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Abstract
Intensive care unit (ICU) noise is a critical and often overlooked issue, impacting patient recovery and healthcare staff well-
being. Existing research primarily relies on costly sound level meters for monitoring noise levels, where the characteristics of
noise sources cannot be determined and discriminated. This study employs deep neural networks to detect and classify ICU
noise events, enhancing source identification. A cost-effective internet of things-based audio recording andmonitoring system
has been designed and deployed in three ICUs for data collection. The acoustic event classification system described in the
paper integrates convolutional neural networks for event detection, followed by clustering to isolate noise sources. Results
demonstrate precise classification, with speech identified as a major contributor in all ICUs. This model offers valuable
insights for characterising acoustic sources in typical ICUs, which could be the first step towards tackling the problem of
excessive noise in ICUs as well as a starting point for further research in this area.

Keywords ICUs · Noise monitoring · Deep learning · Acoustic source classification/clustering

1 Introduction

Millions of individuals worldwide are impacted by the
issue of noise pollution. The explosive growth in popula-
tion, urbanisation, human leisure activities, construction, and
industry, as well as the use of transportation (motorways,
rails, and air traffic), one of the primary sources of environ-
mental noise, are all factors contributing to noise pollution
[1, 2]. However, indoor noise pollution can be more specific,
including in libraries, offices, courts, schools, and hospitals
[3, 4]. Since noise pollution has become intolerable to human
beings, numerous efforts have been conducted to evaluate
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noise levels in urban cities [5–7], industrial cities [8, 9], and
traffic in general [10–14]. Some studies focussed on environ-
mental noise monitoring and geo-spatial mapping analysis
[15–17], while others performed noise source identification
and classification using various techniques [18–21] to pin-
point the most problematic and disruptive noise sources.

In this context, Intensive Care Units (ICUs) are envi-
ronments where patients encounter a range of acoustic
disturbances originating from various sources. These include
the medical equipment essential for patient care and the
activities of healthcare personnel [22]. The impact of this
noise extends to both patients and the healthcare staff, affect-
ing them psychologically and physiologically [22]. Research
indicates that patients often recall noise as a prominent and
sometimes distressing aspect of their ICU stay [23–25]. Sev-
eral studies have indicated that it is a major environmental
hazard to human health, contributing to an increased risk of
cardiovascular issues, high blood pressure, and stress. Sleep
disruption has been found to be the most common negative
health influence related to prolonged exposure to noise, as it
can lead to serious problems such as delirium [26, 27]. Stud-
ies have also shown that noise can have a significant impact
on the performance of medical staff, including reduced cog-
nitive abilities, altered social behaviours, deficient sustained
memory, impaired speech communication, and decreased
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attention and work skills [28–31]. These factors can cause
impaired execution of tasks and, consequently, increase the
potential for errors andwrong decisions during working days
[32, 33].

Over the years, with the advancement of technology and
the addition ofmore equipment in ICUs, the levels of sensory
stimuli in these environments have increased significantly,
leading to higher noise levels [34]. Due to the significant
consequences of acoustic noise, the WHO recommends that
noise levels in ICUs should not exceed 35 dBA during the
day and 30 dBA at night, with no peaks exceeding 45 dBA
[35]. However, the available evidence indicates that the noise
levels measured in ICUs are much higher than what is rec-
ommended [36–38]. The extreme and unmanageable noise
levels result in an unfamiliar environment for patients requir-
ing care. Consequently, reducing noise levels in hospitals,
and ICUs in particular, has become a pressing issue, and sig-
nificant attention has been given to efforts aimed atmitigating
these levels. There have been several passive control pro-
grammes designed and implemented in an attempt to reduce
noise levels, such as altering sound-absorbing materials or
redesigning internal construction [39], using earplugs or
headphones [40], and providing staff training for behaviour
modification [41]. However, none of them have yet been able
to satisfy the recommended guidelines since outcomes have
shown that these programmes did not significantly reduce
noise levels.

In many studies, monitoring and analysing sound levels
have been conducted utilising high-precision SLMs [42–45].
The study presented by [46] offered a graphic depiction of
the typical "noisiness" map for the ICU layout, highlight-
ing locations with high sound levels. The study emphasised
the importance of pinpointing the main noise sources to gain
a better understanding of the nature of these sounds, ulti-
mately improving patient experiences and outcomes. The
authors suggested the use of machine learning techniques to
identify and categorise various noise sources accurately. An
Artificial Neural Network (ANN) was employed in [47] to
characterise the types of sounds in a Neonatal Intensive Care
Unit (NICU).The study conducted short-termnoisemeasure-
ment, 24 h, with different sound level parameters recorded
every second. The study found that equipment alarms and
staff conversations significantly influence the acoustic envi-
ronment in the NICU. The lack of uniformity in the sound
spectra, simultaneity, and concomitance of noise sources
hindered the unequivocal interpretation of some results of
the classification model due to the limited characteristics of
its inputs. Other studies, however, have recently developed
cost-effective IoT-based systems as an alternative approach.
Marques et al. [48] proposed an IoT-based system linked
to a mobile computing technology. The system comprised
an ESP8266 microcontroller and a Gravity Analogue Sound

