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Abstract The interest in using remote sensing data in agricul-
ture, including plant disease assessments, has increased consid-
erably in the last years. The satellite-based Sentinel-2
MultiSpectral Imager (MSI) sensor has been launched recently
for multispectral vegetation condition assessment for agricultur-
al and ecosystem applications. The aim of this pilot study con-
ducted in the greenhouse using a hand-held spectroradiometer
was to assess the utility of the same wavebands as used in the
Sentinel-2MSI in assessing andmodeling coffee leaf rust (CLR)
based on the non-linear radial basis function-partial least squares
regression (RBF-PLS) machine learning algorithm, compared
with ordinary partial least squared regression (PLSR). The
RBF-PLS derived models satisfactorily described CLR severity
(R2=0.92 and RMSE=6.1% with all bands and R2=0.78 and
RMSE=10.2% with selected bands) when compared with
PLSR (R2 = 0.27 and RMSE = 18.7% with all bands and
R2 = 0.17 and RMSE = 19.8% with selected bands).
Specifically, four bands, B2 (490 nm), B4 (665 nm), B5
(705 nm) and B7 (783 nm) were identified as the most impor-
tant spectral bands in assessing and modeling CLR severity.
Better accuracy was obtained for most severe levels of CLR
(R2=0.71 using all variables) than for moderate levels

(R2=0.38 using all variables). Overall, the findings of this
study showed that the use of RBF-PLS and the four
Sentinel-2 MSI bands could enhance CLR severity estimation
at the leaf level. Further work will be needed to extrapolate
these findings to the crop level using the Sentinel-2 platform.
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Introduction

Coffee leaf rust (CLR), caused by the fungus Hemileia
vastatrix, poses the greatest threat to the global coffee industry
(Cristancho et al. 2012; Cressey 2013). Of the two commer-
cially produced coffee types, CLR is the most severe on
Coffea arabica, which contributes over 70% of all the coffee
produced and consumed in the world (Eskes 2005; Dinesh
et al. 2011). Hemileia vastatrix is an obligate biotrophic fun-
gus capable of long-distance dispersal, present across major
coffee producing regions (Brown and Hovmøller 2002).
During the early stages of colonization, H. vastatrix causes
small chlorotic spots from which the fungus quickly produces
yellow to orange uredia that grow and coalesce (Haddad et al.
2009). The features of CLR that differentiate it from other
plant diseases are that symptoms and signs appear only on
the abaxial leaf side and are not usually necrotic (Belan et al.
2015). CLR can result in up to 50% loss of leaves and 70%
coffee yield reduction if not properly managed (Avelino et al.
2004). These losses mainly occur through premature leaf
drop, primary branch dieback and general debilitation of trees,
which eventually leads to the death of coffee plants and beans
of poor quality (Melo et al. 2006; Silva et al. 2006). To avoid
these losses, there is an urgent need for novel techniques for
predicting CLR epidemics. Monitoring agricultural crop
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health is a critical step in managing insects as well as diseases,
which often result in high yield losses, poor quality beans, and
economic uncertainties.

In the major coffee-producing countries, quantification of
CLR incidence, its spatial extent as well as severity largely
hinges on visual assessments by trained and experienced per-
sonnel (Zambolim 2016). However, this procedure is time-
consuming, tedious and subjective. Consequently, there is a
growing interest in using earth observation data for a timely,
reliable and spatially explicit procedure for detecting crop
diseases (Price et al. 1993; Sankaran et al. 2010; Mahlein et al.
2012a). Remote sensing data have great potential for contin-
uous remote monitoring of the condition of coffee and other
agricultural crops, offering accurate and up-to-date crop
condition information required for improving crop protection
and crop productivity (Baret and Buis 2008; Mulla 2013). In
addition, and perhaps most importantly, sensors in precision
agriculture can reduce costs of crop protection as disease con-
trol can be done early and in a more targeted way (Laudien
et al. 2004; Barbedo 2013). This could provide useful infor-
mation for decision-making on the necessity and appropriate
timing of fungicide applications. Therefore, affordable, rapid
and consistent methods for agricultural crop monitoring and
disease forecasting are urgently needed, especially in Africa
where diseases such as CLR are frequent and severe.

