes of the hierarchical lattice. Thus, as an
expert system for behavioral pattern recognition, the FCA-
based solution is to use efficient algorithms to retrieve useful
patterns in the graphical knowledge base using sequential
observations.

Most of graph search algorithms must traverse the whole
graph to locate targets every time. When new observations
are captured, they could not recall or continue from the last
interrupted position and have to start over again for searching
updated α. For these reasons, we propose a new graph search
algorithm to locate target concepts incrementally in the FCA-
based models. On one hand, the new algorithm improves the
search efficiency. On the other hand, it also maintains the
consistency of reasoning.

Suppose that a sequence α is an ordered list of observed
data, denoted as α = {α1 ≺ α2 ≺ · · · ≺ αm}, where α j ≺
α j+1 means that α j occurs before α j+1. Besides, we define a
token to locate the local optimal concept having the smallest
intent in size containing the observations in α. The reason
behind such location is to avoid the loss of predictions.

The transition of token in the diagram is the incremental
inference process caused by the extension of observed data.
In aHasse diagram, higher level concepts have smaller intents
due to less observed data. Thus, the topmost concept contain-
ing α is the local optimal one. This hypothesis is described
in Eq. (5) as follows:

∀M1 ⊇ α, Tb ⊆ M1 	⇒ (G1, M1) � (TA, Tb)

and G1 ⊆ TA, (5)

where Tb is the smallest superset of α and owned by the
topmost concept (TA, Tb). For example, in Fig. 7, if α =
{b ≺ i}, then node 2 {g1g2g4g5, bi} is the topmost concept
that we are looking for. If we choose another one (e.g., node 6
{g1g4g5, bci}) instead of the topmost one, several predictions
will be missing (e.g., {g1g2g4g5} − {g1g4g5} = {g2}) and
could never be found in the following searches.

3.4.2 Knowledge retrieval

Breadth-first search (BFS) is one of the most common graph
search algorithms. The main idea is to explore all the neigh-
bor nodes in the same level before moving to the next level.
Because of successively extended α, in our case, BFS ismore
efficient than another one called depth-first search (DFS) and
chosen as the base of our new algorithm.

We propose a new half-duplex graph search algorithm
(HDGS) to locate each local optimal concept for successively
extended α. As can be seen from the name, HDGS consists
of two directions search. First, the top-down search locates
the first discovered concept containing α. And then, starting
from this concept, the bottom-up search turns back along the
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hierarchical order and looks for the topmost concept contain-
ing α. More details about the HDGS algorithm are sketched
in Algorithms 1 and 2:

Algorithm 1: Top-down search of HDGS algorithm
Data: start position sp, sequence α.
Result: first met superconcept containing α.

1 begin
2 fifo ← node[sp]
3 while fifo do
4 if fifo[0] not visited then
5 mark as visited
6 if α ⊆ fifo[0].intent then
7 return fifo[0]
8 else
9 add fifo[0].successors into fifo

10 remove fifo[0] from fifo
11 end
12 end

Algorithm 2: Bottom-up search of HDGS algorithm
Data: start position sp, set α.
Result: topmost superconcept containing α.

1 begin
2 fifo ← node[sp].predecessors
3 S ← ∅

4 while fifo do
5 if fifo[0] not visited then
6 mark as visited
7 if α ⊆ fifo[0].intent then
8 add fifo[0].predecessors into fifo
9 S ← S ∪ fifo[0]

10 remove fifo[0] from fifo
11 end
12 return argmin

s∈S
(| s.intents |)

13 end

In pseudo-code (2), we need to pay attention to Line (12)
which seeks the topmost concept having the minimal cardi-
nality of intent containing α. Due to Eq. (5), the local optimal
concept has smaller cardinality than the other ones.