level meter for real-time noise monitoring and data collec-
tion, which were stored in a SQL Server database using Web
Services. The proposed system provides advanced data anal-
ysis and visualisation,making it compatiblewith all domestic
devices despite being designed using low-cost components.
Jose et al. [49] introduced a low-cost system deployed in
Linares, Spain, for continuously monitoring real-time and
spatial noise data. The results indicate its effectiveness in
generating accuratemaps of noise levels, although being con-
structed using affordable components. Nevertheless, relying
solely on sound pressure levels (SPLs) is insufficient to
provide a comprehensive representation of the acoustic envi-
ronment and accurately identify the characteristics andnature
of the major noise sources.

Only a limited number of studies have investigated the
sources of noise in ICUs either by relying on surveys of
staff and patients to identify and assess sources of disruptive
noise [50–52] or by placing observers situated in the patient’s
area to document instances of disruptive sound [53–56]. The
existence of a human observer has the potential to impact
the acoustic environment by affecting the actions of nursing
personnel. Those techniques could potentially result in mea-
surement prejudices. Very few studies recorded audio events
to determine noise sources in ICUs. For instance, Park et al.
[57] conducted continuous soundscape recording for three
days in a single room, but only the first 24 h of recording
were utilised for analysis. As a result, the depiction of the
sound environment was limited and inaccurate. Addition-
ally, it required a team of six research assistants to listen to
the audio files for manual segmentations and annotations,
which took a total of 350 h to complete. The work [58] pre-
sented preliminary results of an acoustic analysis of sounds
in a NICU, including the establishment of an annotated audio
database, and focussed on automatic vocalisation detection
using Gaussian Mixture Models (GMM) with the produced
database. Although ten acoustic settings were performed
to generate audio datasets, only 18 files were utilised. The
paper acknowledged the need for further research, including
a larger dataset and a more thorough analysis of the Spectro-
temporal characteristics of acoustic events. Later, Shield et al.
[59] conducted a comprehensive noise survey of five general
inpatient hospital wards in the UK. This involved continuous
noise monitoring over several days as well as recording short
sound files whenever the maximum noise level exceeded a
pre-determined threshold, set to 70 dB. Sources of noise have
been manually identified by listening to the sound files. The
study presented by [60] characterised an ICU soundscape.
The recorded acoustics data were processed, revealing ten
noise sources, with the nurses’ conversations and alarms pro-
duced byEKGmonitors and ventilators identified as themain
sound sources. However, there is a lack of information about
how the identification was performed, whether manually or
using any other detection techniques. He et al. [61] used
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A WENSN® WS1361 meter to measure noise levels and
sound events in an ICU ward. The study recognised twenty
noise sources, while the methods to identify these sources
were unknown. The authors noted that it was challenging
to detect noise sources independently due to the presence
of several noise sources at once. The high level of system-
atic effort required, including the allocation of significant
human resources for manual segmentation, annotation, and
identification, makes replicating this methodology challeng-
ing when dealing with a large dataset.

Given these considerations, there is a compelling need
for a more intelligent approach to identifying ICU noise
sources, motivated by the acknowledged challenges and gaps
in scientific research. This paper aims to pinpoint the major
sources of acoustic noise and quantify their contribution
to the acoustic environment through the classification of
recorded events with the help of Deep Neural Networks
(DNNs). To accomplish this, an accurate, intelligent, cost-
effective measurement IoT-based system was developed and
deployed in three different hospitals in Babel, Iraq. This
system not only measures and records key environmental
parameters within the ICU, including SPLs, temperature,
humidity, and light intensity but also automatically captures
sounds exceeding predefined SPL thresholds. The Acoustic
Event Classification (AEC) approach, integrated with YAM-
Net, a sound-trained Convolutional Neural Network (CNN),
was then applied to detect and classify these recorded sound
events. Further clustering analysis was then implemented on
the classified data to separate acoustic sources.Consequently,
this approach can help to avoid such noisy scenarios, where
feasible, leading to reduced noise levels, ultimately avoid-
ing risks and potentially improving the well-being of ICU
patients.

The paper is organised as follows: Sect. 2 describes the
methodological approach used to tackle the ICU noise prob-
lem. Section 3 presents the results of the AEC. Section 4
discusses the findings, research challenges, and limitations.
Finally, Sect. 5 provides some conclusions with final remarks
and identifies the potential for future work.