Remotely sensed data from earth observation platforms has
been widely used in monitoring agricultural crops (Bauriegel
and Herppich 2014; Yuan et al. 2014; Devadas et al. 2015;
Yuan et al. 2017). It has been established that remotely sensed
wavebands and vegetation indices can be used in detection
and discrimination of plant diseases. For instance,
Hillnhütter et al. (2011) achieved an overall accuracy of
72% in classifying nematode and Rhizoctonia infested and
non-infested field patches with Airborne Imaging
Spectroradiometer for Applications (AISA) eagle data with
the spectral angle mapper algorithm (SAM). Similarly,
Mahlein et al. (2012b) reported accuracies of over 90% in
the identification of Cercospora leaf spot, powdery mildew
and sugar beet rust infected leaves, concluding that proximal
sensing has the potential to identify and differentiate disease
incidence. It was also reported that disease-specific vegetation
indices result in high accuracy (over 90%) in discriminating
levels of infection of yellow mosaic disease in black gram
(Vigna mungo) when used with multinomial logistic models
(Prabhakar et al. 2013). Other studies have also demonstrated
the applicability of remote sensing in disease detection, such
as oil palm infection by Ganoderma orbiforme (Lelong et al.
2010; Shafri et al. 2011), olive fruit infested by the fruit fly
Bactrocera oleae (Moscetti et al. 2015) and coffee infected
with H. vastatrix (Chemura et al. 2016).

The majority of the studies on crop condition assessment
have been done using narrow hyperspectral bands and vege-
tation indices (Thenkabail et al. 2000; Coops et al. 2003;

Zarco-Tejada et al. 2005; Huang et al. 2007; Larsolle and
Muhammed 2007; Li et al. 2014; Devadas et al. 2015).
However, these hyperspectral data are not easily available in
coffee-producing countries, have high dimensionality and are
very expensive. Newly developed sensors, such as Sentinel-2
MultiSpectral Imager (MSI) and WorldView 2 have incorpo-
rated the features of narrow bands, particularly in the red-edge
and near infrared (NIR) portions of the spectrum for vegeta-
tion condition assessment. Sentinel-2 is particularly attractive
because it has a very large swath-width of 290 km and has
unique spectral bands designed for vegetation condition as-
sessment. These are available at high spatial resolutions with
four bands at 10 m spatial resolution and six bands at 20 m
spatial resolution (Clevers and Gitelson 2013). It also has a
temporal resolution of 5 days that is important in providing
frequent data for monitoring. There is already evidence that
the Sentinel-2 MSI is capable of estimating grassland biomass
(Sibanda et al. 2016), nitrogen content (Ramoelo et al. 2015),
chlorophyll (Vincini et al. 2014) and other biophysical vari-
ables (Herrmann et al. 2011; Frampton et al. 2013). All these
studies showed that Sentinel-2 MSI spectral settings surpass
the limits of predecessor multispectral sensors.

Remote sensing disease stress in plants is made possible
due to internal leaf structure and leaf content-mediated absorp-
tion patterns of radiation (Mutanga and Skidmore 2007; Eitel
et al. 2011). This ability to detect and discriminate plant
diseases with remote sensing is important for many
applications at different scales, ranging from understanding
cellular disease dynamics to decision support in large
agricultural fields. Although the ability to detect and
discriminate disease infection levels is notable, not much
work has been reported in modeling disease severity with
remote sensing bands and vegetation indices. This is mainly
because there is a complex, nonlinear relationship between
remotely sensed indices and disease severity. For instance,
Reynolds et al. (2012) showed that when studying sugar beets,
the best performing linear model was between Rhizoctonia
root rot and leaf water index but had an R2 of 0.52, while all
spectral bands had R2 values less than 0.1. Given this problem,
nonlinear models, such as higher-order polynomials have
been used in improving accuracy of modeling disease severity
with remotely sensed variables (Reynolds et al. 2012; Yu et al.
2014; Feng et al. 2016). This, however, poses challenges of
transferability of the models for field application, given con-
founding factors such as plant age and crop variety.

