Longidorids from Minas Gerais State, Brazil, with focus on the morphometric variability of *Xiphinema krugi* (Nematoda: Longidoridae) populations

Dalila Sêni de Jesus¹ · Cláudio Marcelo Gonçalves de Oliveira² · Markus Gastauer^{3,4} · Colin James Alexander⁵ · Rosângela D'Arc de Lima Oliveira¹

Received: 4 June 2014/Accepted: 24 November 2014/Published online: 2 May 2015 © Sociedade Brasileira de Fitopatologia 2015

Abstract The occurrence and distribution of Longidorid nematodes in the state of Minas Gerais, Brazil, were assessed in 126 soil samples collected at different habitats in 12 municipalities across the state. The nematodes were extracted from 1 kg of soil and morphometric measures and identification of species were conducted using a light microscope with the aid of a camera lucida. Eight species of Xiphinema were identified (X. brasiliense, X. diffusum, X. elongatum, X. ensiculiferum, X. krugi, X. variegatum, X. setariae/vulgare complex and X. surinamense) and also two species of Xiphidorus (Xiphidorus amazonensis and an undescribed Xiphidorus species). Xiphinema diffusum, X. variegatum, X. ensiculiferum and Xiphidorus amazonensis constitute new reports for Minas Gerais. Populations of X. krugi, X. elongatum and X. ensiculiferum showed variation in morphometric measures and a principal component analysis separated X. krugi nematodes in two groups.

Keywords Diversity · Occurrence · *Xiphidorus* spp. · *Xiphinema* spp.

Sect	tion Editor: F. Murilo Zerbini	
	Rosângela D'Arc de Lima Oliveira rdlima@ufv.br	

- ¹ Departamento de Fitopatologia, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
- ² Instituto Biológico, Rodovia Heitor Penteado, km 3, 13001-970 Campinas, SP, Brazil
- ³ Departamento de Ecologia, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
- ⁴ Centro de Ciências Ambientais Floresta-Escola, Av. Professor Mário Palmério, 1000, 38200-000 Frutal, MG, Brazil
- ⁵ James Hutton Institute, Biomathematics and Statistics Scotland, Dundee DD2 5DA, Scotland, UK

Introduction

Nematodes belonging to the Longidoridae family, together with Trichodoridae, are the only representatives of the class Enoplea that have a phytoparasitic habit. These nematodes are vermiform migratory ectoparasites that feed on the roots of plants, causing damage such as darkening and reduction in growth of the root system, deformations in the root apex (galls) and collapse of the cortex (Cohn 1970; Taylor and Brown 1997). However, their agricultural importance is augmented due to the capacity of some species of *Longidorus*, *Paralongidorus* and *Xiphinema* to transmit various Nepoviruses, which cause diseases in a wide range of fruit and vegetable plants (Taylor and Brown 1997).

In Brazil, studies on the diversity of Longidoridae are relatively scarce. The occurrence of these nematodes, especially *Xiphinema* spp., has been reported in association with various cultivated and wild plants, but in most of these reports the nematodes are generally identified only to genus level (Lehman et al. 1977; Moura and Almeida 1981; Sharma 1982; Rossi and Ferraz 2005; Castro et al. 2008). Out of 260 valid *Xiphinema* species (Decraemer and Geraert 2013), only 11.15 % have been reported in Brazil (Doucet et al. 1998; Siddiqi 2000; Oliveira et al. 2003) and five *Xiphidorus* species (Doucet et al. 1998; Oliveira et al. 2003). Among these species, *Xiphinema index* Thorne & Allen, 1950 and *X. californicum* Lamberti and Bleve-Zacheo 1979 are potential transmitters of viruses (Decraemer and Geraert 2013).

In contrast, approximately twice as many *Xiphinema* species are reported, for example, in South Africa (Lamberti et al. 2000; Heyns and Swart 2002), a country one-seventh the size of Brazil. This discrepancy reflects the lack of research in Brazil, which can be explained by the scarcity of taxonomists who are dedicated to characterizing and describing new species or even accurately identifying the species. Thus, reports

on Longidoridae are undercounted not only in Brazil but throughout Latin America and reflect mainly the distribution and interests of individual nematologists, and not the biodiversity of the group (Doucet et al. 1998; Oliveira 2004).

Minas Gerais is one of the largest Brazilian states, with 586,528 km² and occupying 7 % of the national territory. In this vast and diverse area, only a few surveys reported occurrence of Longidoridae, which were identified solely to genus level. Apart from isolated reports of new findings, only two national surveys of Longidorids have been published (Ferraz 1980a; Oliveira et al. 2003). These surveys included only a few samples from Minas Gerais, but the occurrence of X. elongatum Schuurmans Stekhoven & Teunissen, 1938, X. krugi Lordello, 1955, X. surinamense Loof and Maas 1972 and X. setariae/vulgare complex was reported. However, Ferraz (1980b) conducted a broader study in Minas Gerais to evaluate the occurrence of phytonematodes, and X. brevicolle Lordello & Costa, 1961, X. brasiliense Lordello 1951 and X. paritaliae Loof and Sharma 1979 were also recorded. Therefore, there is no reference to Longidoridae associated with a large number of plant species in the state of Minas Gerais.

In this work, we report results from a survey conducted in 12 municipalities in the state of Minas Gerais, followed by morphometric analysis, geographical distribution and identification of host plants in association with the species of Longidoridae.

Materials and Methods

Sampling From 12 municipalities in Minas Gerais, 126 soil samples were collected from different types of vegetation, including forest, Cerrado and crops, from February to May 2010. The sampling points were geo-referenced and the plant species identified (Table 1). Each sample consisted of approximately 1.5-2.0 kg of soil collected at four soil cores drilled in the area covered by each plant canopy, at a depth of 0-30 cm. The soil was kept in a polyethylene bag within a polystyrene box and immediately transported to the laboratory and kept chilled at 4 °C.

Extracting, fixing and mounting nematodes The nematodes were extracted from a sample of 1 kg that had been divided into four aliquots. These consisted of 250 cm³ of soil, processed sequentially, according to the modified method of decanting and sieving combined with modified Baernman (Ploeg and Brown 1997). Nematodes were examined under a stereoscopic microscope and longidorid specimens were removed for morphological and morphometrical studies. The longidorids were heat-killed at 60 °C, fixed in a 1 % triethanolamine and formalin (TAF) mixture, and processed to anhydrous glycerine using a slow method (Hooper 1986).

Species identification and measurements were made using a high power microscope with the aid of a camera lucida.

Identification To identify the Longidoridae species, taxonomic keys proposed by Loof and Luc (1990), Oliveira et al. (2003), Lamberti et al. (2004) and Oliveira and Neilson (2006) were used, as well as original descriptions of the species from the literature.

Principal component analysis of *Xiphinema krugi* **populations** Principal Components Analysis (PCA) was performed on the correlation matrix of the set of ten measurements [length of body (*L*), length of both odontostyle and odontophore, tail length, body diameter at anus, largest body diameter, position of the vulva in relation to the anterior end of the body expressed as a percentage of the length of the body (V %), body length divided by largest body diameter (*a*), tail length divided by body diameter at the anus (*c'*) and ratio of the length of the body and tail (*c*)] of 255 females taken of *X. krugi* populations (44 populations in total). In addition, an analysis of variance (ANOVA) was carried out to test statistical significance to groups observed on PCA plot. GenStat for Windows, $16^{\text{th}}\text{Edition}$ (VSN International, Hemel Hempstead, U.K.) was used to perform the statistical analyses.