2 Methods

2.1 Description of Measurement System

The measurement system developed for this study serves as
a compact and portable SLM with dimensions of 15× 10×
6 cm. In addition to measuring the SPL, which is the mean
sound levels LAeq, it measures other environmental parame-
ters, including temperature, humidity, and light intensity, at a
high resolution of 4 measurements per second. A key feature
of the system, crucial for the intended measurement cam-
paign, is its ability to automatically record sound sequences

at a sampling frequency (Fs) of 16 kHz once the monitored
SPL exceeds a preset threshold (dBthr). The SPL threshold
and the recording length can be easily adjusted. The recorded
segments are stored locally on an SD memory card, while
other measured data are stored locally or transmitted over
the Internet and saved on a data management platform. This
approach enables remote and continuous monitoring of the
soundscape of ICUs over an extended period. The developed
system comprises a MEMS microphone with a frequency
response conforming to IEC 61672–1 Class 1, mounted on
a pre-amplifier. Prior to deployment, all components were
checked and calibrated using a B&K 4231 calibrator. Due to
its low cost (£55) and lightweight design, this system can be
readily replicated and deployed in a large number of ICUs.

2.2 ICUs General Environment, System Deployment,
andMeasurements

For this study, the system was installed in two Respiratory
Intensive Care Units (RICUs) and one Neonatal Intensive
Care Unit (NICU) across three different hospitals in Babel,
Iraq. The system was mounted on baskets, approximately
1 m away from the patient bed, without interfering with
patient-care activities, as depicted in Fig. 1. Each patient bed
is equipped with various life-supporting devices positioned
behind and beside the bed. Additionally, the units contain
equipment, such as air conditioning and ventilation systems,
which contribute to noise levels. The number of staff mem-
bers, including nurses and physicians in the ICUs, varies
daily depending on the number of patients and their specific
needs, though shift handovers remain consistent. Through-
out the recording periods in all ICUs, staff reported typical
patient-care activities, such as patient monitoring and data
recording. They also noted that the time between patients’
discharge and admitting new patients was typically less than
half an hour, and the units were consistently fully occupied.
The summary of ICUs general characteristics and measure-
ments is tabulated in Table 1.

The recording of audio segments was triggered by the
excessive SPLs constantly measured in the ICUs. Each
recorded segment in the dataset is 10 s long. Figure 2 illus-
trates the raw SPL data recorded in all ICUs over four days.
To improve readability, the data were down sampled by a
factor of 240, resulting in one sample per minute.

It is evident from Fig. 2 that the measured SPLs exceeded
acceptable limits for a significant portion of themeasurement
duration. Notably, RICU2 exhibited considerably higher
noise levels compared to the other ICUs, with the minimum
recorded SPL reaching 41 dB and the maximum nearing 82
dB. Moreover, the number of recorded segments in RICU2
was greater, totalling 14,630, despite the shorter recording
period of four days. However, it is worth mentioning that the
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Fig. 1 Deployment of the developed system: a enclosure box, and b deployed in NICU

Table 1 ICUs general characteristics and measurements

ICU Hospital Name ICU Layout and Size
(L×W× H)

No. of
Patients

Patient Isolation Recording Period Audio
Segments

RICU1 Hillah General
Teaching
Hospital

Open plan (10 × 7.2 ×
3.5)

11 Curtains 17/8/2022–23/8/2022 9381

RICU2 Merjan Medical
City

Open plan (15 × 8.5
×3.9)

12 Double glazing
class

02/4/2023–06/4/2023 14,630

NICU Babel Teaching
Hospital for
Maternity and
Paediatric

Open plan (8.4 × 6.6 ×
3)

10 Incubators 06/4/2023–13/4/2023 7709

NICU, despite its open bay structure, exhibited the lowest
overall noise levels.

2.3 The Proposed Approach (AEC and Clustering)
for Data Analysis

The YAMNet model has been recently developed for sound
event detection. It consists of 28 learning layers (27 CNN-
layers and a fully connected layer) employing theMobileNet-
v1 architecture and encompassing 3.7 million parameters. It
was extensively trained on Google datasets with the same
characteristics as the collected datasets. Themodel’s training
data is drawn from the expansiveAudioSet, which boasts 521
audio classes and stands the most extensive dataset for audio
deep learning [62, 63]. The input features to this network
are image-based representations, specifically the log Mel-
spectrograms that use aMel scale tomimic human perceptual
hearing [64].

The framework of the overall system model used in this
work, including event classification and clustering processes,
is depicted in Fig. 3, in which the YAMNet is integrated. The
pre-processing block comprises two steps:DCoffset removal
and the normalisation of peak amplitude to fall between the−
1 and 1 ranges. The process of obtaining Mel-spectrograms
involves segmenting each audio segment in the datasets into
0.98 s segments with an overlap of 0.8575 s. The one-sided
Short Time Fourier Transform (STFT) is then computed for
each segment by applying a 25 ms long periodic Hanning
window, with the overlap size and hop size being 15 ms
and 10 ms, respectively. Then 512 points Fast Fourier Trans-
form (FFT) is applied, and the obtained magnitude spectra
are passed through 64 Mel frequency filter banks, spanning
the range of 125–7500 Hz. Finally, the logarithmic scale
is applied to obtain the log Mel-spectrograms. Each Mel-
spectrogram is represented by a 96 × 64 matrix, where 96
and 64 correspond to the number of 10 ms frame spectra and
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Fig. 2 Raw recorded SPLs in dB
conducted over 4 days in three
Iraqi Hospitals: a RICU1,
b RICU2, and c NICU

Fig. 3 Framework of the overall
system model: a AEC, and
b clustering process
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the total number of Mel bands, respectively. The number of
Mel-spectrograms, or L arrays, depends on the input length
and overlap percentage in the segmentation process. These
multi-dimensional Mel-spectrograms are now a valid input
for the YAMNet model.