Robust statistical models, such as partial least square re-
gression (PLSR) and artificial neural networks (ANN), have
been widely used to model disease severity with remote sens-
ing variables. For example, Yuan et al. (2013) showed that
models based on the PLSR performed well in modeling yel-
low stripe rust severity in winter wheat up to grain filling stage
(R2 = 0.85 and RMSE = 0.10). In another study, Zhang et al.
(2012) showed that PLSR consistently performed better than
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multiple linear regression in the prediction of powderymildew
severity in winter wheat (R2 = 0.80 and RMSE = 0.23).
However, Zhang et al. (2014) observed that the PLSR can lead
to a serious overestimation of disease severity and result in a
high level of uncertainty. This in part is because the conven-
tional PLSR also makes a normality assumption about the
distribution of the response variable, which is often not met
by remotely sensed data (Ramoelo 2013).

The ability of robust algorithms to capture non-linear rela-
tionships between remotely sensed variables and crop disease
severity is more complicated when they are applied on multi-
spectral scanners. Given the outstanding performance of
Sentinel-2 MSI band settings, we hypothesize that its
application in disease severity modeling will produce
favorable results when compared with other broadband
multispectral scanners. This is important as it reduces the chal-
lenges related to cost and dimensionality associated with
hyperspectral data. The aim of this pilot study was therefore
to (i) assess CLR severity levels with the same wavebands
used in the Sentinel-2 platform but using a hand-held scanner;
(ii) evaluate the robustness of ordinary PLSR and non-linear
radial basis function-partial least squares regression
(RBF-PLS) algorithms in modeling CLR severity based
on these data; and (iii) determine if modeling accuracy
was affected by disease severity levels.

Materials and methods

Coffee leaf rust inoculation

The study was carried out using greenhouse potted plants at
the Coffee Research Institute, Chipinge, Zimbabwe
(32°37.523′E, 20°12.474′S). All nursery plant management
activities were done according to the Coffee Handbook
(Logan and Biscoe 1987). The seedlings were left to grow
under a nursery shade (70%) until they were 6 months old
(May 2014) and then transferred to the greenhouse where
pathogen inoculations were done after acclimatization to the
greenhouse conditions. When the coffee plants were 8 months
old (with an average of 12 true leaves) inoculation with the
fungus H. vastatrix was done. The inoculation procedure
followed Chemura et al. (2016). A total of 63 leaf samples
were used. These were further classified into asymptomatic
(no symptoms or signs), moderate (1–10% leaf area covered)
and severe (>10% leaf area covered). Diseased area was mea-
sured using a graduated transparent polythene sheet and con-
verted to proportion of infected area (%) by dividing over leaf
area. The distribution of the leaf area of the leaf samples is
shown in Fig. 1a and the distribution of area diseased for the
asymptomatic, moderate and severe leaf samples are shown in
Fig. 1b.

Reflectance measurements and resampling

Reflectance was measured using a hand-held Apogee VIS-NIR
spectroradiometer (Apogee Instruments, Inc.) with an effective
spectral range of 400–900 nm and a spectral resolution of 0.5 nm.
Three scans were done 15 cm above the coffee leaf of interest at
30° field of view. To determine reflectance, a white
polytetrafluoroethylene (PTFE) reflectance standard was used
as a reference. Reflectance was therefore determined as the ratio
of scene reflectance to the reflectance of the standard reference.
To smoothen the spectra, a Savitzky–Golay filter with a frame-
size of 3 data points and a 2nd order polynomial was used on the
data (Savitzky and Golay 1964). The reflectance was further
averaged to 5 nm to reduce dimensionality.

The smoothened and averaged reflectance measurements
were resampled in ENVI 4.7 software (Exelis Visual
Information Solutions) to simulate the Sentinel-2MSI satellite
sensor’s reflectance (Table 1). The Full Width at Half-
Maximum (FWHM)methodwas used to resample the spectra.
The technique uses the field spectral data from the
spectroradiometer and resamples it to the spectral width of
the sensor being simulated. The data were resampled to seven
Sentinel-2MSI landmanagement bands. This was because the
other Sentinel-2 MSI bands were considered unnecessary for
plant condition assessment. Furthermore, these omitted bands
had insufficient spatial resolution for application in coffee or
were outside the range of the spectroradiometer.

