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Abstract
Plant diseases induce visible modifications on leaves with the advance of infection and colonization, thus altering their spectral
reflectance pattern. In this study, we evaluated the visible spectral region of symptomatic leaves of five plant diseases: soybean
rust (SBR), Calonectria leaf blight (CLB), wheat leaf blast (WLB), Nicotiana tabacum-Xylella fastidiosa (NtXf), and potato late
blight (PLB). Ten spectral indices were calculated from the RGB channels (red, green, and blue) of images of leaves varying in
percent severity, which were obtained under controlled lighting and homogeneous background. Image processing was automated
for background removal and pixel-level index calculation. Each index was averaged across pixels at the leaf level.We found high
levels of correlation between leaf severity and the majority of the spectral indices. The most highly associated spectral indices
were overall hue index, visible atmospherically resistant index, normalized green red difference index, primary colors hue index,
and soil color index. The leaf-level mean value of each of the ten indices and digital numbers on the RGB channels were gathered
and used to train boosted regression tree models for predicting the leaf severity of each disease. Models for SBR, CLB, andWLB
achieved high prediction accuracies (>97%) on the testing dataset (20% of the original dataset). Models for NtXf and PLB had
prediction accuracies below 90%. The performance of eachmodel may be directly related to the symptomatology of each disease.
The method can be automated if the images are obtained under controlled light and homogeneous background, but improvements
should be made in the method for using field- or greenhouse-acquired images which would require similar conditions.
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Introduction

Plant diseases induce visible modifications (symptoms or
signs) on leaves with the advance of pathogenesis, thus alter-
ing their spectral reflectance pattern. The assessment of such
spectra on plants, either visually or aided by image analysis
software, has long been used in the field of phytopathometry
for several purposes including disease detection, classifica-
tion, and quantification (Barbedo 2016a; Bock et al. 2020).

The simplest image analysis-based approach used to deter-
mine the percent of visibly diseased (symptomatic) areas is to
determine the total leaf area of an image and manually seg-
ment it via binarization into diseased and non-diseased areas

(Lamari 2008; Bock et al. 2009). These areas are individually
measured and the diseased:total (total = diseased + healthy)
area ratio gives the proportion (or percentage) of the diseased
area. This task is commonly performed by means of several
image analysis software capable of thresholding images (Del
Ponte et al. 2017). The method is considered the best approx-
imation to determining the actual value of severity (Bock et al.
2009, 2016). To speed up a laborious and time-consuming
manual annotation process at a leaf-by-leaf basis, programs
have been written to automate the thresholding via batch pro-
cessing of images (Bock et al. 2009; Stewart and McDonald
2014; Stewart et al. 2016; Karisto et al. 2017) that are avail-
able in commercial or open-source software such as Assess
(Lamari 2008), ImageJ (Schneider et al. 2012), Quant (Vale
et al. 2003), or custom-made ones (Barbedo 2016a). More
recently, artificial intelligence algorithms have been proposed
to predict categories of severity on individual leaves, not di-
rectly the percent values (Bock et al. 2020). The latter case has
been possible using convolutional neural networks for
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semantic segmentation, a method that allows prediction of the
binary classes at the pixel-level, and then the percent area
affected can be obtained (Liang et al. 2019; Esgario et al.
2020; Gonçalves et al. 2020).

Regardless of the method, the images used in those studies
are obtained using portable cameras or flatbed scanners
(Barbedo 2016a). The latter is considered ideal given the uni-
form conditions during image acquisition, but the leaves
should be detached and destroyed. While cameras can take
in-field images, the issues related to nonstandard image acqui-
sition arise during image processing, including the presence of
complex target backgrounds that should be removed during
processing (Barbedo 2016a).

The simplest and cheapest options of devices can simply
capture the visible light from the visible electromagnetic spec-
trum (380 to 750 nm) and produce images from three spectral
bands, red (564–580 nm), green (534–545 nm), and blue
(420–440 nm), hence the RGB images, in which each pixel
color is a “mixture” of the three bands.More sophisticated and
currently more expensive cameras/sensors allow capturing
more wavelengths in other zones of the electromagnetic spec-
trum, such as the red-edge (~700 nm) and the near-infrared
(750–900 nm) bands. These images are called multispectral
images. Hyperspectral imaging is performed with sensors that
capture several bands (250–2500 nm) with fine wavelength
resolution within the electromagnetic spectrum (Hagen and
Kudenov 2013; Mahlein 2016; Barbedo 2016a; Bock et al.
2020).