Results

Distribution and morphometry Eight species of *Xiphinema* (X. brasiliense, X. diffusum Lamberti and Bleve-Zacheo 1979, X. elongatum, X. ensiculiferum (Cobb, 1913) Thorne, 1937, X. krugi, X. variegatum Siddiqi 2000, X. setariae/vulgare complex and X. surinamense and two species of Xiphidorus (Xiphidorus sp. and X. amazonensis Uesugi et al. 1985) were found associated with a broad range of plant species (Table 2), with the most frequent species being X. krugi (31.7 % of all samples) and X. variegatum (30.9 %). Two species, X. diffusum and X. amazonensis, were associated only with cultivated plants, present in the municipalities of Viçosa and Jaíba, respectively, while the other species were associated with cultivated plants and a wide range of naturally occurring arboreal species, in various localities (Table 2). On the other hand, X. variegatum, X. surinamense and Xiphidorus sp. were geographically restricted to natural forest vegetation (Atlantic Rainforest).

Based on the morphometric data of the identified species (Tables 3, 4, 5 and 6), individuals of the *X. krugi* populations varied sharply in body size (*L*) (averages ranging from 1.6 to 2.7 mm) and in the shape of the tail (Table 3; Fig. 1). The shape of the tail in all populations was typical of the species with a distinct ventral peg, but it showed a slight variation, where the female tail was hemispheroid with only a moderately developed bulge. Morphometric variation was also

Table 1 Information for the samples where Longidoridae were found associated with plants in municipalities of Minas Gerais State, Brazil

Sample	Municipality	Host	Nematode species	Vegetation cover	Geo-reference	Altitude (m)
1	Lagoa Grande	Natural vegetation	Xinhinema krugi	Cerrado	\$17°53 885' W46° 28 897'	583
2	Lagoa Grande	Natural vegetation	Xiphinema krugi, Xiphinema setariae/vuloare	Cerrado	S17°53,885' W46° 28,896'	580
3	Lagoa Grande	Natural vegetation	Xiphinema krugi	Cerrado	S17°53,885' W46° 28,897'	585
5	Viçosa	Macadamia sp.	Xiphinema diffusum, Xiphinema elongatum, Xiphinema envioutionum	Crop	S20°45,888' W42° 52,051'	648
6	Viçosa	Litchi chinensis	Xiphinema setariae/vulgare	Crop	S20°47,650' W42° 50,016'	661
8	Viçosa	Prunus domestica	Xiphinema krugi, Xiphinema elongatum	Crop	S20°47,650' W42° 50,016'	662
12	Viçosa	Natural vegetation	Xiphinema krugi	Atlantic Rainforest	S20° 45,804' W42° 50,934'	650
13	Viçosa	Araucaria angustifolia	Xiphinema krugi, Xiphinema setariae/vulgare	Atlantic Rainforest	S20° 45,795' W42° 50,949'	650
14	Viçosa	Hibiscus rosa-sinensis	Xiphinema setariae/vulgare	Crop	S20° 45,482' W42° 52,329'	648
17	Viçosa	Coffea arabica	Xiphinema diffusum	Crop	S20° 42,931' W42° 49,456'	672
18	Viçosa	Cecropia pachystachya	Xiphinema krugi	Atlantic Rainforest	S20° 42,759' W42° 49,101'	691
19	Viçosa	Natural vegetation	Xiphinema krugi	Atlantic Rainforest	S20° 42,754' W42° 49,098'	713
21	Viçosa	Natural vegetation	Xiphinema variegatum	Atlantic Rainforest	S20° 44,034' W42° 46,999'	890
23	Viçosa	Natural vegetation	Xiphinema variegatum	Atlantic Rainforest	S20° 44,034' W42° 47,004'	897
24	Viçosa	Myrcia splendens	Xiphinema krugi	Atlantic Rainforest	S20° 47,790' W42° 50,834'	757
25	Viçosa	Pourouma guianensis	Xiphinema ensiculiferum, Xiphinema krugi, Xiphinema varievatum	Atlantic Rainforest	S20° 47,791' W42° 50,833'	756
27	Viçosa	Myrciaria floribunda	Xiphinema variegatum	Atlantic Rainforest	S20° 47,796' W42° 50,836'	736
28	Viçosa	Campomanesia sp.	Xiphinema variegatum	Atlantic Rainforest	S20° 47,791' W42° 50,829'	743
29	Viçosa	Guatteria nigrescens	Xiphinema krugi, Xiphinema variegatum	Atlantic Rainforest	S20° 47,789' W42° 50,838'	759
30	Viçosa	Myrciaria floribunda	Xiphinema krugi, Xiphinema variegatum	Atlantic Rainforest	S20° 47,786' W42° 50,823'	738
33	Viçosa	Siparuna reginae	Xiphinema variegatum, Xiphidorus sp.	Atlantic Rainforest	S20° 48,658' W42° 51,020'	849
34	Viçosa	Coussarea verticillata	Xiphinema variegatum, Xiphidorus sp.	Atlantic Rainforest	S20° 48,670′ W42° 51,015′	877
36	Viçosa	nimalaninus phagedaenicus Natural vegetation	Xipninema variegatum, Xiphidorus sp. Xinhinema variegatum	Atlantic Rainforest	S20° 48,008 W42° 51,017	875
50	viçosa	Natural Vegetation	Xiphidorus sp.	Attaine Rainorest	520 40,070 W42 51,017	075
37	Viçosa	Erythroxylum pelleterianum	Xiphinema brasiliense, Xiphinema variegatum, Xiphidorus sp.	Atlantic Rainforest	S20° 48,661' W42° 51,036'	842
38	Viçosa	Piptadenia gonoacantha	Xiphinema brasiliense, Xiphinema variegatum	Atlantic Rainforest	S20° 48,661' W42° 51,044'	834
39	Araponga	Amaioua guianensis	Xiphinema variegatum, Xiphidorus sp.	Atlantic Rainforest	S20° 38,946' W42° 30,034'	1.283
41	Araponga	Callisthene sp.	Xiphinema variegatum, Xiphidorus sp.	Atlantic Rainforest	S20° 38,948' W42° 30,039'	1.269
42	Araponga	Ixora gardneriana	Xiphinema variegatum, Xiphidorus sp.	Atlantic Rainforest	S20° 38,944' W42° 30,049'	1.255
43	Araponga	Vochicia cf. magnifica	Xiphinema surinamense	Atlantic Rainforest	S20° 38,981′ W42° 29,943′	1.269
44	Araponga	Cordia sellowiana	Xiphinema surinamense, Xiphinema variegatum	Atlantic Rainforest	S20° 38,982' W42° 29,942'	1.283
45	Araponga	Jacaranda macrantha	Aipninema variegatum, Xiphidorus sp. Vinhinema variegatum	Atlantic Rainforest	520° 38,969' W42° 29,943'	1.286
40	Araponga	Natural vagatation	Viphinama variesatum	Atlantia Painforget	S20 37,400 W42 31,3/3	860
-T/ 18	Araponga	Machaevium motitana	Alphinema variegaium	Atlantia Painforgat	S20 39,400 W42 31,30/	860
+0	Araponga	wacnaerium nycillans		Auanuc Kainforest	320 37,380 W42° 31,383'	000

Table 1 (continued)

