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Abstract

Maize bushy stunt and corn stunt have emerged among the most important diseases of maize in Brazil. To evaluate the single or
dual presence of the phytoplasma and spiroplasma associated with corn stunting diseases, maize samples were collected across
several locations in four Brazilian states. Multiplex PCR was performed for simultaneous detection of the bacteria. Eighty-nine
out of 100 samples were positive with percentage values of 40%, 35%, and 25% for phytoplasma, spiroplasma, and mixed
infections, respectively. Temperature may be an important driver of the prevalence of these mollicutes as phytoplasma prevailed
in areas with mild temperatures and spiroplasma prevailed in warmer areas. These results extend knowledge of factors associated
with corn stunting diseases, such as the potential role of temperature shaping the composition of the regional plant pathogenic

populations.
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Phytoplasmas and spiroplasmas are wall-less plant bacterial
pathogens belonging to Mollicutes. They were discovered
during the late 1960s and the early 1970s, respectively (Doi
et al., 1967; Davis et al., 1972). Although spiroplasmas are
best known to cause diseases in maize (Oliveira and Oliveira
2017) and citrus (Bové et al., 2003), phytoplasmas are asso-
ciated with hundreds of diseases reported around the world in
a large diversity of crops (Bertaccini and Duduk 2009). In
maize, these bacteria are responsible for two major diseases
known as corn stunt, caused by Spiroplasma kunkelii (Davis
et al., 1972) and maize bushy stunt, associated with
‘Candidatus Phytoplasma asteris’ (Lee et al., 1998), enclosed
in the 16SrI-B group. Both stunting types may occur alone or
simultaneously due to the presence of the leathoppers
Dalbulus maidis and D. elimatus that act as vectors (Nault,
1980).

In Brazil, these diseases were reported for the first time
during the 1970s when they were considered of secondary
importance to maize crops (Costa et al., 1971). Currently,
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these diseases cause severe damage to the grain production
in all maize-producing regions and, non-rarely, epidemics
reach 100% incidence that result in total yield loss (Sabato,
2017). Increase of incidence and severity has been likely driv-
en by changes in the production system. In the last three de-
cades, a new practice was introduced and areas commonly
cultivated with maize have been used for soybean planting
(Coelho et al., 2017). In these areas, the sowing time of corn
is delayed till the end of soybean harvest. This kind of system,
known as “second crop season” (“safrinha”, in Portuguese),
which now represents 60% of the Brazilian production,
proved advantageous and became widely adopted in areas
traditionally used for corn production (Sabato, 2017; Coelho
et al., 2017). Even in areas where maize has been cultivated
during the normal season, the second crop extends the time
maize is present in the field during the year. In addition, in
recent years, growers are adopting more intensively irrigation
resources, allowing to obtain two to three grain harvests per
year and, consequently, the maintenance of plants in the area.
This superposition of plants in the field is highly favorable for
the survival of these pathogens as well as their insect vectors.
Therefore, infected leathoppers can easily move from older to
younger crops, spreading the diseases to other maize areas
(Oliveira et al., 2002, 2015). The longer maintenance of corn
in the field has led to an increase of the vector population,
which found favorable conditions of temperature and host
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Fig. 1 Map of Brazil showing the
geographic locations of the areas
where the symptomatic corn
plants were sampled for detection
of spiroplasmas and
phytoplasmas. Sample 1: state of
Bahia (BA); samples 2, 3, and 4:
state of Goias (GO); samples 5, 6,
and 7: state of Minas Gerais
(MG); samples 8, 9, and 10: state

~ 1 LUIS EDUARDO MAGALHAES - BA
of Sao Paulo (SP)

2 RIO VERDE - GO

3 GOIATUBA - GO

4 CAMPO ALEGRE - GO
5 JANAUBA - MG

6 PATROCINIO - MG

7 SETELAGOAS - MG
8 MOCOCA-sP
9 CASABRANCA-SP

10 PARANAPANEMA - SP

plant density throughout the year. These factors contribute to
increase the risk of corn stunting diseases. This scenario ex-
plains recent major outbreaks from 2015 to 2017, which
caused severe yield losses and the difficulty to manage these
diseases (Sabato, 2017, 2018). Since the “second crop season”
is routinely practiced and economically relevant, it is urgent to
extend the knowledge about factors affecting epidemics by
corn stunt complex diseases, such as the presence and distri-
bution of the pathogen, which was the main objective of this
work.