The spectral indices are used to summarize the data of those
several bands into a single value per pixel. These spectral
indices are calculated by a mathematical formulation of two
or more bands. The most common spectral index used to eval-
uate crop health is the Normalized Difference Vegetation
Index (NDVI), which is calculated from the red and infrared
bands (Rouse et al. 1974). In fact, the use of spectral indices
has become routine in studies focusing on detection and quan-
tification of plant diseases, but in the majority of cases using
UAV- or aircraft-mounted multi- or hyperspectral imaging at
field level (Mahlein 2016; Barbedo 2016a; Bock et al. 2020).
RGB imaging has already been used for disease severity pre-
diction in the field (Sugiura et al. 2016), but it has the disad-
vantages of being very sensitive to variations on conditions
during image acquisition, such as lighting and shades, which
may be the reason for its low accuracy and lack of use at the
field. However, RGB imaging can be more useful for research
purposes in which images are obtained under controlled con-
ditions. For example, an automated procedure for research
purposes, based on image thresholding, was developed to seg-
ment leaf images obtained by a flatbed scanner and measure
the severity (and other traits) of more than 20,000 wheat
leaves with Septoria leaf blight using the ImageJ software
(Karisto et al. 2017).

The majority of studies regarding the prediction of disease
severity on leaves using RGB images focused on evaluating
machine learning algorithms to segment leaf images and cal-
culate severity from the ratios between areas (Barbedo 2016b;
Liang et al. 2019; Esgario et al. 2020; Gonçalves et al. 2020).
To our knowledge, no previous work has studied the relation-
ship between RGB-based spectral indices (RGBSI) and dis-
ease severity at the leaf level. We hypothesize that different
RGBSIs, depending on the symptomatic features, are good
candidates for predictors of disease severity at the leaf level
since they are a function of the RGB bands. To test this hy-
pothesis, we gathered image datasets of symptomatic leaves
from five diseases. We studied the correlation between the
disease severity and red, green, and blue channels intensity
as well as ten RGBSIs extracted from the images.
Furthermore, we use all RGBSI and the RGB data as predic-
tors (13 predictors) in a boosted regression trees (BRT) model
to predict the disease severity for each one of the datasets.

Material and methods

Image databases

We gathered five image datasets of different foliar diseases of
different plants (Table 1), all previously annotated for percent
area affected: soybean rust (Phakopsora pachyrhizi),
Calonectria leaf blight (Calonectria pteridis) of eucalypts,
Nicotiana tabacum-Xylella fastidiosa, wheat leaf blast
(Pyricularia oryzae), and potato late blight (Phytophthora
infestans growth and sporulation in leaf disks).

Diseased leaves were obtained from artificially inoculated
plants (or leaf discs of 15-mm diameter for the case of Potato
late blight) or from field surveys (for soybean rust). Image
digitization was done under controlled conditions of luminos-
ity (24-bit pixel depth) using either a flatbed scanner or stereo
microscope-coupled camera device (for the potato late blight).
The actual or reference severity of each image was measured
manually using specific software (Table 1) for thresholding
images and segmenting images into symptomatic and asymp-
tomatic areas. Hence, disease severity was calculated by the
percent leaf area presenting disease symptoms or pathogen
growth and sporulation.

Overall approach

Our approach (Fig. 1) consisted of processing leaf images of
each dataset sequentially in an automated way to obtain the
mean value of RGB data (digital number on the red, green,
and blue channels) and RGBSI for each image. As each image
is loaded, the number of pixels is decreased to reduce compu-
tational cost. Next, the image’s background is removed using
a color threshold, and the RGBSI is calculated for each pixel.
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The mean values of each index and the red, green, and blue
intensities are aggregated (averaged) from all leaf pixels. After
obtaining the image-derived data, we studied the relationship
between the indices and the actual severity. Furthermore, we
split the datasets into training and testing. Boosted regression
trees models were trained for each disease, and we evaluated
their prediction accuracy using the testing dataset (Fig. 1).