CLR severity modeling approaches

Two modeling approaches, PLSR and RBF-PLS regression
were used to model CLR severity levels using reflectance data.
PLSR uses the response variable information to perform decom-
position on the spectral variables by finding themultidimension-
al direction in the space of predictor variables that explains the
maximum variance in the response variable (Atzberger et al.
2010). PLSR is commonly used when the predictor matrix is
poorly conditioned, typical of reflectance of stressed plants
(Darvishzadeh et al. 2011). The PLSR algorithm has been wide-
ly used and is well described in literature (Martens and Naes
2001; Wold et al. 2001; Hansen and Schjoerring 2003). PLSR
was implemented using the mixOmics library (Cao et al. 2015)
in R (R Core Team 2013). The RBF-PLS is part of the kernel
learning family of algorithms. These learningmethods are based
onmapping the originally observed data into a high-dimensional
feature space where simple linear models are then constructed
(Rosipal 2010). This transformation usually results in better ac-
curacy than untransformed data, explaining why this method
was chosen for this study. The concept of the RBF-PLS is de-
scribed in detail in the literature (Orr 1996; Yan et al. 2004; Jia
et al. 2010; Jiang et al. 2013). RBF-PLS was implemented in
Matlab (MathWorks) using the TOMCAT toolbox
(Daszykowski et al. 2007).
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Determining contribution of variables

Variable importance in projection (VIP) scores was used to
weight the importance of the variables used in CLR severity
modeling. The VIP is a quantitative estimate of the importance
of each individual band used in themodel. TheVIP is aweighted
sum of squares of the PLS loadings that considers the amount of
explained Y-variance of each component. The weights are a
function of the reduction of the sums of squares across the num-
ber of PLS components. Avariablewith aVIP Score greater than
1 is considered important in the model while those with VIP
scores less than 1 are less important (de Almeida et al. 2013).

Accuracy assessment

In order to assess the performance of CLR severity predic-
tions, k-fold cross-validation with 100 folds was used since
the sample number was relatively small (n = 63) for sub-

setting the data into training and test data. The correlation
coefficient (r) and coefficient of determination (R2) were used
to assess the goodness of fit of the predicted and observed
CLR severity values. In addition, mean absolute error
(MAE, Eq. 1), RMSE (Eq. 2) and percent bias (pBias,
Eq. 3) was used to determine the errors of the model in
predicting CLR severity from variables.

MAE ¼ 1

n
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In the above cases, n is the number of data points, yi is the
measured CLR severity at that data point and ŷi is the model-
predicted CLR severity at that data point (Moriasi et al. 2007;
DeJonge et al. 2016).

Results

Linear relationship between measured wavebands
and CLR severity

The results showed that there were weak correlations between
CLR severity and the seven measured wavebands (Table 2).
Only three out of the seven bands were significantly (P < 0.05)
correlated with CLR severity (Blue, Red and RE1). In both
cases, the correlations were positive. Results show very poor

Fig. 1 a Histogram showing distribution of leaf area of coffee leaf samples and (b) means and standard errors of percent diseased area with coffee leaf
rust (asymptomatic = 0%, moderate = 1–10%, severe ≥10%) as measured on the day of reflectance measurements (n = 63)

Table 1 Specifications of the hand-held spectroradiometer band
settings used to assess coffee leaf rust severity on individual leaves,
showing center wavelengths, bandwidth and spatial resolutiona

Spectral
band

Center wavelength
(nm)

Band width
(nm)

Spatial resolutiona

(m)

B2 (blue) 490 65 10

B3 (green) 560 35 10

B4 (red) 665 30 10

B5 (RE1) 705 15 20

B6 (RE2) 740 15 20

B7 (RE3) 783 20 20

B8 (NIR) 842 115 10

a Spectral bands selected to coincide with the Sentinel-2 MSI remote
sensing platform, with the theoretical field-level spatial resolution
indicated for each band
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linear relationships with CLR severity (r < 0.5). It is
therefore difficult to use linear modeling to relate CLR
severity with the measured spectral variables. Leaf size
did not have a significant influence on reflectance as
leaf area was not significantly correlated (P > 0.05)
with any of the bands. Interestingly, all spectral bands
were significantly correlated with each other, presenting
potential challenges of multicollinearity in the model if
linear methods are applied (Table 2).