Surveys were conducted during 2017, and total of 110
samples were collected from plants exhibiting symptoms of
stunting present in corn crops grown at distinct geographic
areas of the Brazilian territory (Fig. 1; Table 1). The DNA
was extracted from the leaves, according to a CTAB protocol
(Doyle and Doyle, 1990) and used as template in multiplex

PCR reaction mixture. The primers pair CSSF2/CSSR6
(Barros et al., 2001) was employed to detect spiroplasma
and the primers R16F2n/R16R2 (Gundersen and Lee, 1996;
Lee et al., 1993) for phytoplasma detection. The reaction was
performed in a final volume of 25 pL containing 1 uL diluted
DNA (50 ng); 18.7 uL sterilized water; 0.25 uL each primer
(0.4-1.0 uM); 2 uL solution 2.5 mM each dNTP; 2.5 uL
buffer 10X PCR and 0.17 puL Amplitag 5 U puL~". Multiplex
PCR was conducted by 35 cycles following the program: 15 s
(30 s for the first cycle) at 94 °C, 15 s at 50 °C, and 15 s at
72 °C (5 min for final cycle). Independent analyses of negative
samples using multiplex were performed with direct simple
PCR for each of the two pathogens. The PCR products were
analyzed by electrophoresis through a 1% agarose gel follow-
ed by staining in Sybr safe (Thermo Fisher Scientific) and
visualized using a UV transilluminator. DNA from plants

Table 1 Number of plant samples

positive for the presence of
phytoplasmas and spiroplasmas,
alone or in mixture, associated
with maize bushy stunt and corn
stunt, respectively. In parenthesis,
the total number of plants

Sampling locations

Phytoplasma-infected

Spiroplasma-infected

Mixed-infected

Rio Verde (Goias)

Campo Alegre (Goias)
Goiatuba (Goias)
Patrocinio (Minas Gerais)
Sete Lagoas (Minas Gerais)
Janatba (Minas Gerais)
Mococa (Sdo Paulo)

Casa Branca (Sao Paulo)
Paranapanema (Sao Paulo)
Luis E. Magalhaes (Bahia)

4(14) 3(14) 4(14)
1(7) 2(7) 1(7)
2(10) 4(10) 4(10)
3(10) 2 (10) 2(10)

13 (17) 0(17) 0(17)
3(19) 8 (19) 6 (19)
5(11) 1(11) 311
2 (6) 1(6) 1(6)
2(5) 15 1(5)
11 9(11) 01
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Fig. 2 DNA fragments amplified with multiplex PCR. Columns 1 and 2
represent samples infected by phytoplasmas; Columns 3 and 4 represent
samples infected by spiroplasmas. Columns 5 and 6 represent samples

experimentally inoculated by the insect vector D. maidis with
maize bushy stunt phytoplasma and com stunt spiroplasma
were used as positive control, and sterilized water served as
negative control of reaction.

The multiplex PCR generated amplicons indicating the pres-
ence of phytoplasma and/or spiroplasma in 89 samples (Table 1).
Phytoplasma and spiroplasma were identified in agarose by
bands corresponding to the expected fragments of approximately
1200 bp and 500 bp, respectively (Fig. 2). Identical results were
obtained for the positive controls, but no amplification occurred
for the negative control (Fig. 2). The samples were tested nega-
tives even after direct PCR for each pathogen.