Sample	Municipality	Host	Nematode species	Vegetation cover	Geo-reference	Altitude (m)
			Xiphinema variegatum, Xiphidoru ssp.			
49	Araponga	Erythroxylum sp.	Xiphinema variegatum, Xiphidorus sp.	Atlantic Rainforest	S20° 37,797' W42° 32,071'	797
50	Canaã	Parodiolyra micrantha	Xiphinema variegatum, Xiphidorus sp	Atlantic Rainforest	S20°41,190' W42° 36,501'	797
51	Viçosa	Natural vegetation	Xiphinema brasiliense, Xinhinema variegatum	Atlantic Rainforest	S20° 48,672' W 42° 51,004'	854
52	Viçosa	Natural vegetation	Xiphinema variegatum, Xiphidorus sp	Atlantic Rainforest	S20° 48,660' W42° 51,049'	848
53	Viçosa	Natural vegetation	Xiphinema variegatum	Atlantic Rainforest	S20° 48,660' W42° 51,045'	834
54	Viçosa	Natural vegetation	Xiphinema brasiliense,	Atlantic Rainforest	S20° 48,661' W42° 51,041'	840
55	Viçosa	Natural vegetation	Xiphinema variegatum Xiphinema variegatum, Vishidama c n	Atlantic Rainforest	S20° 48,665' W42° 51,024'	848
56	Viçosa	Natural vegetation	Xiphiaorus sp. Xiphinema variegatum, Vinhidoma sp.	Atlantic Rainforest	S20° 48,664' W42° 51,023'	830
57	Viçosa	Natural vegetation	Xiphiaorus sp. Xiphinema variegatum, Yiphidorus sp	Atlantic Rainforest	S20° 48,666' W42° 51,016'	839
58	Viçosa	Natural vegetation	Xiphiaorus sp. Xiphinema variegatum, Xinhidorus sp	Atlantic Rainforest	S20° 48,667' W42° 51,018'	862
59	Viçosa	Natural vegetation	Xiphinema variegatum, Xiphidorus sp	Atlantic Rainforest	S20° 48,663' W42° 51,004'	848
60	Viçosa	Natural vegetation	Xiphinema brasiliense, Xiphinema variegatum, Xiphinema sp	Atlantic Rainforest	S20° 48,678' W42° 51,004'	855
61	Viçosa	Natural vegetation	Xiphiaorus sp. Xiphinema variegatum, Xinhidorus sp	Atlantic Rainforest	S20° 48,666' W42° 51,058'	835
62	Viçosa	Natural vegetation	Xiphinema variegatum, Xiphidorus sp	Atlantic Rainforest	S20° 48,686' W42° 51,042'	845
63	Viçosa	Natural vegetation	Xiphinema variegatum	Atlantic Rainforest	S20° 48,689' W42° 51,043'	824
64	Viçosa	Natural vegetation	Xiphinema variegatum, Vinhidorus sp	Atlantic Rainforest	S20° 48,694' W42° 51,040'	829
65	Viçosa	Natural vegetation	Xiphinema. variegatum, Xiphidorus sp	Atlantic Rainforest	S20° 48,678' W42° 51,034'	837
66	Viçosa	Siparuna guianensis	Xiphinema variegatum, Xinhidorus sp	Atlantic Rainforest	S20°48,691' W42° 51,019'	841
67	Viçosa	Siparuna guianensis	Xiphinema variegatum, Xiphidorus sp	Atlantic Rainforest	S20° 48,696' W42° 51,020'	848
68	Viçosa	Lacistema pubescens	Xiphinema variegatum	Atlantic Rainforest	S20° 48,697' W42° 51,009'	851
69	Viçosa	Erythroxylum	Xiphinema variegatum	Atlantic Rainforest	S20° 48,697' W42° 51,012'	835
70	Viçosa	Piptadenia gonoacantha	Xiphinema krugi	Atlantic Rainforest	S20° 48,754' W42° 51,068'	836
71	Viçosa	Piper sp.	Xiphinema krugi	Atlantic Rainforest	S20° 48,738' W42° 51,079'	771
72	Viçosa	Apuleia leiocarpa	Xiphinema krugi	Atlantic Rainforest	S20° 48,742' W42° 51,078'	781
73	Viçosa	Natural vegetation	Xiphinema krugi: Xinhidarus sp	Atlantic Rainforest	S20° 48,739' W42° 51,077'	780
74	Viçosa	Natural vegetation	Xiphinema krugi	Atlantic Rainforest	S20° 48,746' W42° 51,085'	784
75	Viçosa	Natural vegetation	Xiphinema krugi	Atlantic Rainforest	S20° 48,740' W42° 51,079'	784
76	Viçosa	Senegalia sp.	Xiphinema krugi	Atlantic Rainforest	S20° 48,747' W42° 51,073'	771
77	Viçosa	Cecropia hololeuca	Xiphinema krugi	Atlantic Rainforest	S20° 48,737' W42° 51,071'	776
78	Viçosa	Natural vegetation	Xiphinema krugi, Xiphinema variegatum	Atlantic Rainforest	S20° 48,747' W42° 51,070'	786
79	Viçosa	Xylopia aromatica	Xiphinema krugi	Atlantic Rainforest	S20° 48,746' W42° 51,070'	786
80	Paraopeba	Ouratea castanaefolia	Xiphinema krugi, Xiphidorus sp.	Cerrado	S19° 15,700' W44° 24,110'	617
81	Paraopeba	Copaifera langsdorffii	Xiphinema krugi	Cerrado	S19° 15,698' W44° 24,146'	770

Table 1 (continued)

Sample	Municipality	Host	Nematode species	Vegetation cover	Geo-reference	Altitude (m)
83	Paraopeba	Siparuna guianensis	Xiphinema krugi	Cerrado	S19° 15,682' W44° 24,156'	755
84	Paraopeba	Qualea grandiflora	Xiphinema krugi	Cerrado	S19° 15,671' W44° 24,137'	740
85	Paraopeba	Dimorphandra mollis	Xiphinema krugi	Cerrado	S19° 15,652' W44° 24,155'	755
89	Paraopeba	Pera glabrata	Xiphinema krugi	Cerrado	S19° 15,562' W44° 24,163'	770
90	Paraopeba	Kielmeyera cariacea	Xiphinema krugi	Cerrado	S19° 15,563' W44° 24,170'	767
92	Paraopeba	Byrsonima crassifolia	Xiphinema elongatum	Cerrado	S19° 15,569' W44° 24,182'	755
98	Paraopeba	Erythroxylum suberosum	Xiphinema elongatum	Cerrado	S19° 15,556' W44° 24,153'	761
99	Paraopeba	Erythroxylum tortuosum	Xiphinema elongatum, Xiphinema krugi	Cerrado	S19° 15,554' W44° 24,147'	760
100	Paraopeba	Hymenaea stigonocarpa	Xiphinema krugi	Cerrado	S19° 15,725' W44° 24,132'	747
101	Paraopeba	Platypodium elegans	Xiphinema krugi	Cerrado	S19° 15,736' W44° 24,111'	749
102	Paraopeba	Tabebuia roseo-alba	Xiphinema elongatum, Xiphinema krugi	Cerrado	S19° 15,729' W44° 24,102'	767
103	Paraopeba	Eriotheca pubescens	Xiphinema krugi	Cerrado	S19° 15,712' W44° 24,098'	757
104	Paraopeba	Ailbertia edulis	Xiphinema krugi	Cerrado	S19° 15,711' W44° 24,095'	743
105	Paraopeba	Aspidosperma tomentosum	Xiphinema krugi	Cerrado	S19° 15,705' W44° 24,082'	756
106	Paraopeba	Protium heptaphyllum	Xiphinema krugi	Cerrado	\$19° 15,703' W44° 24,077'	747
116	Ponte Nova	S. officinarum	Xiphinema setariae/vulgare	Crop	S20°24,767' W42° 56,640'	430
117	Ponte Nova	S. officinarum	Xiphinema krugi	Crop	S20°24,767' W42° 56,640'	431
118	Lavras	Natural vegetation	Xiphinema krugi	Cerrado	S21°13,650' W44° 59,137'	441
121	Pompéu	S. officinarum	Xiphinema krugi	Crop	\$19°12,945' W44° 58,457'	734
123	Jaíba	S. officinarum	Xiphinema krugi, Xiphidorus amazonensis	Crop	S15°21,136' W43° 41,233'	478
124	Jaíba	S. officinarum	Xiphinema krugi, Xiphidorus amazonensis	Crop	S15°21,136' W43° 41,233'	478
125	Jaíba	S. officinarum	Xiphinema krugi	Crop	\$15°21,136' W43° 41,233'	478
126	Jaíba	S. officinarum	Xiphinema krugi	Crop	\$15°21,136' W43° 41,233'	478

observed in *X. elongatum* with emphasis on the averages of body length L (2.4–3.8 μ m), odontostyle (96–127 μ m), and odontophore sizes (59–76 μ m) (Table 5). The populations of *X. ensiculiferum* stood out for the mean values of *L*, which ranged from 2.7 to 2.8 mm, being higher than those reported in the literature (Table 4).