Themodel output has the advantage of returning (i) sounds
identified over time in audio inputs as string arrays with the
specified sound classes described by the AudioSet ontology
in chronological order and (ii) a k-by-2 matrix H of time
stamps in seconds for corresponding identified sounds. The
number of rows, k in H, is the number of detected sound
regions. The start and finish times of the identified sound
regions are listed in thefirst and second columnsofH, respec-
tively. These outcomes from (i) and (ii) facilitate automatic

segmentation and labelling of sound events simultaneously,
eliminating the need for additional research assistants to
annotate sound events. In the post-processing step, the return-
ing output of YAMNet is exploited by finding the indices of
time stamps and capturing related sounds classified in the
previous step. The last two blocks in Fig. 3b are repeated for
all possible classification outcomes obtained in Fig. 3a. This
process is repeated for all potential classification outcomes,
leading to the achievement of acoustic source clustering.

For acoustic detection, a minimum time interval of 0.2 s
between adjacent regions of the same detected sound is set.
Regions shorter than 0.2 s are combined. Additionally, the
minimum duration for identified sound areas is set at 0.3 s,
discarding regions shorter than this length.
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2.4 Ethical Considerations

Consent from the heads of all ICUs in which deploying the
developed systemwas initially managed and obtained. Addi-
tionally, reasonable steps were taken to ensure that potential
staff and patients are appropriately informed upon admission
to the ICU, explaining the data that the system can record
and where the recorded data will be used (thesis research).
Oral consent was obtained, either from the patients directly
if they were awake or on their behalf. Furthermore, it is sig-
nificant to clarify that participation in this activity is entirely
voluntary, and individuals are free to withdraw at any time
without facing any consequences. Choosing not to partici-
pate or deciding to withdraw will not have any impact on
their career if they are healthcare workers or the quality of
care they receive if they are patients.

The audio signals collected by the developed recording
system may include speech. Therefore, speech segments are
the only anticipated ethical issue. All individuals present dur-
ing the recording periods, including staff, patients, and any
other people, remained anonymous, and no personal infor-
mation or other related data about them was recorded or
collected.

For confidentiality reasons, Speech/non-Speech discrimi-
nationwas intelligently processed, performingSpeechActiv-
ity Detection (SAD) to remove speech frames from the
collected audio datasets following the completion of the
recording and before carrying out themain analysis. The pro-
cess was carried out in the presence of medical professional
staff at their computers. The DNN, YAMNet, was used to
detect speech frames, which were subsequently eliminated
while preserving the rest of the audio data. Despite remov-
ing speech segments, the overall number of segments and the
total time duration of speech presence were the only param-
eters determined and noted. It is also important to mention
that the original datasets were entirely deleted upon the com-
pletion of the SAD process by the professional medical staff.
The new datasets resulting from the SAD process were the
only datasets handed. These datasets are stored and secured
in the Google Team Drive associated with our official uni-
versity account.

Based on the procedures outlined above, this research
adheres to the university’s research ethics policy and main-
tains integrity by complying with all relevant laws, codes,
guidance, policies, and procedures. Ethical considerations
were broadly taken into account during the project design
and data collection by the XXX Faculty Ethics Committee,
and the Reference Number TECH2023-A.A-01 was granted.

3 Analysis of Recorded Datasets

In this section, the model presented in Fig. 3 was applied to
analyse the collected datasets to detect, classify, and cluster
the main noise sources and establish the contribution of each
noise source. The authors spent considerable time checking
individual.wav files in the obtained class folders, ensuring
that audio files that belong to the same class were grouped
into the correct class folder. Any audio file that clustered
incorrectlywasmoved to its belonging folder.As a result, dis-
tribution, correctly clustered, and final distribution columns
were provided in subsequent tables. The classification results
were then discussed with the ICUmedical personnel to iden-
tify the names of the noise sources in each ICU.

For a better understanding of the results presented in the
rest of this section, it is beneficial to use the abbreviations
DST, which stands for distribution of audio files, and CDL,
which represents the cumulative duration length and shows
the real-time contribution of the main acoustic sources. The
range of intensity levels in dB was estimated by identify-
ing the lowest and highest peak magnitudes in the spectra,
followed by 20log(magnitudes/20 × 10−6). Furthermore,
the AEC rate indicated in the last column in subsequent
tables was measured for each detected class individually.
The AEC rate is the precision metric of the model output,
and it is calculated in our scenario as: precision/class =
correctly clustered/distribution.