Digital image processing

Image manipulation

Images were loaded sequentially into the R software (R Core
Team 2020) using the function stack() from the R package
raster (Robert 2020) and further converted to a raster object.
To speed up computations, the raster resolution was decreased
in a ratio following an aggregation factor, which is the number
of cells/pixels in each direction (horizontally and vertically)
that is aggregated into one single cell/pixel. Aggregation fac-
tors of 4 for 96 dpi, 7 for 300 dpi, and 10 for 600 dpi images
were used so the images ended up with ~6 dpi after aggrega-
tion (Table 2).

Leaf background removal

The background of the leaf was removed using a mask obtain-
ed from the original image. To classify the image into leaf (or
leaf disc) and background, the masks were created by setting a
threshold value on the digital number (DN) of the blue chan-
nel, for SBR, CLB, WLB, and NtXf images, and on the DN of
the red channel for PLB images. The choice of the channel for
thresholding was based on evaluating the channels that
displayed the higher contrast between leaf and background.
After manually evaluating different values of thresholds, a
value was chosen for each dataset (Table 2). The low value
in the threshold for PLB is due to the background color being
black, and consequently leading to DN values to zero, differ-
ently from the other datasets with brighter backgrounds. The
function fieldMask() from the R package FIELDimageR
(Matias et al. 2020) was used to create the masks. Finally, the

background was removed using the masks and the original
image into the function mask() from the R package raster.

RGB-based spectral indices

Because the images were obtained under constant and con-
trolled light conditions, we did not transform the DN values
into reflectance since they would be proportional under such
conditions. Therefore, the spectral indices were calculated di-
rectly from the DN of each respective channel. Ten RGBSI
(Table 3) were calculated for each image at the pixel level. For
this purpose, the function fieldIndex() from the
FIELDimageR package was used. This function extracts the
DN of each channel at the pixel and calculates different spec-
tral indices. Since the fieldIndex() function does not
have a built-in equation to calculate the grayscale values, it
was calculated directly from the red, green, and blue DN
values extracted from the raster object. Finally, the mean value
of each RGBSI was calculated by averaging the values among
all leaf pixels. The mean DN values of red, blue, and green
channels were also calculated for each image.

All steps described here were automated to process all im-
ages sequentially. After the images were processed, the mean
values of the RGBSI, RGBDNs, and actual severity data were
put all together into a single dataset (one for each disease) for
further data analysis and modeling.

RGB intensity distribution

Because DN on the red, green, and blue channels could be
extracted from images, we selected two representative leaves
of each one of the five datasets, one leaf with low severity and
other with high severity. The purpose was to depict the distri-
bution of the pixel intensity (given by the DN) of each channel
on two different levels of severity. Distribution functions were
constructed and plotted for visualization.

Correlation analysis

The relationship between the RGB-based spectral indices and
disease severity was evaluated using Spearman’s rank

Table 1 Information for each disease dataset. Number of images (N), the device used for image acquisition, file format, image resolution (R) in dots per
inch (dpi), software used to quantify disease severity or pathogen growth and sporulation, and source of the images used in this study

Disease name Code N Device Format R (dpi) Software Reference

Soybean rust SBR 203 HP scanner (Model 2130) JPG 300 Quant Franceschi et al. 2020

Calonectria leaf blight CLB 300 HP LaserJet Pro 200 color MFP M276nw JPG 300 ImageJ MF Queiroz unpublished data

Tobacco-Xylella fastidiosa NtXf 105 HP Photosmart JPG 300 ImageJ Pereira et al. 2020

Wheat leaf blast WLB 200 HP—LaserJet M1132 MFP JPG 600 ImageJ JP Ascari unpublished data

Potato late blight PLB 232 Moticam 10-10.0MP PNG, TIF 96 ImageJ M Guimarães unpublished data
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correlation coefficient. This method was chosen due to its
robustness and because we could not assume normality in
the multivariate distribution. The cor.test() function
from the R software was used to estimate the correlation pa-
rameters and associated P values.