Principal component analysis (PCA) of *X. krugi* **populations** A plot of the first two principal components (Fig. 2; Table 7) indicated that individuals taken from the Sample 125 tended to have larger scores than those from other habitats on the second principal component. The first and second principal components accounted for 32.8 and 25.7 % of the variation, respectively.

An analysis of variance (ANOVA) model considering location (municipality) as a factor to test for differences among the four locations within the cultivated habitat showed highly significant differences amongst the locations (p<0.001). Contrasts were also fitted to test the pairwise difference between Sample 125 and the other locations each of which was highly significant (p < 0.001).

Having established that Sample 125 was significantly different from the other cultivated locations, these samples were now tested against those from the other habitats. For this ANOVA, the treatment factor was habitat where in addition to 'Rainforest', 'Cerrado' and 'Cultivated' we added Sample 125 as an additional level of the factor. The differences amongst these groups were also highly significant (p<0.001). Contrasts for the pairwise comparison of Sample 125 against the other habitats also confirmed the statistical difference (p<0.001).

Discussion

Previously, seven species of *Xiphinema* had been reported from Minas Gerais State, Brazil (*X. elongatum*, *X. krugi*, *X. surinamense*, *X. setariae/vulgare*, *X. brevicolle*, X.

Table 2 Longidoridae species	associated with different host plants in are	as with natural and cultivated vegetation in the municipalities of Min	as Gerais State, Braz	1
Species of longidorids	Species of associated cultivated plants	Species of associated natural plant	Total populations	Municipalities
Xiphinema brasiliense		Erythroxytum pelleterianum, Piptadenia gonoacantha	6	Viçosa
Xiphinema diffusum	Coffea arabica, Macadamia sp.		2	Viçosa
Xiphinema elongatum	Macadamia sp., Prunus domestica	Byrsonima crassifolia, Erythroxylum suberosum, Erythroxylum tortuosum, Tabebuia roseo-alba	9	Paraopeba, Viçosa
Xiphinema. ensiculiferum	Macadamia sp.	Pourouma guianensis	2	Viçosa
Xiphinema krugi	Prunus domestica Saccharum officinarum	 Alibertia edulis, Apuleia leiocarpa, Araucaria Alibertia edulis, Apuleia leiocarpa, Araucaria angustifolia, Aspidosperma tomentosum, Cecropia hololeuca, Cecropia pachystachya, Copaifera langsdorffii, Dimorphandra mollis, Eriotheca pubescens, Erythroxylum tortuosum, Guatteria nigrescens, Hymenaea stigonocarpa, Kielmeyera cariacea, Myrcia splendens, Myrciaria floribunda, Ouratea castanaefolia, Pera glabrata, Piper sp., Piptadenia gonoacantha, Platypodium elegans, Pourouma guianensis, Protium heptaphylum, Qualea grandiflora, Senegalia sp., Siparuna guianensis, Tabebuia roseo-adla, Xylonia aromatica. 	- 4	Jaiba, Lagoa Grande, Lavras, Paraopeba, Pompéu, Ponte Nova, Viçosa.
Xiphinema setariae/vulgare	Hibiscus rosa-sinensis, Litchi chinensis, S. officinarum	Araucaria angustifolia	5	Lagoa Grande, Ponte Nova, Viçosa
Xìphinema surinamense		Cordia sellowiana, Vochicia cf. magnifica	2	Araponga
Xiphinema variegatum		Bathysa cuspidata, Callisthene sp., Campomanesia sp., Cordia sellowiana, Coussarea verticillata, Erythoxylum sp., Erythroxylum pelleterianum, Guatteria nigrescens, Himatanthus phagedaenicus, Ixora gardneriana, Jacaranda macranta, Lacistema pubescens, Myrciaria floribunda, Parodiolyva micranta, Piptadenia gonoacantha, Pourouma euianensis, Sibaruma euianensis, Sibaruna reeinae	43	Araponga, Canaã, Viçosa
Xiphidorus sp.		Amaiouaguanensis, Coussarea verticillata, Callisthene sp., Erythoxylium sp., Erythroxylum pelleterianum, Himatanthus phagedaenicus, Ixora gardneriana, Jacaranda macranta, Machaerium nytitans, Ouratea castanaefolia, Parodiolyra mirranta Siroruna enianensis Siroruna recinne	27	Araponga, Canaã, Paraopeba, Viçosa
Xiphidorus amazonensis	S. officinarum	anno 0 a mar mLa farmanna 0 ann a La farmanna.	2	Jaîba

Table 3 Morpl	nometric data of 11 1	represen	ntative _F	opulations of Xiphu	inema k	krugi pr	esent in munic	cipalities of Minas	Gerais State, Brazi	. Data are expresse	ed as m	iean ± s	tandard devi	ation (range)
Municipalities Plant species	Lavras Natural vegetation	Jaíba Saccha) officinai	num	Jaíba S. officinarum	Pompéu S. offici	1 narum	Ponte Nova S.officinarum	Lagoa Grande Natural vegetation	Lagoa Grande Natural vegetation	Viçosa Prunus domestica	Viçosa Pourou Puiane	uma nsis	Paraopeba Kielmeyera cariacea	Paraopeba Alibertia edulis
Sample number	118	123		125	121		117	01	03	08	25		90	104
u	4	2		10	2		1	10	3	5	2		1	6
L (mm) *	1.8±0.2 (1.6-2.1)	2.3	2.2	2.7±0.1 (2.5-3.0)	2.1	2.1	2.3	$1.9\pm0.1\ (1.8-2.1)$	2.0±0.1 (1.9-2.0)	2.1±0.1 (1.9-2.3)	2.2	1.8	1.6	2.1±0.1 (2.0-2.2)
Odontostyle (µm)	113.1±4.8 (109–119)	111.2	107.5	$104\pm3.4\ (99-108)$	108.8	105.5	109	108±4.6 (99–115)	112±4.4 (108–117)	123±2.7 (119–127)	114.9	127.7	114	124±3.3 (120–130)
Odontophore (µm)	69±3.7 (64–73)	6.7.9	67.9	70±3.0 (66–74)	68.3	67.7	77	67±3.3 (61–72)	71±2.2 (68–73)	75±1.7 (72–76)	72.2	75.5	65	74±2.6 (70–78)
Spear (µm)	182.3±6.6 (178–192)	179.1	175.4	173±3.5 (168–179)	177	173.2	185	175±6.5 (160–183)	$183 {\pm} 2.4 (180 {-} 185)$	197±1.4 (195–199)	187	203.1	179	198±4.7 (190–205)
Tail (µm)	33±2.5 (30–36)	52.2	45.5	40±4.0 (33-47)	43.6	45.5	43	39±3.8 (33-44)	37±7.5 (29–43)	31±2.6 (27–33)	36.1	30	33	30±3.6 (26–38)
Diameterat anus (µm	()31±1.9 (29−33)	32.8	38.8	29±1.2 (27–32)	29.4	30	32	29±2.1 (27–33)	30±1.0 (29–31)	32±1.7 (30–34)	35	37.7	39	29±1.5 (26-31)
Maximum body diam (11m)	56±1.6 (54–57)	56	58.2	44±3.0 (40–49)	53.3	47.2	65	42±4.0 (37–49)	51±2.1 (49–53)	52±7.7 (42–64)	62.7	58.3	49	43±3.3 (38–47)
V%**	$36\pm0.6(35-36)$	33.3	35.8	44±2.4 (38–46)	36.8	33.9	41	35±0.7 (34–36)	36±5.4 (32–42)	40±3.3 (35-44)	35.9	40	40	40±2.0 (36-42)
a***	33±4.3 (30–39)	41.7	38.2	62±4.7 (54–69)	39.7	45.4	35	47±0.8 (46–49)	39±3.2 (36-42)	40±6.1 (30-46)	34.6	31.2	33	48±4.3 (42–58)
c`****	1.1 ± 0.1 $(1-1.1)$	1.6	1.2	1.3±0.1 (1.2-1.5)	1.5	1.5	1.37	1.4±0.1 (1.2-1.7)	1.2 ± 0.2 (1.0-1.4)	$1.0\pm0.1\ (0.9-1.1)$	1	0.8	0.9	1.0 ± 0.1 (0.9-1.2)
C****	55±5.9 (49–63)	44.7	48.9	69±5.6 (59–78)	48.6	47.1	52	50±4.4 (42–60)	55±9.4 (47–65)	67±4.9 (59–72)	60.1	60.8	49	70±7.1 (59–83)

