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Abstract
Yeasts have been used to manage a large number of plant diseases, but little is known about the mechanisms used by these
biocontrol agents. The objectives of the present study were to evaluate the antagonistic effect of yeasts against Rhizoctonia solani
and possible mechanisms of action in cowpea plants. Seventy yeast isolates were obtained from leaf, root and stem tissues of
cowpea and common bean plants. Screening experiments were conducted in a greenhouse at temperatures ranging from 15 to 26 °C
in the first and from 22 to 31 °C in the second experiment. Candida saopaulonensis C6A, Cryptococcus laurentii FVC10 and
Bullera sinensis FVF10 (R1) reduced disease severity by 57.4%, 48.5% and 66.3%, respectively. Cowpea plants treated with
FVF10 (R1) showed the highest peroxidase and catalase activities. The mechanisms of action were based on competition and
induction of enzymes such as peroxidase, catalase and ascorbate peroxidase in cowpea. Candida saopaulonensis
C6A, C. laurentii FVC10 and B. sinensis FVF10 (R1) are potential biocontrol agents of damping-off and stem rot caused by
R. solani on cowpea plants.
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Introduction

Damping-off and stem rot caused by Rhizoctonia solani
are important soil-borne diseases of cowpea plants (Vigna
unguiculata) (González-Garcia et al. 2006). These dis-
eases are responsible for severe economic losses, mainly
because they reduce seed germination and emergence
(Sartorato et al. 2006; Sikora 2004). Rhizoctonia solani

is difficult to control because of its broad host range.
This pathogen can persist in the soil due to its
overwintering structures, its strong saprophytic capacity
and high virulence (González et al. 2011). Therefore, tak-
ing actions to decrease inoculum density, promote rapid
seedling development and prevent favorable environmen-
tal conditions for the pathogen to infect susceptible hosts
is necessary (Sneh et al. 1996).

The adverse effects caused by fungicides have encouraged
researchers to develop alternatives to synthetic chemicals such
as biological control (Pal and Gardener 2006). Yeasts
have been successfully used to suppress soil-borne plant path-
ogens and help plant growth (Botha 2011; El-Tarabily and
Sivasithamparam 2006). El-Tarabily (2004) used Candida
valida, Trichosporon asahii and Rhodotorula glutinis to con-
trol diseases caused by Rhizoctonia solani in sugar beet seed-
lings. The use of Hansenula arabitolgenes, Candida
incommunis and Candida steatolytica was effective to inhibit
Rhizoctonia solani, and these yeasts helped to reduce
damping-off incidence in cotton plants (El-Mehalawy et al.
2006). El-Mehalawy et al. (2007) and Mohammed et al.
(2008) showed the effectiveness of yeasts to reduce
damping-off severity on potato plants and stem rot on cotton
plants attacked by Rhizoctonia solani. According to El-
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Tarabily and Sivasithamparam (2006), yeasts promoted plant
growth and induced resistance by increasing phenylalanine
ammonia lyase, phytoalexins, peroxidase and ethylene levels
in plant tissues.

There are many studies about yeasts controlling plant
diseases, however, little is known about the mechanisms
used by these biocontrol agents. The objectives of this
study were (i) to isolate yeasts from the leaf, root and
stem tissues of cowpea and common bean plants; (ii) to
select the most effective yeast isolates against damping-
off and stem rot caused by Rhizoctonia solani on cowpea
plants; (iii) to investigate their possible mechanisms of
action; and (iv) to assess antioxidative enzyme activity in
cowpea plants.

Materials and methods

Pathogen and antagonistic yeasts

Rhizoctonia solani (CMM-3643) was obtained from the
culture collection “Profa. Maria Menezes” (CMM) at the
Federal Rural University of Pernambuco. It was isolated
from the root of a bean plant and preserved by the
Castellani method. This fungus was grown in potato-
dextrose agar (PDA) medium and incubated for 3 days
at 25 ± 2 °C. The Rhizoctonia solani inoculum was pro-
duced in Erlenmeyer flasks containing 150 g of sterile
parboiled rice and 150 mL of water, which were colo-
nized by the pathogen for 10 days at room temperature, ac-
cording to the methodology described by Barbosa et al.
(1995).