Boosted regression trees

The main objective here was to fit a model to predict disease
severity at the leaf level using the mean values of spectral
indices and red, green, and blue mean DNs from each image
as predictors, which added up to 13 predictors. We used
boosted regression trees (BRT) models to build a predictive
model linking these 13 predictors to disease severity. The
BRTs were chosen due to their high predictive power for
either regression or classification problems. The boosting al-
gorithm is similar to the random forest method. The random
forest method fits individual trees for random subsets of the
original dataset. However, in boosting, the trees are fitted se-
quentially, in which each tree is fitted focusing on the data that
were poorly modeled by the previous trees (James et al. 2013).

In the BRT algorithm some hyperparameters are important:
(1) The learning rate or the shrinkage parameter (λ) defines
the rate the method learns from the errors of the previous trees;
(2) the interaction depth (d), which is the number of splits in
the trees. This is because the trees are constructed using only a
subset of d predictor variables; (3) the optimal number of trees
(B), which needs to be estimated because a large number of
trees might cause overfitting; (4) the minimum number of
observations (MNO) in the terminal nodes of the trees; and
(5) the bag fraction (bf), which defines the fraction of the
training subset of the observations randomly picked to pro-
pose the next tree.

The computational procedure was done using the R soft-
ware, where the BRT models were fitted using the function
gbm() from the gbm package fromR (Greenwell et al. 2020).

We randomly split the datasets into training and validation
data, in which 80% of the observations were used for model
training. Predictions were performed using the R function
predict() with the validation dataset.

Prediction accuracy metrics

The concordance between the BRT predictions and the
actual/reference severity measured from each image, two
continuous variables, was evaluated using Lin’s concor-
dance correlation coefficient (CCC) analysis (Lin 1989).
Lin’s CCC is given by ρc = r Cb, where r is the product-
moment correlation coefficient between actual (ya) and
predicted (yp) severity. Cb is the overall bias. It indicates
the level of disagreement between the best fitting line
(regression line between ya and yp) and the perfect agree-
ment line (intercept 0 and slope 1). Cb is calculated from
two bias parameters: the location shift parameter (u) and
the scale shift (υ). u > 0 indicates that the regression be-
tween ya and yp produces a slope equal to 1 and an inter-
cept different to zero. On the other hand, υ ≠ 1 indicates
that the slope is different from 1 (Lin 1989; Madden et al.
2007). While r is a measure of precision, Cb is a measure
of accuracy. In addition, we calculated the root mean
square error (RMSE) between the actual and predicted
severity as a measure of concordance. Lin’s CCC param-
eters were estimated using the function CCC() from the
DescTools (Signorell 2020) package, while the RMSE
was calculated using the function RMSE() from the caret
package (Kuhn 2020).

Model selection

We tested a total of 192 combinations of the hyperparameters:
shrinkage (λ = {0.001, 0.01, 0.1, 0.3}), interaction depth (d =
{0.001, 0.01, 0.1, 0.3}), MNO (MNO = {5, 10, 15}), and bag
fractions (bf = {0.5, 0.65, 0.8, 1}). The best models were
chosen based on the calculated value of Lin’s CCC, ρc (Lin
1989), between the estimated values of severity for the vali-
dation dataset (remaining 20% of the original dataset).

�Fig. 1 Overall approach including two major steps a) image processing
and b) data analysis for developing prediction models of whole leaf
severity based on visible spectral indices obtained from symptomatic
plant leaves. See section 2.3 and respective subsections for full
description

Table 2 Channels used to create
the masks, thresholding values on
the digital number (DN) for
background removal, whether the
image background was set for
values above the threshold value
used, and aggregation factors
used to decrease raster resolution
for each dataset during the image
processing steps

Image
dataset

Channel for
thresholding

Threshold value
(DN)

Background
above

Aggregation
factor

SBR Blue 100 True 7

CLB Blue 175 True 7

NtXf Blue 200 True 7

WLB Blue 180 True 10

PLB Red 1 False 4
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Code availability and reproducibility

All analyses were performed using the R software. Scripts
used for data analysis, including image processing, correlation
analysis, and BRT model fitting were documented using
Rmarkdown, and a website containing it can be freely
accessed at git.io/JqUZw.