3.1 Results Based onMeasurements in RICU1

The model efficiently identified and categorised different
acoustic sources in RICU1. As indicated in Table 2, eight
noise classes, including six medical devices, speech (conver-
sations), and multiple devices working simultaneously, were
discovered to be themain noise sources inRICU1.The result-
ing dataset consisted of 10,180 files and showed that speech
was a significant contributor, as illustrated in the pie chart
depicted in Fig. 4. The results also revealed that the patient
monitor produces SPL higher than other medical devices.
Figure 5 shows the time series of the extracted noise sources
along with the matching Mel-spectrograms, demonstrating
that sources 2, 3, 5, and 6 produce sounds with harmonic
characteristics. However, sources 2 and 3 might be the most
annoying and inconvenient since they have high-frequency
tonnes exceeding 3 kHz.
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Table 2 Distribution, real-time contribution, and estimated SPLs of the main acoustic sources in RICU1 as well as AEC accuracy rates

Name of noise source
(Class)

DST Correctly clustered Final DST CDL hh:mm:ss SPL Range (Min–Max) AEC rates (%)

Source1_Patient Monitor 190 183 186 00:13:39 74 96.32

Source2_Humidifier 711 688 697 01:06:57 44–52 96.76

Source3_Bed Monitor 859 835 838 00:40:38 55–65 97.20

Source4_Portable
Ventilator

123 112 117 00:05:22 55–71 91.05

Source5_Ventilator Alarm
(O2 pressure low)

774 743 753 00:24:58 52–67 96.00

Source6_Ventilator 527 527 527 00:24:51 52–78 100

Source7_Speech 5825 5825 5825 07:21:36 Unknown 100

Source8_Multiple devices – – 1237 02:19:44 Unknown –

Total 9009 8913 10,180 12:37:45 –

Fig. 4 Percentage contribution of the main acoustic sources in the RICU1: a percentage of DST, and b percentage of CDL

3.2 Results Based onMeasurements in RICU2

The analysis ofRICU2 revealed 15,732 audiofiles distributed
in nine noise classes, including six medical devices, speech,
mobile ringing, and concurrent operation ofmultiple devices,
as depicted in Table 3. The pie chart plotted in Fig. 6 illus-
trates that the conversation and patient monitor were found to
be the most dominant noise categories. Figure 7 displays the
patterns of the extracted noise sources along with the related
Mel-spectrograms.

The acquired classes are slightly different, even though
this ICU is of the same type as the one before. New noise
sources like oxygen and suction pumps are present in this
ICU. They produce the highest range of sound levels. Mel-
spectrograms illustrate that sources 2 and 3 produce low-
frequency signals, while sources 1 and 4 produce harmonic
signals. The Ventilator, source 5, might be the most annoying
source as it generates frequency tones ranging from 400 Hz
to 7.5 kHz. Source 6, producing a low range of sound levels,
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Fig. 5 Time series and Mel-spectrogram of the extracted noise sources found in RICU1: a–f medical devices
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Table 3 Distribution, real-time contribution, and estimated SPLs of the main acoustic sources in RICU2 as well as AEC accuracy rates

Name of noise source
(Class)

DST Correctly clustered Final DST CDL hh:mm:ss SPL range (Min–Max) AEC Rates(%)

Source1_Patient Monitor 5595 5574 5578 06:16:25 50–67 99.62

Source2_Oxygen Pump 65 60 61 00:15:02 70–76 92.31

Source3_Suction Pump 10 10 10 00:02:17 70 100

Source4_Ventilator Alarm
(O2 pressure low)

916 877 885 00:31:28 59–67 95.74

Source5_Ventilator 66 62 65 00:06:21 48–71 93.94

Source6_Background
Alarm

202 189 189 00:11:44 39–49 93.56

Source7_Speech 7993 7993 7993 10:46:24 Unknown 100

Sourc8_Mobile Ringing 51 48 48 00:01:59 49–60 94.11

Source9_Multiple Devices – – 903 02:10:08 Unknown –

Total 14,898 14,813 15,732 20:21:48 –

Fig. 6 Percentage contribution of the main acoustic sources in the RICU2: a percentage of DST, and b percentage of CDL

sounds like a background alarm. It is generated outside the
ICU ward, as stated by the nursing staff.

3.3 Results Based onMeasurements in NICU

During the seven days of data collection in the NICU, a total
of 7709 sound segments were captured; nevertheless, the
clustering analysis revealed 8138 audio files produced by

eleven noise sources. As illustrated in Table 4 conversation
accounts for the largest proportion of segments, approx-
imately 5225 files, followed by the patient monitor and
incubator alarms as the second and third most contributors,
respectively.

Figure 8 illustrates the proportional contribution of the pri-
mary sources of noise. The baby cry and the incubator alarm,
producing high ranges of sound levels, are new noise sources

123



218 Acoustics Australia (2024) 52:209–224

Fig. 7 Time series and Mel-spectrogram of the extracted noise sources found in RICU2: a–f medical devices

in this ICU. It is also worth noting that sources 5 and 6 are
ventilator alarms produced when O2 pressure is low. They
originate from two ventilators made by different manufac-
turing companies (dmc), nevertheless. It can be noticed from
Table 4 that the noise levels produced by various sources,

except the ventilator (dmc) and incubator alarms, are low
compared to other ICU sources.