Single infection by phytoplasma was found in 40% of the
positive samples, while 35% of the symptomatic plants were
infected only by spiroplasma. Both pathogens were simulta-
neously detected in 25% of the plants that exhibited symp-
toms. They were absent in 21 symptomatic samples.

The presence of single or mixed infection of phytoplasma
and spiroplasma was variable across the sampled areas
(Table 1; Fig. 3). In particular, the prevalence of phytoplasma
was greater than spiroplasma in most of the sampled areas.
However, spiroplasma prevailed in fields located in Campo

Fig. 3 Incidence level (%) of
samples infected with
phytoplasma, spiroplasma, and
both pathogens, sampled in
distinct geographic locations

—
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with mixed infection. Letters +F and +E represent positive controls for
phytoplasma and spiroplasma, respectively. Signal (-) and letter M
represent negative control (water) and 1Kb Plus DNA Ladder

Alegre, Goiatuba, Janatiba, and Luis Eduardo Magalhaes. The
occurrence of mixed infection was detected in most of the
sampled areas, except those located in Sete Lagoas and Luis
Eduardo Magalhdes (Table 1; Fig. 3).

The multiplex PCR showed to be a simple and rapid tool to
confirm the identity of the pathogens, since the symptoms
induced by phytoplasma and spiroplasma may vary according
to the corn genotype, the climatic condition, the period of
sowing, and the infected vector population (Sabato, 2017).
The tool allowed detecting the presence of the pathogens in
80% of the symptomatic samples. The failure to detect these
prokaryotes in 20% of symptomatic plants can be mainly due
to uneven distribution and age of the host during the infection
(Oliveira et al., 2002).

Our results confirm the influence of the temperature on the
prevalence of spiroplasma or phytoplasma reported previously
(Oliveira et al.; 2007, 2015; Sabato et al., 2013). Spiroplasma
was prevalent in warmer (25 to 30 °C) areas, such as those of
Luis Eduardo Magalhaes and Janatiba where the mean average
temperature in the last 30 years was above 24 °C during the
corn crop season. In contrast, phytoplasma was predominant in
areas of mild temperatures, ranging from 18 to 22 °C. Among

® % Phytoplasm infection

% Spiroplasma infection

1. % Mixed infection

Incidence of samples infected
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these areas, the highest prevalence of phytoplasma was found in
Sete Lagoas where mild temperatures are prevalent. The find-
ings of the present study are in agreement with those reported in
Mexico where phytoplasmas were more frequently found in
areas of high altitude with milder temperature, located in the
southeast region (Pérez-Lopez et al., 2016). In contrast, results
from another survey showed that spiroplasmas were present in
leathopper adults collected in low-elevation sites where normal-
ly occur higher temperatures (Moya-Raygoza et al., 2007).
Accordingly, Nault (1980) showed a predominance of plants
with symptoms induced by the spiroplasma at low altitudes,
while plants displaying symptoms associated with the phyto-
plasma were found mainly at high-elevation areas. These state-
ments reinforce the findings of the present study that evidenced
the effects of lower and higher temperatures on the geographic
distribution of both bacteria in areas cultivated with maize.

Interestingly, the prevalence of mixed infection increased
when compared with data from almost two decades ago in
Brazil. In 2002, surveys showed that only 5.8% of sampled
plants were infected with both pathogens (Oliveira et al., 2002),
while the results here presented showed that 25% of the symp-
tomatic plants were infected. This notable increase is likely asso-
ciated with the increased adoption of the “second crop season”
and use of irrigation, practices that have routinely been adopted
by maize growers. The presence of plant hosts during several
months of the year favors the population of insect vectors, which
have higher chances to acquire and disseminate both types of
pathogens. However, it would be interesting to evaluate, in a
future study, the reduction of crop yields caused by only one of
the pathogens and the level of damage present in the mixed
infections. The results generated in the present study contribute
to extend the understanding of this relevant pathosystem, mainly
in relation to the influence of the temperature in the geographic
distribution of the pathogens.
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