Results

Distribution of RGB intensity on images

Leaf images with low and high disease severity, defined arbi-
trarily for each disease, showed distinguishable patterns of the
DN (pixel intensity, PI) distributions on the RGB channels.
RGB images used to represent low and high severity levels are
depicted in Supplementary figure 1. The low severity images
showed lower PI on the blue and red channels than in the
green channel (Fig. 2). However, a shift (increase) in the PI
distribution of the red channel was noticed with the high se-
verity category. For CLB, the mean PI value of the red channel
of the high severity was much higher than in the green channel
(Fig. 2B). Higher values were also observed on the green
channel PIs for SBR, compared to the low-severity images
(Fig. 2A). The variance of PI distributions on the green chan-
nel of high-severity images was quite higher for all diseases.
There was a higher mean and variance of the PI distributions
of the blue channel on high-severity images of CLB, NtXf,
WLB, and mainly of PLB (Fig. 2).

RGBSI and severity

The majority of the RGBSI as well as DN values on the red,
green, and blue channels were significantly associated with
disease severity of all diseases (Fig. 3). The highest

(absolute) values of Spearman’s rank correlation coefficient
(r) were obtained between HUE and SBR (r = 0.995), HUE
and CLB (r = 0.982), HUE and NtXf (r = 0.694), GLI and
WLB (r = −0.886), and BGI and PLB (r = 0.899). Some
RGBSI and color channels were not significantly (P > 0.05)
associated with severity: the green channels for CLB and
NtXf, SCI, NGRDI, VARI, and HUE for PLB (Fig. 3). The
GLI, NGRDI, and VARI indices presented negative r values
for all diseases. HUE is the index that seems to be directly
correlated to the increase in disease severity on leaves with r
values higher than 0.69, besides for PLB. Scatter plots with
the relationship between severity and each variable (RGB
channels and RGBSI) were generated (Supplementary
figures 2 to 6). The relationship between severity and image
attributes is quite variable. Some cases depict a linear relation-
ship, such as HUE and SBR or CLB severity, while in other
cases there is a nonlinear relationship, such as NGRDI for
SBR, WLB, or CLB severity. We also notice different levels
of within predictor correlations (Supplementary figure 7),
mainly between NGRI and VARI, BGI and BI, or HUE and
SCI, for instance.

Representative leaves with the most correlated RGBSI cal-
culated for each pixel are presented in Fig. 4 (mid column). It
is possible to visualize a difference in RGBSI values compar-
ing symptomatic and asymptomatic areas (Fig. 4). The distri-
bution of reference severity values varied from 0.04 to 89.6%
(median: 20.10%) for SBR, 0.8 to 95.4% (median: 9.8%) for
CLB, 0.4 to 83.9% (median: 19.0%) for NtXf, 0 to 99.9%
(median: 49.6%) for WLB, and 0 to 88.8% (median: 52.1%)
for PLB (Fig. 4 right column).

BRT model selection

The models with higher accuracy (CCC) among the 192
models tested for each dataset have their hyperparameters
shown in Table 4. Shrinkage (λ) or the learning rate was either

Table 3 Spectral indices calculated using red (R), green (G), and blue (B) data from the images

Name Index Formula Reference

Brightness index BI
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2þG2þB2

3

q

(Richardson and Wiegand 1977)

Soil color index SCI R−G
RþG (Mathieu et al. 1998)

Green leaf index* GLI 2G−R−B
2GþRþB (Louhaichi et al. 2001)

Primary colors hue index HI 2R−G−B
G−B (Escadafal et al. 1994)

Normalized green red difference index NGRDI G−R
GþR (Tucker 1979)

Spectral slope saturation index SI R−B
RþB (Escadafal et al. 1994)

Visible atmospherically resistant index VARI G−R
GþR−B (Gitelson et al. 2002)

Overall hue index HUE atan 2 B−G−R
30:5 G−Rð Þ� �

(Escadafal et al. 1994)

Blue-green pigment index BGI B
G (Zarco-Tejada et al. 2005)

Grayscale Gray 0.299R+0.587G+0.114B -

*Modified by Escadafal et al. (1994)
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0.01, 0.1, or 0.3, with the lower value in the models for SBR
and WLB. The models for SBR, CLB, NtXf, and CLB had
lower splits in trees (d); on the other hand, the model with the
longest trees was the WLB model, with 5 splits. All the
models had MNO = 5. The model with the highest number

of trees was the model for WLB (4988 trees), while the fewest
was for NtXf (19 trees). The best five models, among all 192
models tested for each disease, with the lowest Lin’s concor-
dance correlation coefficient (CCC) for predicting severity on
the test dataset are shown in Supplementary Table 1.