3.5 Simple ADLs recognition

The simple ADLs recognition is a process continuing to
locate local optimal concepts given successively extended
α. For instance, α = {b ≺ c ≺ b ≺ h ≺ i ≺ h ≺ l}, Table.
1 is the illustration of recognition process. The symbol �

indicates the transition of token.
Beyond the issue of locating local optimal concepts, we

also need to consider another tough issue about multilevel
inheritance. It is a very common situation in AmI context
due to diverse lifestyles and personal habits. Besides the flex-
ible execution orders, an activity could also be accomplished

by alternative ways like adding or omitting optional events
[5,56]. For instance, PrepareCoffee(g4) and another three
derived activities about preparing coffee: PrepareBlackCof-
fee(g1), PrepareCoffeeWithoutMilk(g2), and PrepareCoffee-
WithoutSugar(g3), have the multilevel inheritance relations
as g1 ⊂ g2, g3 ⊂ g4.

Therefore, the retrieval strategy that we adopted is based
on the greedy manner. That is, if an activity is recognized,
its completeness will also be verified until all the necessary
events in the intent have been done. If it belongs to one of the
inherited activities, we continue adding observed data into α

until token t shifts to the Infimum {∅, M}, which means that
all probable activities are recognized in the previous exten-
sions.

3.6 Complex ADLs recognition

Compared with the single ADLs recognition, the complex
one refers to distinguishmixedpatterns belonging to different
activities.

As mentioned, each node of Hasse diagram is a cluster
regrouping ontological-similar objects that shared common
features. For any activity, no matter how varied its execution
orders are among sensor events, the set of corresponding
patterns are normally in the same node in the Hasse diagram
due to the FCA-clustering. Furthermore, a behavioral pattern
could derive many inherited patterns representing as adjoin-
ing nodes by adding or refining optional sensor events. Thus,
a node representing similar activities and its leaf nodes rep-
resenting the inherited nodes define a larger cluster having
the similarly ontological relations among internal activities.

If incoming data are excluded by such a cluster, it means
that the data have strong ontological differences with internal
activities. As a result, the incoming data are classified as an
outlier of the current plan which is being executed and has
to be put into another one. The new one starts a new search
with a new token.

The principle of deciding whether observed data are nec-
essary to be excluded or not by current plan is determined
by the diagram. Suppose that a node (G1, M1) is located by
the token, the set of relevant data Re given a target class g is
given by Eq. (6):

Re =
⋃

∀a∈G1

a′ (6)

where a′ is the concept-forming operation shown in Eq. (1).
All the other data, nomatter indexed, or not by the lattice, will
be classified as the outliers of the current plan, because the
Infimum is located by the token. Once an outlier is detected,
a provisional boundary will be marked and a new plan for
caching will be created at the same time. The search of the
current plan will also rollback from the Infimum to the pre-
vious position.
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Table 1 Example of simple
ADLs recognition

Round Observed data α Located topmost concept Predictive activities

1 {b} node 1 g1g2g3g4g5g6g7

{g1g2g3g4g5g6g7,b}

2 {bc} node 1 � node 6 g1g4g5

{g1g4g5,bci}

3 {bcb} node 6 g1g4g5

{g1g4g5,bci}

4 {bcbh} node 6 � node 11 g1g4

{g1g4,bchi}

5 {bcbhi} node 11 g1g4

{g1g4,bchi}

{bcbhih} node 11 g1g4

{g1g4,bchi}

7 {bcbhihl} node 11 � node 15 g1

{g1,bchil}

Suppose α = {b ≺ e ≺ b ≺ c ≺ i ≺ b ≺ l ≺ g ≺
k ≺ h} indicating interleaved activities PrepareHotChoco-
late (g1) and PrepareToast (g6). There is also an unreliable
data g (take out spaghetti). Table 2 depicts the complexADLs
recognition process. The symbol�I n f imum indicates the roll-
back operation from the Infimum.

At round 4, when c is observed, {bebc} is excluded by
current plan, because no subconcept of node 5 contains
these observations except the Infimum. Thus, a new plan
is created to cache c and launches a concurrent search.
At round 8, because g is excluded by all the existing
plans, a new concurrent one is created at that moment
to cache g. Activities g6 and g1 are finally recognized at
round 9 and 10, because their sizes of extent are equals
to 1 and all the required observations in the intents are
observed.