*The	

e anus.	
er at the	
iamete	
ody d	
ed by t	
n divid	
l lengtl	
***Tai	
eter. **	
y diam	
st bod	
h/large	
y lengt	
io Bod	
***Rat	
:ngth. *	
body le	
ige of l	
ercenta	
l as a p	
pressed	
and exp	
terior e	
om an	ail
ulva fr	y and t
on of v	te body
*Positi	h of th
gth. **	e lengt
ody len	o of th
*Bc	ratio

 Table 4 Morphometric data of *Xiphinema variegatum, X. surinamense, X. diffusum* and *X. ensiculiferum* present in municipalities of Minas Gerais State, Brazil. Data are expressed as mean \pm standard deviation (ran

Nematode	X. variegatum	X. variegatum	X. vari	egatum	X. variegatum	X. vari	egatum	X. surinamense	X. surinamense	X. diffusum	X. diffusum	X. ensiculiferum	X. ensiculiferum
spectes Municipalities Plantspecies	Araponga <i>Callisthene</i> sp.	Araponga Jacaranda macrantha	Canaã Parodi micran	olyra tha	Viçosa Lacistema pubescens	Viçosa Myrcia floribu	ria 1da	Araponga Vochicia cf. magnifica	Araponga Cordia sellowiana	Viçosa Macadamia sp.	Viçosa Coffea arabica	Viçosa Macadamia sp.	Viçosa Pourouma guianensis
Sample numbe	r 41	45	50		68	30		43	44	05	17	05	25
1	e,	4	2		5	2		10	1	7	6	9	1
L (mm) *	2.0±0.1 (1.9–2.1)	2.3 ± 0.1 (2.2–2.4)	2.3	2.2	2.2±0.1 (2.0-2.4)	2.0	1.8	2.4±0.1 (2.3–2.5)	2.6	1.8±0.1 (1.6–2.0)	$1.9\pm0.1\ (1.8-2.0)$	2.8±0.1 (2.7–2.8)	2.7
Odontostyle	117±4.0 (113–	115±8.3 (103-	117.9	113.4	121±3.4 (118–	119.9	119.3	126±9.2 (120–152)	117	92±6.9 (85–107)	93±3.2 (88–97)	138±4.3 (134–	142
(µm) Odontophore	120) 70±5.0 (68−78)	72±1.1 (71–74)	73.5	74.3	120) 79±2.9 (76−83)	76.6	72.7	73±2.4 (69–78)	72	57±2.7 (54–62)	58±3.4 (54–64)	$^{144}_{92\pm0.8}$ (91–93)	101
(μm) Spear (μm)	187±5.8 (181–	188±9.1 (175– 106)	191.4	187.7	199±3.6 (194–	196.5	192	199±10.5 (189–	189	149±9.1 (142–	151±5.7 (144–	230±4.5 (225–	243
Tail (µm)	192) 26±1.9 (26–29)	(c91) 31±2.7 (28−34)	28	24.3	25±2.0 (22–28)	33.9	26.2	29±3.7 (24−37)	29	109) 28±5.5 (22-40)	100) 28±2.7 (26–33)	(20-34) 31±1.6 (29−34)	25
Diameter at	34±4.3 (30–38)	36±1.6 (35–39)	40.3	41.4	40±2.9 (36-43)	41.6	39.4	33±2.1 (30–36)	34	29 2.1 (26–31)	39±1.7 (37–41)	43±1.7 (41–46)	52
Maximum body diam.(µm)	· 49±7.5 (42–57)	53±4.2 (47–57)	59	59	62±3.7 (58–66)	55.5	54.4	46±1.7 (43–49)	52	45±3.5 (42–50)	62±1.9 (60–66)	61±4.3 (54–67)	82
∿%* **	41±1.5 (38-41)	41±2.1 (38-42)	42.9	37.5	37±1.4 (36–39)	39.6	43.4	38±1.5 (36-41)	42	51±2.8 (46-54)	52±1.4 (51–54)	34±1.1 (33–35)	34
"*** "	42±4.4 (38–46)	43±5.2 (41–51)	38.7	36.8	35±3.1 (33–41)	36.4	33.5	52±2.8 (49-57)	50	40±2.8 (37–44)	30±1.0 (29-32)	46±3.8 (42–53)	32
****	$0.8\pm0.1\ (0.7-0.9)$	$0.9\pm0.1\ (0.8-0.9)$	0.7	0.6	$0.6\pm0.0\ (0.6-0.7)$	0.8	0.7	$0.9{\pm}0.1\ (0.8{-}1.0)$	0.0	$1.0\pm0.2\ (0.8-1.3)$	$0.7{\pm}0.1~(0.7{-}0.8)$	0.7±0.0 (0.7–0.8)	0.5
****	77±3.2 (72–78)	73±8.7 (66–82)	81.5	89.6	87±13 (73–105)	59.7	67	$86\pm11.6~(65-103)$	87	66±12.3 (47–82)	67±6.8 (55-74)	90±5.1 (84–97)	107

Representative populations of variability found for this species.*Body length. **Position of vulva from anterior end expressed as a percentage of body length. *** Ratio Body length/largest body diameter. **** Tail length divided by body diameter at the anus. *****The ratio of the length of the body and tail