Modeling CLR severity with ordinary PLSR

Four factors were identified as important when using all
spectral bands (Fig. 2a) while only three were identified
when selected variables (Fig. 2b) were used in modeling
CLR severity using ordinary PLSR. The VIP scores
confirmed that the three CLR severity-correlated bands
were important in the PLSR models together with an
uncorrelated RE3 (Fig. 3). The NIR, green and Red-

edge 2 did not significantly contribute to CLR severity
modeling with ordinary PLSR.

Results showed that using all variables yielded better re-
sults than the use of a few model-selected variables (Fig. 4).
However, CLR severity prediction accuracy was low for all
variables (R2 = 0.26, RMSE = 18.8, Fig. 5a) and for selected
variables (R2 = 0.17, RMSE =19.7, Fig. 5b). Using all spectral
bands managed to explain only 26% of the variance in
CLR severity. This value further decreased when select-
ed variables were used (17% of variability explained).
Covariance analysis showed that there were no signifi-
cant (P = 0.283) differences in the coefficients of the
relationship between CLR severity and modeled CLR
severity with all variables and with selected variables.
In both cases, larger values (those exceeding 45% ob-
served diseased area) were poorly predicted with the
ordinary PLSR analysis. However, there was evidence
that the performance was slightly higher for severe than
for moderate levels of CLR (Table 3).

Table 2 Correlation coefficients (above the diagonal) and significance of correlation (below the diagonal) between hand-held spectroradiometer wave
bands (B2 to B8) and coffee leaf rust severity on individual leaves

Severity (%) Leaf area B2 B3 B4 B5 B6 B7 B8

Severity (%) 1 −0.127 0.264 −0.102 0.331 0.254 −0.049 −0.101 −0.106
Leaf Area 0.320 1 0.026 0.118 0.047 0.116 0.145 0.126 0.096

B2 0.036 0.839 1 0.835 0.954 0.749 0.550 0.468 0.517

B3 0.426 0.355 <0.001 1 0.755 0.858 0.760 0.632 0.616

B4 0.008 0.711 <0.001 <0.001 1 0.751 0.497 0.422 0.473

B5 0.044 0.363 <0.001 <0.001 <0.001 1 0.607 0.453 0.474

B6 0.697 0.256 <0.001 <0.001 <0.001 <0.001 1 0.974 0.931

B7 0.432 0.323 <0.001 <0.001 <0.001 <0.001 <0.001 1 0.973

B8 0.409 0.454 <0.001 <0.001 <0.001 <0.001 <0.001 0 < 0.001 1

*Bold numbers indicate significant correlations (p<0.05)

Fig. 2 Selection of number of factors for use in ordinary partial least squares regression with (a) all spectroradiometer bands and (b) selected bands. The
arrows show the cut-off points for the best number of factors used in selection of variables. RMSE = root mean square error
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Modeling CLR severity with non-linear RBF-PLS

Determining Gaussian widths

Figure 5 shows the relationship between cross-validated
RMSE and σ representing Gaussian widths. The results show
that the best Gaussian width for the RBF-PLS model is 0.3 as
it produces the least cross-validated training RMSE of 6.7 for
all variables (Fig. 5a). The model therefore used this as the σ
for the model. For selected variables, however, the best
Gaussian width was lower at 0.2 but with a minimum cross-
validated RMSE of 6.8 (Fig. 5b). The learning process thus
produced different results for developing the model with all
variables vs. selected variables.

RBF-PLS model performance

Compared with ordinary PLSR, there was a significant im-
provement in CLR severity modeling accuracy with RBF-
PLS regression. Using all bands as variables explained 92%
of the variance in CLR severity using RBF-PLS (Fig. 6a,
Table 3). On the other hand, the use of model-selected vari-
ables reduced the accuracy of model (R2 = 0.78,
RMSE = 10.2, Fig. 6b, Table 4). A comparison shows that
using all bands outperforms the use of a few model-selected
variables in modeling CLR (P < 0.05). Although the results
show that both models are good, there is a general indication
that moderate levels of infection are more difficult to predict
than severe levels using all bands and only significantly cor-
related bands (R2 = 0.71 for severe and R2 = 0.38 for moderate
bands, Table 4).