Figure 8 illustrates the interweaving situation. There are
totally three plans Pi (i ∈ {0, 1, 2}) in the figure. P0 is the
initial plan. P1 and P2 are created when observed data are
irrelevant to all the existing plan. Squares indicate two states
of observed data: the black ones indicate that the observed
data are relevant to the patterns in the present Pi (i.e. hit),
and the hollow ones indicate that the data are irrelevant
(i.e., miss). For incoming data, it could trigger three possible
states:

• Strictly belongs to one plan: the observed data belong to
a unique plan. For example, R1, R2, R3, R4, R5, R7,
R8, R9, and R10 in Fig. 8.

• Belongs to more than one plan: it always happens with
concurrent ADLs. For example, R6 in Fig. 8.

• Belongs to none of the existing plans: In sequential
ADLs, it is the moment triggering the boundary detec-
tion. In interleaved ADLs, the occupant may start to do

another activity or an irrelevant action, or the systemmay
receive an unreliable data. For example, R4 and R8 in
Fig. 8.

At the end of the data stream, a completeness check will
verify all the existing plans. There are two objectives: first of
all, the amount of predictive activities will be checked. The
plan having too many predictive activities will be abandoned
due to ambiguity. Otherwise, a further check will verify the
completeness of each activity calculated by Eq. 7.

Ci = |g′
i ∩ α|
|g′

i |
and gi ∈ G, (7)

where |g′
i ∩α| indicates the amount of observed data and |g′

i |
indicates the required one. An activity having low complete-
ness will be abandoned. In Table 2, activity g3 was finally
abandoned due to low completeness, and the cached data g
were identified as an unreliable data.

3.7 Inference assessment

Because of a few observed data, a local optimal concept usu-
ally has more than one candidate in its extent, which means
that there will be more than one prediction. Without an effi-
cient assessment, redundant predictions will be ambiguous
and useless to make decisions for real-time assistance. In this
case, we desire to evaluate the relevance of each prediction
in a local optimal concept and choose the most relevant one
as the local optimal prediction.

As mentioned in the previous sections, an ADL gi could
be accomplished by alternative patterns because of differ-
ent personal preferences. Furthermore, these derived patterns
reflect on flexible execution orders, repetitive events, adding
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Table 2 Example of complex
ADLs recognition

Round Observed data α Located topmost concept Predictive activities

1 {b} node 1 g1g2g3g4g5g6g7

{g1g2g3g4g5g6g7,b}

2 {be} node 1 � node 5 g6g7

{g6g7,be}

3 {beb} node 5 g6g7

{g6g7,be}

4 {bebc} node 5 �I n f imum g6g7

{g6g7,be}

node 6 g1g4g5

{g1g4g5,bci}

5 {bebci} node 5 �I n f imum g6g7

{g6g7,be}

node 6 g1g4g5

{g1g4g5,bci}

6 {bebcib} node 5 g6g7

{g6g7,be}

node 6 g1g4g5

{g1g4g5,bci}

7 {bebcibl} node 5 �I n f imum g6g7

{g6g7,be}

node 6 � node 10 g1g5

{g1g5,bcil}

8 {bebciblg} node 5 �I n f imum g6g7

{g6g7,be}

node 10 �I n f imum g1g5

{g1g5,bcil}

node 13 g3

{g3,abgj}

9 {bebciblgk} node 5 � node 9 g6

{g6,bek}

node 10 �I n f imum g1g5

{g1g5,bcil}

node 13 �I n f imum g3

{g3,abgj}

10 {bebciblgkh} node 9 g6

{g6,bek}

node 10 � node 15 g1

{g1,bcilh}

node 13 �I n f imum g3

{g3,abgj}

or omitting optional events, etc. At the same time, everyone
also has his own relatively stable preference to execute an
ADL. Namely, for the same occupant executing an ADL,
there are only a few deviations among each execution. Based
on this hypothesis, we take advantage of historical patterns
containing the preferences of an occupant to generate a

knowledge database called accumulated matrix. For each
event, we calculate its expectant position appearing in each
ADL to establish a series of naive distributions.