Fig. 2 Distribution of DN values or pixel intensity on red, blue, and green
channels for low and high severity of representative images of soybean
rust (low: 2.13%; high: 55.77%), Calonectria leaf blight (low: 1.74%;
high: 77.46%), Nicotiana tabacum-Xylella fastidiosa (low: 2.64%;

high: 75.82%), wheat leaf blast (low: 0.28%; high: 77.08%), and potato
late blight (low: 0%; high: 82.74%) image datasets, depicted in each row,
respectively. The images used for each category are displayed in
Supplementary figure 1
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Prediction accuracy

All 192 models were evaluated for their accuracy in predicting
leaf-level severity of the testing dataset. The model with
higher accuracy was the model for SBR (Table 5), which
displayed ρc = 0.995. This was also the one with a lower pre-
diction error (RMSE = 1.92 p.p.). In fact, the models for SBR,
CLB, and WLB had very good overall performance, with low
prediction errors (RMSE < 8.0 p.p.) and high accuracy (ρc >
0.97). Models for NtXf and PLB had the poorest perfor-
mances among all the models. Both models had prediction
errors higher than 8 p.p. and overall accuracy (ρc) lower than
0.9 (Table 5). Model precision values (Pearson’s r) were di-
rectly related to the RMSE, and consequently, the most pre-
cise model was SBR’s and the least precise model was PLB’s.

The most biased models were those for NtXf and PLB.
These models tended to overestimate severity at low levels
of severity and underestimate at high levels of severity (Fig.
5E). On the other hand, models for SBR, CLB, andWLBwere
the most unbiased models with regression curves very close to
the perfect agreement and bias components (υ and ) very close
to the ideal values (Fig. 5A, B, and C; Table 5).

Predictor’s relative influence

The BRT models assembled used all 13 predictor variables.
However, the relative influence (RI) of each predictor varied
among models (Fig. 6). The RI is a scaled measure (0 to
100%) of the contribution of each variable in decreasing the
mean squared error loss function. The most influential vari-
able for SBR, CLB, and NtXf was HUE, with relative influ-
ence of 87.8%, 94.0%, and 45.0%. For WLB, VARI had the
highest contribution (28.4%), while for PLB, BGI had the
highest RI (39.9%). Overall, predictors with high RI values
also had a high Spearman’s correlation coefficient
(Supplementary figure 8). The BRT model with the lower
number of predictors with RI > 1% was the CLB model (2

predictors), while the BRT model for WLB had 9 predictors
with RI > 1%. The number of predictors with RI > 1% was
three for SBR, seven for NtXf and PLB, and nine for WLB
(Fig. 6).

Discussion

In this study, a strong association was found between whole
leaf percent severity determined by image analysis (assumed
as actual severity) and RGBSI and the red, green, and blue
DNs from digital images obtained under controlled condi-
tions. The gathering of these variables, 13 in total, into
boosted regression trees models allowed us to obtain accurate
predictions of leaf severity for most disease datasets. The
RGBSI that presented the highest absolute values of
Spearman’s rank correlation |r| to severity were HUE,
VARI, NGRDI, HI, and SCI, which presented |r| values
>0.8 for at least two diseases. Consequently, these predictors
exerted high relative influence values on the assembled BRT
models for predicting severity. The DNs on the RGB channels
were also correlated with severity, mainly the blue and red
channels.

The prediction accuracy of the BRT models assembled
here ranged from 0.86 (NtXf) to 0.99 (SBR). The variation
in Lin’s concordance values (CCC) values is likely due to the
differences among the characteristics of the symptoms for
each respective disease, which reflects directly on their chro-
matic patterns. For SBR, CLB, and WLB, predictions by the
BRT models were highly accurate (CCC >0.97). These dis-
eases produce visibly contrasting symptomatic areas (necrosis
or chlorosis) on leaves, which drastically affects the RGB
distribution, with a major increase on the DN values on the
red channel (Fig. 2A, B, and D). However, even with the same
characteristics of necrosis and the same increase on the DN on
the red channels, the accuracy of the predictions by the BRT

Fig. 3 Spearman’s rank correlation coefficient of the relationship between RGB-based spectral indices or image digital numbers on the RGB channels
and disease severity or pathogen sporulation
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Fig. 4 Background-removed leaf images (first column), images with
RGB-based indices more correlated to the severity (second column),
and histogram of actual severity/sporulation distribution of each image

dataset (third column). Each row corresponds to the following datasets
sequentially: soybean rust, Nicotiana tabacum-Xylella fastidiosa,
Calonectria leaf blight, wheat leaf blast, and potato late blight
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model for the Xylella symptoms on tobacco plants was no
higher than 0.87.