Discussion

Given the importance of coffee leaf rust worldwide, improved
detection and monitoring tools to safeguard investments and
to increase productivity are needed. This study sought to mod-
el CLR severity levels with spectral wavebands similar to
those used by the Sentinel-2 MSI, and to evaluate the robust-
ness of ordinary PLS regression and RBF-PLS regression al-
gorithms in estimating CLR severity at different disease se-
verity levels.

Using only spectral bands together with the RBF-PLS
showed a high accuracy (R2 = 0.92) in predicting CLR, which
is an encouraging achievement. This is so because much of the
reported favorable results in vegetation condition modeling

Fig. 3 Variance in projection of spectroradiometer bands in variable
weighting of modeling coffee leaf rust severity with partial least squares
regression models. VIP = variable importance in projection

Fig. 4 Relationship between observed and modeled coffee leaf rust (CLR) severity with ordinary partial least squares regression with (a) all
spectroradiometer bands and (b) selected bands to determine model performance
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have been from vegetation indices or at least a combination of
vegetation indices and spectral bands, even with hyperspectral
data. Vegetation indices use ratio or derivative transformation
of spectral bands that yield more information than raw bands
(Baret and Guyot 1991; Kanke et al. 2016). However, most of
the vegetation indices use only two spectral bands, neglecting
often small but additive values of other bands. It was clear in
this study that using just selected bands had lower accuracy
because the omitted bands contribute to model performance,
resulting in higher accuracies where all bands are used.

Many vegetation indices are derivatives of the NIR or the
red-edge bands. Entering more than one index in a model
results in serious over-fitting, which eliminates transferability
of the model. For example, the normalized difference vegeta-
tion index, simple ratio, renormalized normalized difference
vegetation index and simplified canopy chlorophyll index all
use B8 and B4 bands. Thus, developing a predictor with all
these vegetation indices will likely produce an unstable mod-
el. Therefore, having a band-based model producing this level
of accuracy is important, as each individual variable may be

unique in their contribution to the outcome. Ramoelo et al.
(2015) also used only spectral bands to model nitrogen in
rangelands and obtained a high accuracy (R2 = 0.90,
RMSE = 0.04), confirming that the spectral settings used here
are well suited for vegetation condition assessments.
Notwithstanding the contribution of each band to overall
accuracy, the VIP scores confirmed the spectral bands
that are most important in modeling CLR severity.
These similar bands (except for B2) were identified as
important in CLR discrimination previously using differ-
ent modeling approaches (Chemura et al. 2016). This
confirms that these bands can be used to perform both
discrimination and modeling of CLR severity with the
wavebands used here.

The finding that CLR severity was not significantly corre-
lated with most spectral bands and weakly so for bands where
results were significant was not surprising. This could be be-
cause of the non-linear influence of infection on spectral re-
flectance. The influence of the disease severity level on the
leaf structure that influences the reflectance may affect specif-
ic wavelengths of the spectrum (Zhang et al. 2012; Mahlein
et al. 2013). Thus, when reflectance is averaged across a spec-
tral width, this direct influence is lost, resulting in non-linear
relationships. Even for the specific narrow-band indices ob-
tained from hyperspectral indices, linear relationships are also
not always obvious because of other confounding factors that
may influence reflectance. For example CLR infection has a
significant influence on nutrient distribution within the leaf
(Belan et al. 2015). The effect of the disease on nutrient dis-
tribution will then result in nutritional composition having
direct influences on reflectance. Other studies have also
shown that disease and pest incidence have significant influ-
ences on leaf water content (Mutanga and Ismail 2010; Oumar
andMutanga 2014), which in turn influences water absorption
features. The influence of CLR severity on water content may

Fig. 5 Determination of σ through cross-validated root mean square error (RMSE) for use as Gaussian widths in the radial basis function-partial least
squares models for (a) all spectroradiometer bands and (b) selected bands

Table 3 Error metricsa for all models in predicting coffee leaf rust
(CLR) severity on individual leaves from hand-held spectroradiometer
variables with ordinary partial least squares regression (PLSR)

Method Disease severity MAE RMSE pBias R2

PLSR: All Moderate CLR 8.38 10.47 48.4 0.01

Severe CLR 20.05 27.89 −35.6 0.12

All levels 13.1 18.77 – 0.26

PLSR: Selected Moderate CLR 9.38 11.65 75.0 0.00

Severe CLR 22.25 30.1 −44.0 0.10

All levels 14.04 19.8 – 0.17

a MAE Mean absolute error, RMSE Root mean square error,
pBias Percent bias
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explain the significance of the blue band in this study. More
research is required to determine the exact relationship be-
tween CLR severity and leaf water content, as this relationship
is disease-specific. The role of the red and red-edge bands
found important in this study in stress detection has been re-
ported widely (Rumpf et al. 2010; Eitel et al. 2011).