The yeasts were isolated from the leaf, root and stem
tissue fragments of healthy cowpea and common bean
plants. These fragments were separately immersed in test
tubes (five pieces per tube) containing 10 mL of sterile
water and chloramphenicol (50 mg/L). Subsequently, the
tubes were stirred in an ultrasonic bath for 10 min,
vortexed and the content was serially diluted. Aliquots
of 0.1 mL of these dilutions were spread on Petri plates
containing Sabouraud dextrose agar (SDA) composed of
40 g dextrose, 10 g neopeptone and 20 g agar per litre;
the agar solution was supplemented with yeast extract
(1.5 g/L). The plates were incubated for 72 h at 25 ±
2 °C and, thereafter, the yeast colonies were transferred
to tubes containing SDA medium. The isolates were pre-
served in mineral oil at room temperature (25 ± 2 °C).

Screening the yeasts showing biocontrol potential

Seventy yeast isolates from cowpea and common bean plants
were collected in production areas of Pernambuco state, Brazil.

The yeasts were cultivated on SDA medium supplemented with
yeast extract and chloramphenicol for 48 h at 28 ± 2 °C under a
12 h photoperiod. The suspensions were adjusted to 107 CFUm/
L using a Neubauer chamber. Cowpea seeds (cv. IPA-207) were
immersed in yeast suspensions with 0.02% tween 80 for 10 min.
Treated seeds were kept at 28 °C for 12 h before sowing.
The experimental design was completely randomized
with 71 treatments (70 yeast isolates plus the control)
and five replications, using two seeds in each replication.

The Rhizoctonia solani inoculum prepared as described
above was incorporated in the soil (50 mg of colonized rice
per kg of soil) 48 h before sowing. The treated seeds were
sown in expanded polystyrene trays containing humic dystro-
phic cohesive yellow latosol with a clayey texture. Two ex-
periments with five replications containing two seeds each
were conducted at different temperatures, 22–31 °C and 15–
26 °C, under 80% humidity in a greenhouse. The control
treatment was the soil infested with the pathogen and common
bean seeds without treatment with yeasts.

After 15 days, damping-off and stem rot severity were
assessed with a descriptive scale (0–4), where: 0 = no symptoms,
1 = hypocotyl with small injuries, 2 = hypocotyl with large le-
sions and no constrictions, 3 = completely constricted hypocotyl
showing damping-off, and 4 = non-germinated seeds and/or non-
emerged seedlings (Noronha et al. 1995). The disease index (DI)
was calculated using data from the descriptive scale according to
McKinney’s formula (McKinney 1923). TheDIwas subjected to
variance analysis (ANOVA) and the means were compared with
the Scott-Knott test at 5% probability.

Three isolates [C6A,FVC10andFVF10 (R1)]were tested in a
second experiment as theywere among the ones that consistently
reduced disease severity in the first two screening experiments.
The same methodology was used in this experiment. The ex-
periment was installed in a completely randomized de-
sign with four treatments (three yeast isolates plus the
control) and five replications. Each replication contained
nine plants. The control treatment consisted of soil
infested with Rhizoctonia solani and cowpea seeds with-
out yeasts. Two experiments were conducted at different tem-
peratures (14–26 °C and 19–30 °C) under 80% humidity. The
DI and statistical analyses were calculated as described above.

The in vitro antagonism of Candida saopaulonensis
C6A, Cryptococcus laurentii FVC10 and Bullera sinensis
FVF10 (R1) against Rhizoctonia solani was assessed
through the method of dual cultures. The yeasts were
cultivated in SDA agar as described above. Cell suspen-
sions containing 107 CFU m/L were prepared in sterile
saline solution. Sterilized glass funnels (7 cm diameter)
were immersed in the yeast suspensions and used to
stamp the surface of the PDA culture medium in each
Petri dish (9 cm). A Rhizoctonia solani mycelial disk
(5 mm) containing three-day-old colonies was placed at
the center of each plate. The plates were kept at 25 ±
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2 °C under a 12 h photoperiod. Control treatment
contained Rhizoctonia solani, and the yeast suspension
was replaced with sterile saline solution. Plates were kept
in BOD for five days at 25 ± 2 °C under a 12 h photo-
period. Mycelial growth inhibition was calculated in re-
lation to the control treatment without any yeast isolate.