Nematode species Municipalities Plant species Sample number	X. elongatum Paraopeba Byrsonima crassifolia 92	X. elongatum Paraopeba Erythroxytum suberosum 98	X. elongatum Paraopeba Erythroxylum tortuosum 99	K. elongatum Paraopeba Tabebuia oseo-alba	X. elongatum Viçosa Prunus domestica 08	X. elongatum Viçosa Macadamia sp. 5	X. brasiliense Viçosa Erythroxylum Pelleterianum g	C. brasilien. Jiçosa Jiptadenia Onoacanth 38	e X brasiliense Viçosa Natural vegetation 51	X. brasiliense Viçosa Natural vegetation 54	X. brasiliense Viçosa Natural vegetation 60
<i>u</i>	1	1	10		8	3	10	2	4	1	1
L (mm) *	3.8	3.6	3.7±0.3 (3.2–4.3)	3.3	2.4±0.2 (2.2–2.6)	3.8 ± 0.3 $(3.5-4.0)$	2.0±0.1 (1.8–2.1)	2.0 1.9	1.9 ± 0.1 $(1.8-2.1)$	2.1	1.8
Odontostyle (µm)	107	106	111±4.1 (105–117)	108	96±4.9 (89–103)	127±1.1 (125–128)	129±3.9 (125–136)	125.4 120	5 128±4.5 (124–134)	123	132
Odontophore (µm)	99	65	64±3.8 (59–72)	59	62±2.3 (59–65)	76±2.7 (73–78)	80±3.7 (74–87)	50.4 74.6	77±2.0 (75-80)	80	73
Spear (µm)	173	171	175±6.8 (165–187)	168	159±5.5 (151–166)	203±3.7 (199–205)	209±5.6 (203-218)	175.8 195	1 205±4.2 (200–210)	204	205
Tail (µm)	69	77	73±7.6 (62–88) 8	30	61±7.3 (51–74)	$96 \pm 4.0 \ (93 - 100)$	39±3.7 (33-43)	40.3 35.8	37±1.3 (36–39)	36	32
Diameter at anus (µm)	28	29	31±5.1 (24-40)	28	25±1.3 (23–27)	36±1.1 (34–37)	37±2.0 (34-41)	42.9 39.6	39±1.5 (37-41)	39	29
Maximum body diam. (µn	1)59	61	60±8.1 (47–72)	38	46±9.2 (26–56)	62±1.0 (61–63)	60±7.7 (46-70)	72.4 61.9	71±4.4 (65–74)	60	53
V% **	42	42	41±2.6 (38–46)	4	40±3.1 (34-43)	39±1.1 (38–40)	27±2.1 (23-30)	27.7 24.3	29±1.4 (28–31)	28	27
a***	64	59	63±4.8 (55–71)	38	55±16.3 (41–93)	62±4.3 (57–65)	33±4.5 (26-40)	28 30.1	27±1.1 (26–28)	35	35
c`***	2.5	2.6	2.4±0.3 (1.8–2.9)	2.8	2.4±0.4 (2.1–3.2)	2.7±0.2 (2.6–2.9)	1.0±0.1 (0.9–1.2)	0.9 0.9	$0.9{\pm}0.0$ (0.9 ${-}0.9$)	0.0	1.1
c****	55	47	52±5.1 (45–60)	75	39±4.1 (31–45)	40±3.6 (37–44)	51±6.6 (43-64)	50.3 52.0	52±4.7 (47–58)	58	58

Morphometric data of *Xiphinema elongatum* and *X*: brasiliense present in municipalities of Minas Gerais State, Brazil. Data are expressed as mean \pm standard deviation (range)

Table 5

*Body length. **Position of vulva from anterior end expressed as a percentage of body length. *** Ratio Body length/largest body diameter. **** Tail length divided by body diameter at the anus. *****The ratio of the length of the body and tail

Nematode species	Xiphidorus sp.	Xiphidorus sp.	Xiphidorus :	sp.	Xiphidorus sp.	Xiphidorus sp.	Xiphidorus sp.	Xiphidorus sp.	Xiphidorus amazonensis	Xiphidorus amazonensis
Municipalities Plant species	Araponga Ixora gardneriana	Araponga Jacaranda macrantha	Araponga Machaerium	ı nytitans	Paraopeba Ouratea	Viçosa Natural vegetation	Viçosa Natural vegetation	Viçosa Natural vegetation	Jaíba Saccharum ac	Jaíba Saccharum ac
Sample number	42	45	48		casamaejona 80	56	58	61	ojj icmarum 123	ojj icinarum 124
u	8	3	2	1	10	1	5	1	1	
L (mm)*	3.8±0.4 (3.5–4.7)	$4.7\pm0.6(4.0-5.3)$	3.5	3.0	5.3	3.1 ± 0.3 $(2.7-3.7)$	3.4	2.9±0.4 (2.7–3.7)	4.8	4.8
Odontostyle (µm)	110 ± 10.9 (94–124)	118±1.7 (117–120)	117.5	110.5	111	82±3.2 (77–87)	109	89±12.6 (79–111)	116	104
Odontophore (µm)	57±3.1 (44–54)	51±2.2 (49–53)	47.8	48.9	53	41±3.1 (34-45)	46	42±2.2 (39-45)	42	48
Spear (µm)	167±10.0 (148–172)	169±0.6 (169–170)	165.3	159.4	164	123 ±4.0 (114–128)	156	131±14.3 (122–156)	159	152
Tail (µm)	27±3.2 (22-31)	$31\pm2.9(28-33)$	33.2	30.2	33	25±3.4 (21–31)	28	24±1.9 (22–27)	37	37
Diameter at	$29\pm3.3(25-35)$	29±2.9 (26–31)	32.8	32.5	43	28±2.4 (24–32)	35	26±1.0 (24–27)	40	33
anus (µm) Mavimum body	47+4.2 (42-56)	60+14 9 (43-70)	53 4	576	65	45+4 7 (37-53)	50	(<i>LT_LL)</i> 2 9+82	54	57
diam. (µm)			F. ()	0.40	8		1	(74 - 17) (-0-0)	t	5
V%**	48±1.3 (46–50)	$46\pm6.9~(42-54)$	50.5	49.7	51	49±2.7 (43–53)	39	54±2.5 (44–50)	49	50
a***	81 ±3.8 (77–89)	$80\pm12.9~(68-94)$	65.1	56.8	82	69±6.9 (59–78)	57	80±16.2 (66–111)	89	84
C`***	$0.9\pm0.1\ (0.8{-}1.1)$	$1.1\pm0.01\ (1.0-1.1)$	1.0	0.9	0.8	$0.9\pm0.1\ (0.8-1.0)$	0.8	$0.9\pm0.1\ (0.8-1.0)$	0.0	1.1
C * * * *	144±18.1 (126–173)	152±8.1 (147–161)	104.6	98.8	162	126±17.3 (98–151)	120	122±26.8 (101–165)	129	129

Fig. 1 Photomicrograph of the anterior and posterior region of females and males of *Xiphinema krugi*. **a-b**: females of *X. krugi* (sample 01, Lagoa Grande); **c-f**: female and male of *X. krugi* (sample 73, Viçosa); **b**, **d** and **f**: different tail shapes observed in populations of *X. krugi*. Bars correspond to 30 μm

brasiliense and *X. paritaliae*) and only *X. brevicolle* and *X. paritaliae* were not recorded during the present study. Collectively, results from our study and the previous reports, showed that ten species of *Xiphinema* occurs in Minas Gerais, including *X. diffusum*, *X. ensiculiferum* and *X. variegatum*, which constitute their first report in the state. None of them is known to transmit viruses.

The majority of species reported in this study are known as of cosmopolitan distribution. *Xiphinema diffusum* has been recorded in many countries in Africa and Asia (Lamberti and Bleve-Zacheo 1979; Lamberti et al. 1991), in the USA (Robbins 1993), Easter Island, and Chile (Lamberti et al. 1991). The first report in Brazil was in 2003 (Oliveira et al. 2003). This nematode is one of *Xiphinema americanum* group species more widely distributed in the world (Lamberti et al. 1991).

Xiphinema brasiliense was originally described from the rhizosphere of potato plants collected from Sapecado (SP), southern Brazil (Lordello 1951) and subsequent studies have confirmed its widespread distribution on Brazilian soils (Loof

and Sharma 1979; Lamberti et al. 1987; Germani 1989; Oliveira et al. 2003). Nevertheless, it was found only in Viçosa municipality associated Atlantic Rainforest vegetation. Likewise, *Xiphinema elongatum* is widespread throughout the Brazil (Ferraz 1980a; Lamberti et al. 1987; Costa Manso et al. 1994; Oliveira et al. 2003). In our survey, this species was found in association with *Prunus domestica*, *Macadamia* sp. and Cerrado vegetation.

Xiphinema ensiculiferum was found only in two samples collected in Viçosa municipality, this being the first record of the state of Minas Gerais. In Brazil, this nematode had been previously associated with banana in Bahia State (Sharma and Sher 1973; Sharma and Loof 1984), unidentified native plants in Maranhão State (Ferraz et al. 1989), from soil collected from the northern bank of the Rio Negro, in Amazonas State (Marais et al. 1995) and natural vegetation in Mato Grosso State (Oliveira et al. 2003).