To measure the context similarities between historical
patterns and current incomplete ongoing ADL, average
deviations are calculated using root-mean-square deviation
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Fig. 8 Interweaving plans

(RMSD). It makes a quantitative comparison as an assess-
ment to estimate howwell the current sequence fits historical
data. A lower RMSD score indicates that a prediction is more
accurate due to excellent fitting with historical patterns.

We propose our assessment as follows: for each candidate
gi in the extent, under the condition of executing gi , we calcu-
late the deviation between actual average positions in α and
the accumulated ones in the matrix. Thus, the local optimal
prediction should be the one with minimal deviation which
has the best fitting in comparison with historical data. Obvi-
ously, our assessment consists of twomodules: accumulation
and evaluation.

3.7.1 Accumulation

For each event α j in a training item α, a complete sequence
of events of ADL gi (i.e., α j ∈ α, α ∈ gi ), we update the
accumulated value of the corresponding element (gi , α j ) in
the accumulated matrix by Eq. (8):

σi j = σ ′
i j + j (8)

where j is the position of α j in α. σ ′
i j is the previous accu-

mulated value and σi j is the newly updated one. Equation (9)
represents the same accumulation in another global view:

σi j =
Ni j
∑

k=1

σ(i j,k), (9)

where Ni j represents the occurrences of element (gi , α j )

existing in the whole training data set. σ(i j,k) is the position
of α j in the kth training item describing ADL gi .

3.7.2 Evaluation

When an incoming event α j was observed, first of all, we
calculate its average position ϕ j in the current sequence α.
It is calculated by Eq. (10).

ϕ j = 1

#α j

|α|
∑

k=1

k, if αk = α j , (10)

where |α| is the size of current sequence α, and #α j is the
occurrences of α j in α. The condition αk = α j is necessary
to integrate #α j discrete positions of α j .

And then, for each candidate gi , we calculate the deviation
of α given gi . Equation (11) expresses the root-mean-square
deviation Di of current sequence α executing gi :

Di =
√

√

√

√

1

|α|
∑

∀α j ∈α

(

ϕ j − 1

Ni j
σi j

)2

, (11)

where σi j/Ni j is the expectant position obtained from accu-
mulated matrix.

Thus, RMSD scores {D1, D2, . . . , Di } of candidates in
the current extent G1 = {g1, g2, . . . , gi } were calculated.
The element gi having the minimal RMSD value is the local
optimal prediction because of the best fitting with historical
patterns.

4 Experiments

The performances of inference engine are tested using two
data sets created in two smart environments, LIARA smart
home, and CASAS testbed. The common classification met-
rics, F-measure and accuracy [60,61], are used to evaluate
the performance of activity recognition. All the experiments
are carried out on the computer with tech specs of Intel Core
i7 Processor 2.4GHz and 8GB RAM, under Ubuntu 16.04.

4.1 LIARA smart home

LIARA smart home is a prototype of future living environ-
ments which concentrates the innovation solutions surround-
ing smart environments based on the ambient intelligence
to provide real-time cognitive assistance for the disabled or
elderly people. It consists of various sensors, actuators, pas-
sive RFID tags, tablets, and wearable devices to monitor
indoor environmental changes caused by human behaviors
in a non-intrusive way.

Figure 9 shows the prototypical design of LIARA smart
home. Objects in the figure are embedded with measurable
electrical components. For instance, infrared, light sensors,
and RFID antennas have been installed on the walls. The
oven in the kitchen zone is monitored and controlled by a
built-in micro computer and temperature sensors. A tablet is
also embedded on the refrigerator. The water consumption
is measured by water sensors, and the power consumption is
recorded by a power analyzer located at the main electrical
panel. The open and close states of cabinets could be detected
by binary sensors. Pressure mats are placed in the bathroom
to trace occupants’ movements. Beside, passive RFID tags
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Fig. 9 Sensor layout of the LIARA smart home