Different from the others, the PLB dataset was composed
of leaf discs with growth and sporulation of P. infestans
(Supplementary figure 1-J). As the severity increases, the leaf
disc becomes covered with a white mycelial mass, which may
explain the distribution of the DN values on RGB channels
that are completely different from the other diseases (Fig. 2E).
For PLB, the major shift was observed on the blue channel as
severity increased (Fig. 2E), which was reflected in its corre-
lation to severity (Fig. 3). Another characteristic observed is
that in some leaves, as the severity increases, they become
yellowish and some necrotic areas might appear, a pattern
not observed among all leaves.

Among all diseases studied here, standard area diagrams
(SADs) were developed and validated for assessing severity
on SBR, WLB, and NtXf, and hence accuracy of visual esti-
mates of severity was available for comparison with our re-
sults (Rios et al. 2013; Franceschi et al. 2020; Pereira et al.
2020). No such data are currently available for CLB and PLB,
but experiments are underway. The accuracy of the unaided
estimates of severity (meaning that raters were blindly
assessing severity) ranged from 0.8 to 0.84 for SBR and
WLB, while ranging from 0.63 to 0.78 among different
groups that evaluated NtXf. The training with the SAD used
as an aid during the assessment resulted in an increase in
accuracy to 0.96 for SBR and WLB and 0.82 and 0.89 for
NtXf (Rios et al. 2013, Franceschi et al. 2020, Pereira et al.
2020). Our predictions are as high or more accurate than the
accuracy of visual estimates obtained using SADs for these
diseases for an “average” rater, meaning that the system is
equivalent to a “best rater” estimating visually.

Accuracy of our prediction and that obtained by visually
assessing NtXf with the aid of a SAD were never higher than
0.9 on average among the four groups of raters. A small per-
centage of raters were able to achieve accuracy higher than
0.9. Two hypotheses can be drawn. First, NtXf symptoms
depict visual features that are not clearly perceived, or overly
perceived, during visual inspections. For example, NtXf
symptoms are composed of small numerous necrotic punctu-
ations over the leaf (Pereira et al. 2020) that appear to be
difficult to visualize or distinguish from the asymptomatic
tissue. Other leaves tend to become yellowish even with low
levels of severity, maybe because of the X. fastidiosa systemic
infection. The yellowing leaves might affect the perception of
diseased areas. The same phenomenon may affect the visible
spectral pattern of the “asymptomatic” leaf tissue. The second
hypothesis is a low accuracy of the reference severity (the
assumed actual severity), which is manually measured using
color thresholding software. These hypotheses can be interre-
lated with the first since the symptomatic and asymptomatic
areas are identified visually in all cases. The same set of actual
severity is used to train our models and to validate results of
visual accuracy.

The SBR dataset has been used recently to train
convolutional neural network (CNN) architecture for the se-
mantic segmentation of images and prediction of disease se-
verity (Gonçalves et al. 2020). Differently from our work,
their algorithms were trained for classifying each pixel of an
image into symptomatic, asymptomatic, or image back-
ground, and then severity was calculated using diseased:total
leaf area ratio. The authors reported prediction accuracies
(CCC) ranging from 0.93 to 0.97. The advantage of their

Table 4 Models with the highest accuracy based on Lin’s concordance
correlation coefficient (CCC) for each one of the five disease datasets

Disease λ a d b MNO c bf d B e

Soybean rust 0.01 3 5 0.80 1148

Calonectria leaf blight 0.30 3 5 1.00 53

N. tabacum-X. fastidiosa 0.30 3 5 0.65 19

Wheat leaf blast 0.01 5 5 0.80 4988

Potato leaf blight 0.10 3 5 0.80 32

a Shrinkage parameter or the learning rate
b Number of splits in each tree
cMinimum number of observations in the terminal nodes of the trees
d The fraction of the training set observations randomly selected to pro-
pose the next tree in the expansion
e Optimal number of trees