Identification of the selected yeast isolates

Three yeast isolates in the biocontrol assays were identi-
fied according to classical (Kurtzman et al. 2011) and
molecular taxonomies (Negri et al. 2014). The ITS and
a fragment of the 26S rDNA genomic regions were am-
plified by PCR and sequenced using primers ITS1 and
ITS4 (White et al. 1990). The DNA sequences generated from
the isolates were compared to the sequences deposited in
GenBank using Blastn (Altschul et al. 1997).

Induction of systemic resistance

The enzymatic activity was assessed in cowpea plants inocu-
lated with the three selected yeast isolates. The inoculum of
R. solani was prepared and incorporated in the soil as de-
scribed above. Seeds were treated and seeded in plastic trays
kept in a greenhouse. The design was completely randomized
with four treatments (three yeasts plus the control) and five
replications. Cowpea leaves were collected 15 days after the
beginning of the experiment and processed as follows: 0.1 g of
cowpea leaves were immersed in liquid N2 added with 4 mL
of 50 mM potassium phosphate buffer (pH 7.0) and 0.05 g of
polyvinylpyrrolidone (Silva et al. 2016). This extract was
placed in microtubes and centrifuged for 10 min at 10.000×g
at 4 °C (Silva et al. 2017). The supernatant was kept in
microtubes and stored at −20 °C. Catalase activity (CAT,
EC 1.11.1.6) was determined according to Havir and
Mchale (1987). Ascorbate peroxidase activity (APX,
EC 160 1.11.1.11) was determined according to themethod
of Nakano and Asada (1981), which was modified byKoshiba
(1993). Peroxidase activity (POX, EC 1.11.1) was determined
according to Urbanek et al. (1991), using guaiacol and H2O2

as substrates. Polyphenol oxidase activity (PPO, EC
1.10.3.1) was determined through pyrogallol oxidation
(Kar and Mishra 1976). All enzyme activities were
expressed as U/min/mg of protein.

Results

Screening potential biocontrol yeast isolates

In the first assay (Fig. 1a), performed at 22–31 °C, 62
isolates showed disease indices significantly lower than

that of the control (P < 0.05) and eight isolates did not
differ from the control (P < 0.05). In the second experi-
ment (Fig. 1b), conducted at 15–26 °C, 36 isolates dif-
fered from the control, whereas 34 isolates showed dis-
ease indexes similar to the control. Isolates C6A,
FVF10 (R1) and FVC10 were randomly chosen among
the ones that significantly reduced disease severity in
both assays for molecular identification and further ex-
perimentation. These isolates were able to decrease se-
verity by 55–72% in the first and by 58–75% in the
second experiment.

Yeast identification

The ITS and 26S rDNA sequences identified isolate C6A
as Candida saopaulonensis, as its sequence was 99%
identical to that of isolate JYC1092 (KM555179). The
sequence of isolate FVC10 was identical to that of
Cryptococcus laurent i i i so la te IMUFRJ 51996
(FN428921). Isolate FVF10 (R1) was identified as
Bullera sinensis as its sequence was 97% identical to
an isolate of this species recovered from a landfill site
(DQ297411). The sequences varied from 644 bp to
837 bp and were deposited in GenBank under accession
numbers KX781276, KX781277 and KX781278,
respectively.

Biocontrol activity in vitro and in vivo of selected
biocontrol isolates

A dual plate assay showed that isolate C6A of Candida
saopaulonensis inhibited 52% of Rhizoctonia solani mycelial
growth. This was the only isolate that significantly inhibited
Rhizoctonia solani compared to the control (data not shown).
Two experiments were performed to test the biocontrol
activity of the three selected isolates against Rhizoctonia
solani. All isolates significantly reduced disease severity in
both experiments. This reduction varied from 49 to 66% in the
first experiment and from 31 to 65% in the second experiment
(Fig. 2).