Table 3 Data structure of LIARA training items

Timestamps Atomic actions Activities

1 BoilWater PrepareCoffee

2 TakeCupFromCupboard PrepareCoffee

3 TakeOutCoffeePowder PrepareCoffee

4 PutCoffeePowderIntoCup PrepareCoffee

5 StoreCoffeePowder PrepareCoffee

6 PourWaterIntoCup PrepareCoffee

7 TakeOutSugar PrepareCoffee

8 AddSugarIntoCup PrepareCoffee

9 StoreSugar PrepareCoffee

10 TakeOutMilkFromRefrigerator PrepareCoffee

11 PourMilkIntoCup PrepareCoffee

12 StoreMilkInRefrigerator PrepareCoffee

13 BrewCoffee PrepareCoffee

14 PutSpoonIntoSink PrepareCoffee

are attached on all the other daily commodities to track their
spatial positions.

Using the infrastructure above, we created a data set
to recognize complex activities given atomic actions. The
sequences of actions are generated from our previous
research: the passive RFID signal parsing [62] can identify
the usage of items and the electrical devices identification
[63] can identify the usage of appliances. To create train-
ing and test data, first of all, one participant performed each
activity 20 times, and then, he was allowed to freely per-
form activities in sequential, interweaving, or parallel way.
Due to complicated scenarios and much more interactions
with appliances and food ingredients, we choose instrumen-
tal kitchen activities as our research objects. Twelve activities
are described by sequentially observed actions (see Table
4). As shown in Table 3, LIARA data have three important
fields indicating the date and time of the triggering moment:
timestamps, recognized atomic actions, and the correspond-
ing activity.

Table 4 Statistical information and F-measure results of LIARA data
set

Activities No. actions F-measure

PrepareSandwichWithoutMustard 11 0.947

PrepareCoffeeWithoutSugar 11 0.947

PrepareCereals 8 1.000

PrepareMilkTea 12 1.000

PreparePudding 5 1.000

PrepareToastsEggs 20 1.000

PrepareMilk 5 0.952

PrepareSandwichWithoutButter 9 0.869

PrepareSpaghetti 18 1.000

PrepareCoffee 14 0.976

PrepareSandwich 15 0.902

PrepareCoffeeWithoutMilk 11 0.806

Overall F1 score – 0.954

Overall accuracy – 0.985

To test the performance under large-scale data, based on
the real data, we generated numerous synthetic data having
more varied patterns. Furthermore, data sets were randomly
divided into 10 subsets, and such division was repeated 10
times. Each time, one subset was chosen as the test set and
the other 9 subsets were put together to form a training set.
This approach is called 10-fold cross validation.

The objective of tenfold cross validation is to evaluate the
capacity about generalization, awell-known issue inmachine
learning [64]. Sometimes, a model could receive excellent
evaluations on the data existing in the training set. However,
once the test data have not been seen before, the classification
result may break down. As an effective approach, cross val-
idation could indicate the performance of built model when
it is asked to make a prediction on the data that are not used
to create the model. With its help, each pattern in the data set
was removed at least once from the training sets.

In Table 4, statistical information and F-measure results
using FCA-based inference engine are given out. Activities
without multilevel inheritance relations have better recog-
nition accuracies in the complex mode. This is because
activities with multilevel inheritance relations are easier to
be affected by unreliable data and recognized as one of their
similar derivations.

4.2 CASAS smart apartment

CASAS smart apartment is designed and constructed by
the Center for Advanced Studies in Adaptive Systems of
Washington State University. Its benchmark data sets3 rep-
resent sensor events collected in a smart apartment testbed

3 Available at http://ailab.wsu.edu/casas/datasets/.
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Fig. 10 Sensor layout of the CASAS intelligent apartment

Table 5 Comparison of
accuracies of CASAS data set

Classes Naive Bayes [33] (%) HMM [19] (%) FCA-based (%)

ac1 50 58 100

ac2 62 78 100

ac3 27 43 60

ac4 39 46 95

ac5 78 80 95

ac6 83 82 100

ac7 89 81 100

ac8 57 67 100

[19]. In the experiment, we compare our results of Kyoto-3
interweaved ADL activities data set with the other methods
in the literature. The CASAS data set contains the patterns
of sequential and interleaved activities. As shown in Fig. 10,
the whole apartment, including the bedrooms, a bathroom, a
kitchen, and a living room, is deployed full of heterogeneous
sensors to capture various environmental states.