Table 5 Prediction accuracy metrics of the most accurate boosted
regression tree models using the testing set (20% of the images) for
predicting percent severity on digital images of soybean rust (SBR),
Calonectria leaf blight (CLB), wheat leaf blast (WLB), Nicotiana
tabacum-Xylella fastidiosa (NtXf), and potato late blight (PLB)

Disease RMSEa rb υc ud Cb
e ρc

f CIsg

SBR 1.92 0.99 0.99 −0.01 0.99 0.99 0.99, 1.00

CLB 2.35 0.99 1.04 0.02 0.99 0.99 0.99, 1.00

WLB 7.85 0.97 1.03 0.02 0.99 0.97 0.95, 0.99

PLB 8.12 0.90 1.10 0.02 0.99 0.89 0.82, 0.94

NtXf 10.55 0.87 1.07 0.08 0.99 0.86 0.70, 0.94

a Root mean square error
b Pearson’s correlation coefficient
c Scale shift parameter
d Location shift parameter
e Overall bias
f Lin’s concordance correlation coefficient (CCC)
g 95% confidence intervals of the estimated Lin’s concordance correlation
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method, which is not possible using our approach, is the pos-
sibility to apply in field-acquired images that present a more
complex background and uncontrolled light. In fact, in our
method, images should be acquired under controlled condi-
tions of luminosity and homogeneous backgrounds, preferen-
tially with a color that is different from the leaf and disease
symptoms (e.g., white or blue). Our method is more applica-
ble when conditions for image acquisition can be as controlled
as possible. However, the use of a spectralon (reference reflec-
tance spectra) could be used in the field to correct for light
sources (Sankaran et al. 2012; Gold et al. 2019). Another
possible solution is to use a portable flatbed scanner, which
enables lighting control and homogeneous background condi-
tions (Zhang et al. 2019). Due to the models assembled here
being disease-specific and empirically derived, specific train-
ing will be needed for other datasets or when new images
obtained under similar conditions are included in the dataset.
Other limitations include variations in the nutritional condi-
tion or occurrence of other abiotic stress on leaves that might

impact heterogeneity of the healthy tissue spectra. Coinfected
leaves with two or more different pathogens might display
unpredicted spectral responses. As previously mentioned,
the light source during image acquisition must be the same
for images. We also recommend that the same device should
be used for acquiring all images since each piece of equipment
has a specific hardware configuration for capturing light on
RGB channels. Another disadvantage of our method, mainly
when compared to segmentation methods, which make use of
hand-made masks from images diseased leaves, is the diffi-
culty to make visual inspections on images to identify prob-
lems in symptom recognition (or quantification), differently
from using binary mask for segmentation which enables us to
make post-processing comparison of the resulting masks to
the original masks.

Future research should focus on developing methods and
devices for fast leaf digitization either in-field or in-house with
controlled lighting conditions. Devices can be coupled with
software for automated image processing (background

Fig. 5 Scatter plot for the relationship between actual and boosted
regression trees model predictions of percent severity for (A) soybean
rust, (B) Calonectria leaf blight, (C) wheat leaf blast, (D) growth and
sporulation of potato late blight on leaf discs, and (E) Nicotiana
tabacum-Xylella fastidiosa. The red solid line represents the linear
model produced from the regression between actual and predicted

values. The black dashed line represents a perfect agreement between
the x- and y-axis. The CCC (concordance correlation coefficient) and
RMSE (root mean square error) represent accuracy metrics. The closer
the CCC to one, the more accurate and the closer the RMSE to zero, the
better
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removal) and online severity prediction. Moreover, other re-
gions in the electromagnetic spectrum should be evaluated,
such as near-infrared, infrared, or thermal regions, as for eval-
uating the relationship between leaf disease severity and other
spectral indices, which has been currently implemented at the
whole plot level in the field (Mahlein 2016).

Supplementary Information The online version contains supplementary
material available at https://doi.org/10.1007/s40858-021-00448-y.
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