The time series of the extracted noise sources and the
related Mel-spectrograms for the new NICU dataset are
depicted in Fig. 9. Based on the Mel-spectrograms, the oxy-
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Table 4 Distribution, real-time contribution, and estimated SPLs of the main acoustic sources in NICU as well as AEC accuracy rates

Name of noise source
(Class)

DST Correctly clustered Final DST CDL hh:mm:ss SPL range (Min–Max) AEC rates (%)

Source1_Patient Monitor 779 757 760 00:53:33 46–54 97.17

Source2_Oxygen Pump 151 140 142 00:23:41 51 92.71

Source3_Suction Pump 59 55 55 00:06:15 46 93.22

Source4_Humidifier Alarm 552 525 536 00:26:59 44–62 95.11

Source5_Ventilator Alarm
(O2 pressure low)

367 356 359 00:20:22 41–68 97.00

Source6_Ventilator Alarm
(dmc)

108 108 108 00:03:22 50–76 100

Source7_Incubator Alarm 675 653 666 00:28:03 50–74 96.74

Source8_Speech 5225 5225 5225 06:34:40 Unknown 100

Source9_Baby Cry 56 54 54 00:02:35 46–61 96.42

Source10_Mobile Ringing 32 31 31 00:01:15 49–60 96.87

Source11_Multiple
Devices

– – 202 00:15:47 Unknown –

Total 8004 7904 8138 09:36:32 –

Fig. 8 Percentage contribution of the main acoustic sources in the NICU: a percentage of DST, and b percentage of CDL
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Fig. 9 Time series and Mel-spectrogram of the extracted noise sources found in NICU: a–h medical devices
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gen pump generates a frequency of around 1.46 kHz, while
the suction pump produces a high frequency of about 3 kHz.
Sources 1 and 4 in this ICU have similar characteristics to
sources found in RICU1, indicating that they are related to
the same devices and probably made by the same manu-
facturing company. A multi-device source is also included,
demonstrating a disrupted spectrogram.

4 Discussion

4.1 AECModel Performance

According to the results presented in Tables 2, 3, and 4, the
suggested framework demonstrated excellent performance
in the acoustic event detection and classification of vari-
ous noise sources in typical ICUs. The high performance
achieved is attributed to the combination of resilience tech-
niques employed during the pre-processing phases, including
DCoffset elimination and signal normalisation.Additionally,
utilising the log Mel-spectrogram, an input feature, provides
several advantages in representing frequency components
more distinctly and capturing essential acoustic character-
istics effectively. The logarithmic scaling compresses the
spectrogram’s dynamic range, increasing the visibility of
subtle details while preventing extreme values from taking
over the representation. Compression is valuable for con-
serving memory and computational processing power when
analysing massive datasets in real-time applications. Fur-
thermore, logarithmic scaling is better compatible with the
human auditory perception system, providing an additional
advantage by emphasising the lower andmid-frequency com-
ponents in spectrograms. Moreover, the logarithmic scaling
has the advantage of separating significant signal infor-
mation from background noise, given that the noise gets
compressed relative to the signal. Therefore, the model
exhibits robustness against heavy background noise, which,
in our case, is the baseline noise, as the ICUs are equipped
with many sources that are inductive loads. These pre-
processing techniques, with their advantages, directly impact
the performance of the proposed framework, in particular the
AEC rates. In addition, Figs. 5, 7, and 9 demonstrate that
noise sources essentially exhibit distinct time series patterns,
producing unique corresponding Mel-spectrograms. Conse-
quently, the model can easily differentiate between these
patterns, resulting in greater performance.

The highest AEC rate was achieved when the model
processed speech, highlighting its speech recognition capa-
bilities, given that the YAMNet model was extensively
trained on Google datasets, which include speech data. It
was observed that the performance of the suggested model
degraded when detected sounds of the same class had a

higher separation between consecutive regions. For exam-
ple, in RICU1, the model’s recognition rate for Source 4,
which has long-separated regions, was 91.05%. Conversely,
performance improvedwhen consecutive regions of the same
detected sound had a shorter separation. This was observed
in Source 6, detected in RICU1, in which its signal pat-
tern exhibited a very short separation between consecutive
regions, resulting in a recognition rate of 100%. The worst
performance scenario obtained when the input feature con-
sisted of a continuous periodic single tone, as depicted in
the Mel spectrogram of Source 2 (the oxygen pump) found
in RICU2 and NICU. The model still achieved an adequate
recognition rate, but not as expected in comparison to other
input noise sources.

4.2 Analysed Results

This study proved again that ICUs are generally extremely
noisy environments, in line with other published studies
on this topic. As illustrated in Fig. 2, SPLs in all moni-
tored ICUs are higher than the advised values over most of
the observed periods. The temporal patterns of noise levels
exhibit variability across different days and ICUs, pointing to
an unstable and unpredictable acoustical environment. Com-
pared to some previous works [65], this study proposes a
framework for a more comprehensive understanding of the
ICU environment and offers insight into the individual sound
sources and their relative contribution to the noise in the
ICUs. This information could potentially help in identify-
ing the acoustic sources most amenable to modification and
control.