Results showed that the correlation between modeled and
observed disease severity values was higher for severe levels
of CLR compared with moderate levels when RBF-PLS re-
gression was used. These observations may be explained by
the fact that on more serious levels of infection, there is little
spectral confusion as effects will be distinct compared with
moderate levels (Chemura et al. 2016). However, from a prac-
tical application viewpoint, it is more useful to be able to
assess CLR at moderate levels because control measures can
be implemented more successfully (Carter and Miller 1994;
Rumpf et al. 2010; Zambolim 2016).

Results showed that nonlinear RBF-PLS regression result-
ed in higher accuracy than ordinary PLSR for all spectral

bands and also specifically selected bands. The nonlinear
RBF-PLS, while maintaining advantages of PLSR over linear
models, has the added advantage of the kernel learning neural
network. Ordinary PLSR maximizes covariance between data
sets, while minimizing the variance of the prediction, which
reduces the dimensionality of the data through decomposition
of the independent variables into uncorrelated latent variables
(Höskuldsson 1988; Wold et al. 2001). The inclusion of the
neural network through the RBF kernel further improves on
ordinary PLSR by making it a nonparametric model.
Nonparametric models are advantageous in terms of applica-
tion because they are not restricted by the nature of the statis-
tical distribution of the data (Orr 1996; Martens and Naes
2001; Rosipal 2010). Thus, nonparametric RBF-PLS regres-
sionmay be better in dealing with potential problems of model
over-fitting associated with collinear variables and may result
in more stable and robust models with better accuracy and
transferability. There is thus a need for broader application
of methods like RBF-PLS in remote sensing-based biophysi-
cal and biochemical modeling.

Although our results are encouraging in indicating poten-
tial application of sensor-based disease assessment andmodel-
ing, factors such as canopy structure and distribution of the
disease across the canopy need to be considered for practical
application at the field scale. There is need for more field
studies to apply RBF-PLS in modeling CLR severity and oth-
er biophysical and biochemical variables. Leaf-level CLR
modeling may not translate to field applications because of
the spatial resolution associated with field-level remote sens-
ing platforms that may limit measured data, especially consid-
ering that the Sentinel-2 red-edge bands are at lower resolu-
tions compared with VIS/NIR. Similarly, there is a need for
more detailed studies of the general spread and distribution of

Fig. 6 Relationship between observed and modeled coffee leaf rust (CLR) severity with radial basis function-partial least squares regression with (a) all
spectroradiometer wave bands and (b) selected wavebands used to determine model performance

Table 4 Error metricsa for all models in predicting coffee leaf rust
(CLR) severity from hand-held spectroradiometer variables with radial
basis function-partial least squares (RBF-PLS) regression

Method Disease severity MAE RMSE pBias R2

RBF-PLS: All Moderate CLR 3.05 3.37 −0.1 0.38

Severe CLR 7.43 10.06 0.0 0.71

All levels 3.58 6.13 – 0.92

RBF-PLS: Selected Moderate CLR 3.56 4.2 −6.8 0.11

Severe CLR 10.3 15.31 −4.9 0.37

All levels 6.18 10.18 – 0.78

a MAE Mean absolute error, RMSE Root mean square error,
pBias Percent bias
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CLR in the coffee plant canopy that would allow converting
leaf-level assessments to canopy-level assessments.
Notwithstanding these limitations, the findings of this study
underscore the potential importance of sensors in monitoring
plant disease epidemics, which is critical in minimizing eco-
nomic costs. The findings of this study are an important first
step towards the development and application of hand-held,
airborne or satellite sensors for predicting CLR severity levels
in the field.
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