Instead of using passiveRFID tags, theCASAS laboratory
directly uses motion sensors to track an occupant’ scopes of
activities. The data in the sequences are the raw sensor events.
Besides, the CASAS smart apartment also includes temper-

ature sensors, light controllers, and a variety of item sensors
detecting the usages and interactions of attached objects by
individuals. Moreover, customer-built analog sensors moni-
tor the usage of hot water, cold water, and stove burner. The
phone usage is captured by Asterisk software, and the states
of doors and cabinets are captured by contact switch sen-
sors. Pressure sensors monitor the usage of key items such
as medicine container, cooking pot, and phone book [30].

There are 20 participants performing eight basic and
instrumental activities in the apartment. First of all, each
activity was performed separately, and then, these partici-
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Fig. 11 Recognition accuracy of different methods on the CASAS
Kyoto-3 data set

Table 6 Comparison of F-measure of CASAS data set

Classes HMM [19] MLN (supervised) [35] FCA-based

ac1 0.656 0.803 1.000

ac2 0.862 0.882 1.000

ac3 0.285 0.740 0.750

ac4 0.589 0.688 0.973

ac5 0.828 0.807 0.974

ac6 0.826 0.873 1.000

ac7 0.881 0.781 1.000

ac8 0.673 0.904 1.000

avg 0.700 0.810 0.962

pants are asked to perform the entire set of eight activities
again in any order, interweaving, and performing tasks in
parallel if desired. Eight activities were involved: fill medi-
cation dispenser (ac1),watch DVD (ac2),water plants (ac3),
answer the phone (ac4), prepare birthday card (ac5), prepare
soup (ac6), clean (ac7), and choose outfit (ac8). Each sen-
sor reading is tagged with the timestamps, sensor id, and its
value.

In Table 5, we compared the recognition accuracy with
different methods [19,33]. In Fig. 11, our method achieves
the highest accuracy (93.75%) among naive Bayes (66.08%)
and HMM (71%) [33]. In Table 6, we compared the perfor-
mance of our method with another two methods described in
[19,35] by F-measure. Complex behavioral patterns are clas-
sified as eight classes (activities). From these comparisons,
we could see that our method has more better performance
in each activity recognition.

For the time complexities in both training and test phases,
we give out the statistical information in Table 7. The training
phase includes sequential pattern extraction, formal lattice
construction, and historical data accumulation. While han-
dling with LIARA data set, we could see that the training
and testing times are both very low. Compared with LIARA
data set, CASASdata havemuch fewer training items, but the
training time is much longer than the LIARA one. The rea-
son is that the number of classes greatly affects the number
of clusters. The augmentation of clusters also increases the
complexity of searching in the Hasse diagram. For CASAS
data set, every activity was performed by different actors and
each activity having the same name must distribute different
class labels as the variations of original activity.

5 Discussion

In this section, we introduce the advantages and disadvan-
tages of our innovative methods from the obtained experi-
mental results and the some discussions about reliability.

5.1 Preprocessing

The construction process of formal lattice depends on the
correlations between objects and attributes. Normally, each
data with categorical or binary value should be treated as
an element in the set of attributes. However, sensor events
with discrete values could not be well represented by binary
relations. To avoid high dimensionality, discrete sensor val-
ues should be transformed into categorical ones by disjoint
intervals.

Another optional processing is about the feature selection.
In the training phase, if some captured data are not relevant
to the belonging activities, or some attributes do not enable
to efficiently differentiate activities, they should be pruned
from the matrix describing correlations.

5.2 Reliability

The discussion about reliability surrounds in several parts.
The first one is about the privacy. In the layout of LIARA
smart home, the types of sensors used in the infrastructure
are the non-intrusive ones, which do not contain private
personal information. Unlike vision-based or video-based

Table 7 Performance of FCA-based algorithm in different data sets

Data sets No. classes No. features No. nodes No. training items Training times (s) No. Test items Test times (s)

LIARA 12 70 25 25,207 0.0062 2520 0.8093

CASAS 160 84 5089 160 40.3625 20 1.6961
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methods dealing with sequential and continuous images con-
taining large number of private data, FCA-based inference
engine only deals with discrete categorical or numerical val-
ues describing the states of environments. Thus, there is no
controversy over privacy.