The data analysis clearly shows the significant impact of
staff and visitors’ conversations, especially in RICU2 and
NICU. Tables 2, 3, and 4 indicate conversations emerge
as the most pervasive non-patient noise source, occurring
frequently and having the longest cumulative duration in
RICU1, RICU2, and NICU. The medical equipment alarms
also contributed significantly to the overall acoustic energy.
The ventilator, in particular, was identified as the top contrib-
utor. TheMel-spectrogram figures suggest that alarm sounds
generated by life-supporting deviceswithmultiple frequency
components may be more disturbing to patients than other
types of sounds or speech.

Moreover, some alarms exhibit harmonic characteristics,
with each alarm pulse frequently consisting of two or more
tonal components. Such alarms are known to be more irri-
tating than non-tonal ones at the same SPL. Other sources,
such as suction pumps, had shorter overall contributed dura-
tions and fewer frequent occurrences-less than 1%of the total
durations and occurrences. However, these short-term events
are likely to disturb patients since they are directly related to
patient care. Thefinal noise class in each analysed ICUresults
from two or more sources operating simultaneously, which
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can undoubtedly bother patients due to the highly transient
nature of unstructured tonal sounds.

Work also finds that some medical devices may pro-
duce different numbers of sounds depending on the patient’s
condition. A ventilator can emit two different alarms: one
generated during normal functioning and another triggered
when the oxygen, O2, pressure is low. It is also important
to note that ventilators and other equipment from different
manufacturers may produce entirely different alarms despite
being related to the same patient case. This variation was
observed in the NICU.

Furthermore, ICU patients may find alarm sounds to be
more frustrating or inconvenient compared to staff-generated
noises, which are somewhat predictable in the presence of
nursing staff. Staff-generated noise can, however, reassure
patients that they are being taken care of and attended to,
whereas medical device alarms, with their unclear meanings,
can cause patients toworrymore about their health condition.

4.3 Research Challenges with Limitations

ICUs are sensitive areas where only professionals and nurses
can have access to provide patient care. Installation of new
devices in these wards requires both clinical and administra-
tive approval, often with specific restrictions. Consequently,
the established measurement system was granted limited
access to ICUs for a set number of days with the consent
of qualified staff. However, the impact of such a system on
the behaviours of ICU staff and patients remains compara-
tively unknown.

Although consistent data-processing protocols were
applied uniformly across all ICUs in this study, making a
direct comparison between the three units or with existing
literature proves challenging. This challenge stems from the
varying durations of measurements and the highly variable
acoustic environments within ICUs. These environments are
influenced by a multitude of factors, including the layout of
buildings, the ICU ward’s year of construction, the type of
ICU, the number of patients and their conditions, the number
of nursing staff, the quantity of medical support devices, and
the caregiving protocols. These variables inevitably lead to
discrepancies in the analysis outcomes of acoustic environ-
ments.

5 Conclusion and FutureWork

This paper proposes a new, cost-effective, and efficient
method for understanding and identifying the origins of
noise within typical ICUs by proposing and implementing
an Acoustic Event Classification (AEC) system, supported
by a Deep Learning (DL) model. The AEC model con-
siderably reduces the extensive human effort required in

traditional audio identification and classification approaches,
which mostly rely on manual segmentation and annotation
of audio events. Notably, the proposed AEC system demon-
strated strong performancewith low complexity andminimal
time consumption, benefiting from not requiring training the
model from scratch.

An in-house Internet of Things (IoT)-based prototype sys-
tem was initially developed, capable of measuring Sound
Pressure Levels (SPLs)with the necessary resolution. It auto-
matically recorded audio signals when SPLs exceeded the
preset threshold of 45 dB, focussing on capturing the loudest
and most significant sounds. Deployed in three hospitals in
Babel, Iraq, the system showcased satisfactory performance,
bridging the accuracy gap between low-cost and commer-
cially expensive alternatives.

The acoustic source analysis presented in this work pro-
vides valuable insights into the origins of ICU noise and
their contributions to the overall ICU soundscape. This anal-
ysis led to create of three efficient acoustic datasets for
further intelligent inspection, offering a manageable num-
ber of audio segments relevant to ICU noise sources. The
data analysis revealed that staff, visitors, and accompany-
ing individuals were the primary contributors to the majority
of sounds, constituting 58.28%, 52.90%, and 68.46% of
the cumulative acoustic noise duration for RICU1, RICU2,
andNICU, respectively. Notably, relocating staff interactions
within ICU wards could significantly reduce sound events,
as conversations are a primary noise source.