Xiphinema vulgare is considered a junior synonym of *X. setariae* (Cohn and Sher 1972; Loof and Luc 1990; Heyns and Coomans 1991). However, Lamberti et al. (1995)

Fig. 2 Principal Component scores plot of PC1 against PC2 for a PCA of ten measurements of the sampled *Xiphinema krugi*. The symbols are for the nematode Habitats: Sample 125 = *open white circles*; Cultivated = *open white triangles*; Cerrado = *filled black circle*; Atlantic Rainforest = plus symbol

rejected this synonymisation and retained both species as distinct and valid. Here, for clarity of nomenclature, these nematodes were referred as *X. setariae/vulgare* complex. In the present survey, specimens of the *X. setariae/vulgare* complex were found associated with Cerrado vegetation, *Litchi chinensis*, *Araucaria angustifolia*, *Hibiscus rosa-sinensis* and *Saccharum officinarum*.

In this study, *X. surinamense* was found only in the municipality of Araponga associated arboreal species in an Atlantic Rainforest preservation area. However, this nematode has been reported in different habitats in many Brazilian States (Loof and Sharma 1979; Ferraz 1980a; Lamberti et al. 1987; Oliveira et al. 2003). Also, *X. variegatum* was found only

 Table 7
 Principal component loadings generated by PCA analysis. The characters are ranked according to the magnitude of loading in PC2

Characters	PC1	PC2
a	-0.220	0.537
Maximum body width	0.187	-0.469
Body width at anus	0.235	-0.374
c	0.398	0.349
L	-0.121	0.285
V%	0.203	0.262
Odontostyle	0.323	0.211
Tail length	-0.472	-0.168
Odontophore	0.193	0.070
c'	-0.532	0.048

associated with plants from Atlantic Rainforest, and occurred in a mixed population with *X. surinamense* in a sample from Araponga municipality. Its morphological similarity with *X. surinamense* hampered the identification of these two species, which is based on slight morphometric differences.

Xiphinema krugi and *X. variegatum* were the most widespread species. The frequent occurrence of *X. krugi* diverges from that reported by Ferraz (1980b), in which *X. brevicolle* (probably, in fact, *X. diffusum*) was the most frequent species of Longidoridae in Minas Gerais. In a survey by Oliveira et al. (2003) in various Brazilian states, *X. krugi* was prevalent.

The constant association of *X. variegatum* with Atlantic Rainforest vegetation observed in this work corroborates the suggestion of Oliveira et al. (2003) that *X. variegatum* may be well adapted to tropical forest conditions.

Two species of Xiphidorus (X. amazonensis and *Xiphidorus* sp.) were found in this survey, and constitute the first records of this genus in Minas Gerais. Xiphidorus amazonensis was originally found in a lowland area on the island of Xiborena, near Manaus (AM), but it occurs in Venezuela associated with various cultivated plants, such as fruit trees, gramineous species, sugarcane and okra (Uesugi et al. 1985). In Minas Gerais state, it was only found associated with sugarcane. The constant association of Xiphidorus spp. with cultivated plants, especially sugarcane, suggests that these nematodes can cause damage to crops; however, further studies on its pathogenicity should be done in order to provide more evidence. The absence of Longidorus species in this study suggests that this genus is not widely distributed in Brazil, contradictory to what is reported by Doucet et al. (1998), but in agreement with Oliveira et al. (2003).

Based on morphology, the species X. diffusum and X. brevicolle are distinguished by minimal morphological and morphometrical differences. For many years, X. brevicolle was thought to be distributed worldwide. However, the study of Lamberti et al. (1991), which involved populations previously identified as X. diffusum and X. brevicolle, concluded that X. brevicolle distribution is restricted to South America, and that most reports of this species in the world should be considered as X. diffusum. One of the populations analyzed by Lamberti et al. (1991) was from Viçosa (MG), previously identified as X. brevicolle. Curiously, this population grouped with various other populations of X. diffusum, which indicates that it was erroneously identified. Thus, it is probable that X. diffusum was already present in MG, but that it had been confused with X. brevicolle and reported as such.

Some of the populations studied, such as *X. elongatum*, *X. ensiculiferum* and *X. krugi*, showed variability in some morphometric characters evaluated. The means for L in populations of *X. krugi* were higher than those presented by Luc and Hunt (1978). In the populations of *X. ensiculiferum*, the variation in the means of L (2.7–2.8 mm) shows a contrast, for

example, with what was presented by Southey and Luc (1973), with mean L equal to 1.95 (1.78–2.15 μ m) for the species. In *X. elongatum* this variation was observed in the body length L (2.4–3.8 μ m) and the size of the odontostyle (96–127 μ m) and odontophore (59–76 μ m). These values are higher than those reported by Oliveira et al. (2003): 2.1 mm, 93 and 59 μ m for the same characters.

Although species in this study were identified using taxonomic keys based on morphological characters, such identification has become a difficult task, because some of these species are morphologically similar, with very small morphometric differences. This difficulty was noted especially in the identification of X. variegatum and X. surinamense. These two species have very similar morphology, with a pseudomonodephic female reproductive system, a short hemispheric tail, and a rounded labial region continuous with the body outline (Loof and Maas 1972; Siddiqi 2000). Despite these similarities, the two species differ in the body size, with X. surinamense (>2.5 mm) being larger than X. variegatum (<2.4 mm) (Oliveira et al. 2003). Thus, determining the limits of morphometric variability within a species becomes necessary moreover that identification of Longidoridae is based both on morphological and morphometric characters. Thus, the difficulties to secure identification, opposite the morphologic and morphometric variability observed in longidorids, can be remedied with the application of molecular methods complementary to classical taxonomy.

Xiphidorus sp. stood out, mainly because of the rounded labial region which is continuous with the rest of the body, a character that is distinct from other species belonging to the genus. This, associated with the morphometric measurements, confirms it to be a new species for science.

The morphotype (X. krugi) found in sample 125 was characterized by larger values of most characters, particularly 'a' and 'c' apart from lower values of both body diameter characters. A great variation in several morphological and morphometric characters in X. krugi is well documented in Luc and Hunt (1978). Likewise, the study of 14 X. krugi populations reported by Oliveira et al. (2006), encapsulating both molecular and classical taxonomic data, has demonstrated the possibility that in fact X. krugi is a species complex comprised of four distinct genotypes and/or cryptic species that have a morphological basis. Future studies on X. krugi populations from Minas Gerais, such as the contemporary molecular analysis used by Oliveira et al. (2006) may provide more conclusive evidence of the observed morphometric variability and to assist with the resolution of taxonomic controversies such as X. krugi and putative evolutionary studies.

Xiphinema spp. and *Xiphidorus* spp. were associated with 49 different plant species, including cultivated plants, natural vegetation from the Atlantic Rainforest and Cerrado, as well as with unidentified plants. The results presented here expand significantly the knowledge on the diversity of family

Longidoridae in soils of Minas Gerais soils. *Xiphinema diffusum, X. variegatum* and *X. ensiculiferum* and species from the genus *Xiphidorus* represent new records for Minas Gerais. Additionally, the morphometric variability observed in populations of some Longidoridae species increased the range of character variation for these species.

Acknowledgments The authors thank Mr. Gilmar Valente (Universidade Federal de Viçosa) for allowing collection of samples on his property and Prof. João Augusto Alves Meira Neto (Universidade Federal de Viçosa) for identifying plant species and helping with sample collection. Authors are also grateful to CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) for partial funding of this research.