The second one is about the low volume requirement
about the training data. FCA-based method does not need
large amount of data for the construction of formal lattice. It
could automatically self-adapt various patterns from a small
indexed patterns. Redundant patterns will not bring signif-
icant improvement about accuracy, in some cases, it will
lead overfitting and the useless features have to be pruned.
Besides, Both LIARA and CASAS data sets adopted the
intended strategy to label the experimental training data [65].
In the intended strategy, participants followed predefined
instructions to do various activities. Observers could also
clarify in case of uncertainty. For the test data set, both of
them let the participant use another keyhole strategy to gen-
erate complex behavioral patterns. In the keyhole strategy,
observers do not influence participants behaviors and manu-
ally annotate the complex sequences.

The third one is about the reusability. The inference engine
contains three key components: the formal lattice to index
useful itemsets, the accumulated matrix to record histori-
cal preferences, and weighted arrays, as well as matrices to
evaluate causality and threat levels of events [5]. Most of
them are independent, or loosely coupledwith each other. For
example, the matrices and arrays are user independent. The
formal lattice could be reusable to provide various behav-
ioral patterns of an activity. Furthermore, the accumulated
matrix could be replaced without modify the architecture of
the inference engine.

The fourth one is about the flexibility. As the com-
mon prerequisite of knowledge-drivenmethods [35], domain
experts are essential to define and model knowledge base
including domain of interest, relations among individuals,
classes, and properties. In otherwords, the interventions from
domain experts generally run through entire knowledge-
based designs.

In contrast, the FCA-based inference engine depends on
few prerequisite knowledge. From the FCA construction to
the final recognition, there is no special requirement of under-
standing complicated rules or domain knowledge.

The last one is about the robustness. In software engi-
neering, the robustness refers to the ability of a system to
handle exceptions or erroneous inputs during execution. For
a machine learning algorithm, it refers to the stable perfor-
mance while handling data sets with noise. As mentioned
in [35], when different patterns are partially captured or an
occupant exhibited strange behaviors, the performance will
normally fluctuate.

Our FCA-based method not only possess good genera-
tion capacity, but also is sensitive to detect various abnormal

behavioral patterns. For each unseen pattern which is not
in the training data set, but appears in the test data set,
FCA-based inference engine will analyze its patterns and
the similarity with existing cases, and then propose the can-
didate with the most similar patterns. According to the most
common abnormal behaviors observed among people suf-
fering cognitive impairment, in [5], we formally defined six
cognitive errors and proposed a series of customer-built error
detectors. These errors involve themajority of abnormal situ-
ations caused by the unreliable data. If the data loss happens
due to less reliable sensors, most activities could be nor-
mally recognized and identified as unfinished ones. Even
in the worse cases, FCA-based method could evaluate par-
tial observed data, calculate the similarity, and classify the
instance into the most possible activity cluster. As shown in
the examples in Tables 1 and 2, repetitive data and few redun-
dant ones have almost no affection to the final recognition
results.

6 Conclusion

In this paper, we introduce a new activity inference engine to
analyze sequential and temporal behavioral patterns to recog-
nize complexongoingADLs in smart environments equipped
with non-intrusive sensor networks. Complex ADLs involve
the activities performed in the concurrent, sequential, or
interleaved ways.

Compared with the conventional supervised data mining
methods, our engine has strong generalization capacity and
some reliable characteristics. The results tested in two dif-
ferent data sets demonstrate the excellent performance in
behavioral pattern analysis.

In our future research, we intend to concentrate on the
activity recognition among multiple occupants. In addition,
more complex evaluation in the contextual and temporal parts
will replace current RMSD assessment. A series of optimiza-
tions about formal lattice construction are also considered in
the plan, for example, the incremental updating of new train-
ing data, weighted formal context instead of the binary one,
and a more efficient pruning mechanism.
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