Induction of systemic resistance

Cowpea plants exposed to B. sinensis FVF10 (R1)
showed peroxidase and catalase activities significantly
higher than other treatments, but a low activity of ascor-
bate peroxidase (Fig. 3). Plants treated with Candida
saopaulonensis C6A showed low ascorbate peroxidase
activity whereas the activities of the other enzymes were
higher than the activities of their controls. The plants
treated with Cryptococcus laurentii FVC10 showed per-
oxidase activity lower than that of the other treatments,
but the activities of the other enzymes were higher than
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that of their respective controls. The application of
Bullera sinensis FVF10 (R1) led to maximum activity
of the enzymes in the ROS group (peroxidase and cata-
lase) in cowpea plants.

Discussion

Damping-off and stem rot diseases caused by Rhizoctonia
solani are the most severe diseases of cowpea worldwide.
There are no efficient control strategies against these
diseases (González et al. 2011). In this study, 70 yeasts
were isolated from cowpea and common bean and screened
against Rhizoctonia solani. Three yeast isolates, Candida
saopaulonensis C6A, Cryptococcus laurentii FVC10 and
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Bullera sinensis FVF10 (R1), were selected as potential bio-
control agents of Rhizoctonia solani.

Candida saopaulonensis C6A, Cryptococcus laurentii
FVC10 and Bullera sinensis (FVF10 (R1) decreased the
severity of damping-off and stem rot caused by
Rhizoctonia solani in cowpea plants. A higher reduction
in disease severity was observed at higher temperatures
(19–30 °C). Teixidó et al. (1998) demonstrated that
yeasts were more efficient as biological control agents
at approximately 30 °C. The temperature is one of the
main environmental stresses that affect yeasts (Sui et al.
2015). When applied before harvesting in the field, an-
tagonistic yeasts need to tolerate environmental stresses.
Beneficial microorganisms need to overcome these chal-
lenges in order to effectively establish themselves and
control plant diseases (Conway et al. 1999; Deacon
1991; Sui et al. 2015). In the present study, most yeasts
significantly reduced the disease index (DI) at different
temperatures. This relatively good response at different
temperatures may be explained by the fact that the tem-
perature could have influenced the virulence of
Rhizoctonia solani (Goulart 2002; Santos et al. 2005;
Tanaka 1994).

Candida species may produce antifungal compounds as
observed in our study with Candida saopaulonensis C6A
and by other authors (El-Tarabily and Sivasithamparam

2006). The activity of a biocontrol agent by antibiosis does
not rule out other mechanisms (Tuzun and Kloepper 1995).

The significant increase in the concentrations of per-
oxidase and catalase in plants treated with yeast Bullera
sinensis FVF10 (R1) and the absence of in vitro antibi-
osis are evidences that the mechanism of disease control
in question is related to induced resistance. Khalid
(2014) found that Saccharomyces cerevisiae reduced the
incidence of S. rolfsii disease in common bean plants,
resulting in increased peroxidase, polyphenoloxidase
and chitinase activity.

Cryptococcus laurentii FVC10 and Candida saopaulonensis
C6A increased polyphenol oxidase levels in plant tissues as ob-
served for other yeast species (El-Tarabily and Sivasithamparam
2006; Zhao et al. 2008; Khalid 2014). Furthermore, there are
reports that ascorbate peroxidase and catalase act in the modula-
tion and removal of the excess of reactive oxygen species (ROS)
that result from stresses. Thus, helping the plant’s defense mech-
anism by preventing ROS accumulation and the consequent cell
death (Mittler 2002; Tománková et al. 2006).

Candida saopaulonensis C6A, Cryptococcus laurentii
FVC10 and Bullera sinensis FVF10 (R1) were effective
against Rhizoctonia solani and are promising control
agents against the pathogen in cowpea plants. The cur-
rent study is the first to report the isolation of Candida
saopaulonensis and Bullera sinensis from bean plants, as
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well as their efficacy in biological control of R. solani.
Understanding the role of yeasts in the control of soil
pathogens will contribute to future sustainable agricultur-
al practices.
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