References

- Castro JMC, Campos VP, Pozza EA, Naves RL, Júnior WCA, Dutra MR, Coimbra JL, Maximiniano C, Silva JRC (2008) Levantamento de fitonematoides em cafezais do sul de Minas Gerais. Nematol Bras 32:56–64
- Cohn E (1970) Observations on the feeding and symptomatology of *Xiphinema* and *Longidorus* on selected host roots. J Nematol 2(2): 167–173
- Cohn E, Sher SA (1972) A contribution to the taxonomy of the genus *Xiphinema* Cobb, 1913. J Nematol 4:30–65
- Costa Manso ESBG, Tenente RCV, Ferraz LCCB, Oliveira LS, Mesquita R. Brasília, DF, Brasil: Ministério da Agricultura, EMBRAPA/ CENARGEN/SPI (1994) Catalogue of Phytoparasitic Nematodes Found Associated with Different Types of Plants in Brazil
- Decraemer W, Geraert E (2013) Ectoparasitic Nematodes. In: Perry RN, Moens M (eds) Plant nematology. Cab International, Wallingford, pp 179–216
- Doucet ME, Ferraz LCCB, Magunacelaya JC, Brown DJF (1998) The occurrence and distribution of Longidoridae (Nematoda) in Latin America. Russ J Nematol 6(2):111–128
- Ferraz LCCB (1980a) Observation on some Xiphinema species found in Brazil (Nematoda: Dorylaimoidea). Nematol Mediterr 8:141–151
- Ferraz S (1980b) Reconhecimento das espécies de fitonematoides presentes nos solos do Estado de Minas Gerais. Exp 26:256–328
- Ferraz LCCB, Monteiro AR, Silva GS (1989) Sobre a ocorrência e espécies de Xiphinema no Estado do Maranhão. Nematol Bras 13: 185–188
- Germani G (1989) Description de *Xiphinema guillaumeti* sp. n. (Nematoda: Longidoridae) et mensurations de six autres espèces de *Xiphinema* recolteés en Amazonie brésilienne. Nematologica 35:69–75
- Heyns J, Coomans A (1991) Longidoridae from Botswana. Phytophylactica 23:29–36
- Heyns J, Swart A (2002) The genus *Xiphinema* in South Africa. XXVII. *Xiphinema zyzy* sp. n. and *X. louisi* Heyns, 1979 (Nematoda: Longidoridae). Nematol Mediterr 30:73–77
- Hooper DJ (1986) Handling, fixing, staining and mounting nematodes. In: Southey JF (ed) Laboratory methods for work with plant and soil nematodes, 6th edn. Ministry of Agriculture Fisheries and Food Technical Bulletin, London, pp 59–80, HMSO
- Lamberti F, Bleve-Zacheo T (1979) Studies on *Xiphinema americanum* sensu lato with descriptions of fifteen new species (Nematoda: Longidoridae). Nematol Mediterr 7:51–106
- Lamberti F, Roca R, Sharma RD, Pimentel JP, Agostinelli A, Antonio H, Lordello RRA (1987) On the occurrence of species of *Xiphinema* in Brazil. Nematol Bras 11:287–291

- Lamberti F, Ciancio A, Agostinelli A, Coiro MI (1991) Relationship between *Xiphinema brevicolle* and *X. diffusum* with a redescription of *X. brevicolle* and descriptions of three new species of *Xiphinema* (Nematoda: Dorylaimida). Nematol Mediterr 19:311–326
- Lamberti F, D'abbado T, Arias M, Agostinelli A, Bravo MA (1995) On the synonymy of *Xiphinema vulgare* Luc, 1958. Nematol Mediterr 23:131–146
- Lamberti F, Molinari S, Moens M, Brown DJF (2000) The Xiphinema americanum group I putative species, their geographical occurrence and distribution, and regional polytomous identification keys for the group. Russ J Nematol 8:65–84
- Lamberti F, Hockland S, Agostinelli A, Moens M, Brown DJF (2004) The *Xiphinema americanum* group. III, keys to species identification. Nematol Mediterr 32(1):53–56
- Lehman PS, Antônio H, Barker KR (1977) Ocorrência de nematoides em soja nos estados de Minas Gerais, Goiás e Mato Grosso. Soc Bras Nematol 2:29–32
- Loof PAA, Luc M (1990) A revised polytomous key for the identification of species of the genus *Xiphinema* Cobb, 1913 (Nematoda: Longidoridae) with exclusion of the *X. americanum*-group. Syst Parasitol 16:35–66
- Loof PAA, Maas PWT (1972) The genus *Xiphinema* (Dorylaimida) in Surinam. Nematol 18(1):92–119
- Loof PAA, Sharma RD (1979) Plant parasitic nematodes from Bahia State, Brazil, the genus *Xiphinema* Cobb, 1913. Nematol 25:111– 127
- Lordello LGE (1951) Xiphinema brasiliense, nova espécie de nematoide do Brasil, parasita de Solanum tuberosum L. Bragantia 11(1–3):87– 90
- Luc M, Hunt DJ (1978) Redescription of *Xiphinema longicaudatum* Luc, 1961 and observations on *X. krugi*, Lordello 1955 (Nematoda: Londidoridae). Nematol 24:1–18
- Marais M, Swart A, Heyns J (1995) A new species and record of Dorylaimida (De Man) Pearse (Nemata) from the Amazonas Province, Brazil. Afr Plant Protect 1:19–24
- Moura RM, Almeida AV (1981) Estudos preliminares sobre a ocorrência de fitonematoides associados à cana-de-açúcar em áreas de baixa produtividade agrícola no estado de Pernambuco. V Reunião da Sociedade Brasileira de Nematologia 5:213–220

- Oliveira CMG (2004) Genetic and morphological diversity of longidorid nematodes from Brazil. PhD Thesis, University of Dundee. Dundee, Scotland, UK
- Oliveira CMG, Neilson R (2006) Taxonomy of longidorid nematodes and dichotomous keys for the identification of *Xiphinema* and *Xiphidorus* species recorded in Brazil. Arq Inst Biol 73:131–141
- Oliveira CMG, Brown DJF, Neilson R, Monteiro AR, Ferraz LCCB, Lamberti F (2003) The occurrence and geographic distribution of *Xiphinema* and *Xiphidorus* species (Nematoda: Longidoridae) in Brazil. Helminthologia 40:41–54
- Oliveira CMG, Ferraz LCCB, Neilson R (2006) *Xiphinema krugi*, species complex or cryptic species? Journal of Nematology 38:418–428
- Ploeg AT, Brown DJF (1997) Extraction of virus vector nematodes. In: Santos MSNA, Abrantes IMO, Brown DJF, Lemos RJVCM (eds) An introduction to virus vector nematodes and their associated viruses. Centro de Sistematica e Ecologia, Universidade de Coimbra, Coimbra, pp 97–111
- Robbins RT (1993) Distribution of Xiphinema americanum and related species in North America. Journal of Nematology 25(3):344–348
- Rossi CE, Ferraz LCCB (2005) Fitonematoides das superfamílias Criconematoidea e Dorylaimoidea associados a fruteiras de clima substropical e temperado nos Estados de São Paulo e Minas Gerais. Nematologia Brasileira 29:183–192
- Sharma RD (1982) Nematodes associated with cacao hybrids/clones in Bahia, Brazil. VI Reunião Soc Bras Nematol 6:85–94
- Sharma RD, Loof PAA (1984) Nematodes associated with banana in Brazil. Nematol Bras 8:7
- Sharma RD, Sher SA (1973) Nematodes associated with banana in Bahia, Brazil. Ciên Cult 25:665–668
- Siddiqi MR (2000) Four new species of Xiphinema Cobb (Dorylaimida) lacking anterior ovary from South America. Int J Nematol 10:234–243
- Southey JF, Luc M (1973) Redefinition of Xiphinema ensiculiferum (Cobb, 1893) Thorne, 1937, and description of Xiphinema loosi n. sp. and Xiphinema hygrophilum n. sp. (Nematoda: Dorylaimoidea). Nematol 19:293–307
- Taylor CE, Brown DJF (1997) Nematode vectors of plant viruses. CAB International, Wallingford, p 286
- Uesugi CH, Huang CS, Cares JE (1985) *Xiphidorus amazonensis* n. sp. (Nematoda: Longidoridae) from the Brazilian Amazon basin. J Nematol 17(3):310–313