In conclusion, the precise measurements and comprehen-
sive intelligent analysis presented in this study shed light on
the most disruptive noise sources in ICUs, opening the pos-
sibility for effective noise mitigation strategies. One idea to
explore in the continuation of this work is the investigation of
the Active Noise Control (ANC) method for reducing some
of the noise present in the ICUs. The sounds captured in this
work will be used to design and simulate an ANC system
and explore its effectiveness for acoustic noise cancellation.
Plans involve developing a real-time ANC system, followed
by a clinical trial to assess its effectiveness in reducing noise
levels in ICUs and ultimately improving patients’ health out-
comes.
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51. Uǧraş, G.A., Öztekin, S.D.: Patient perception of environmental
and nursing factors contributing to sleep disturbances in a neuro-
surgical intensive care unit. Tohoku J. Exp. Med. (2007). https://
doi.org/10.1620/tjem.212.299

52. Kebapcı, A., Güner, P.: ‘Noise Factory’: a qualitative study explor-
ing healthcare providers’ perceptions of noise in the intensive care
unit. Intensive Crit. Care Nurs. (2021). https://doi.org/10.1016/j.
iccn.2020.102975

53. Tegnestedt, C., et al.: Levels and sources of sound in the inten-
sive care unit - An observational study of three room types. Acta
Anaesth. Scand (2013). https://doi.org/10.1111/aas.12138

54. Dawson, D., Barham, R., Hamilton, M., Philips, B.: Sound in
time: an observational study to identify the sources of sound and
their relative contribution to the sound environment of an intensive
care unit. Appl. Acoust. (2022). https://doi.org/10.1016/j.apacoust.
2021.108485

55. Xie, H., Kang, J., Mills, G.H.: Behavior observation of major noise
sources in critical care wards. J. Crit. Care (2013). https://doi.org/
10.1016/j.jcrc.2013.06.006

56. Naef, A.C., et al.: Methods for measuring and identifying sounds
in the intensive care unit. Front. Med. (Lausanne) (2022). https://
doi.org/10.3389/fmed.2022.836203

57. Park, M., Kohlrausch, A., de Bruijn, W., de Jager, P., Simons,
K.: Analysis of the soundscape in an intensive care unit based on
the annotation of an audio recording. J. Acoust. Soc. Am. (2014).
https://doi.org/10.1121/1.4868367

58. G. Raboshchuk et al., On the acoustic environment of a neonatal
intensive care unit: Initial description, and detection of equipment
alarms. in Proceedings of the Annual Conference of the Interna-
tional SpeechCommunicationAssociation, INTERSPEECH , 2014.
doi: https://doi.org/10.21437/interspeech.2014-545

59. Shield, B., Shiers, N., Glanville, R.: The acoustic environment of
inpatient hospital wards in the United Kingdom. J. Acoust. Soc.
Am. (2016). https://doi.org/10.1121/1.4962276

60. S. S. Utami, R. Adawiyah, R. J. Yanti, J. Sarwono, and I. Prasetiyo,
Soundscape characterization in an intensive care unit at a hospital in
Yogyakarta, Indonesia. in ICSV2016 - 23rd International Congress
on Sound and Vibration: From Ancient to Modern Acoustics, 2016.

61. J. He et al., Noise Levels in a Medical Intensive Care Unit. 2018,
doi: https://doi.org/10.20944/PREPRINTS201807.0588.V1

62. Tsalera, E., Papadakis, A., Samarakou, M.: Comparison of pre-
trained cnns for audio classification using transfer learning. J. Sens.
Actuator Netw. (2021). https://doi.org/10.3390/jsan10040072

63. J. F. Gemmeke et al., Audio Set: An ontology and human-
labeled dataset for audio events. in ICASSP, IEEE International
Conference on Acoustics, Speech and Signal Processing - Proceed-
ings, Institute of Electrical and Electronics Engineers Inc., 2017,
pp. 776–780. doi: https://doi.org/10.1109/ICASSP.2017.7952261

64. S. Hershey et al., CNN architectures for large-scale audio classi-
fication. in ICASSP, IEEE International Conference on Acoustics,
Speech and Signal Processing - Proceedings, 2017. doi: https://
doi.org/10.1109/ICASSP.2017.7952132

65. Althahab, A.Q.J., Vuksanovic, B., Al-Mosawi, M., Machimbar-
rena, M., Arias, R.: Noise in ICUs: review and detailed analysis
of long-term SPL monitoring in ICUs in Northern Spain. Sensors
(2022). https://doi.org/10.3390/s22239038

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

123

https://doi.org/10.1186/s12871-015-0019-7
https://doi.org/10.12788/jhm.2826
https://doi.org/10.1016/j.buildenv.2016.09.007
https://doi.org/10.1111/vec.12997
https://doi.org/10.1111/anae.14690
https://doi.org/10.1016/j.apacoust.2020.107301
https://doi.org/10.1109/ACCESS.2020.3012919
https://doi.org/10.3390/s20010124
https://doi.org/10.3813/AAA.918557
https://doi.org/10.1620/tjem.212.299
https://doi.org/10.1016/j.iccn.2020.102975
https://doi.org/10.1111/aas.12138
https://doi.org/10.1016/j.apacoust.2021.108485
https://doi.org/10.1016/j.jcrc.2013.06.006
https://doi.org/10.3389/fmed.2022.836203
https://doi.org/10.1121/1.4868367
https://doi.org/10.21437/interspeech.2014-545
https://doi.org/10.1121/1.4962276
https://doi.org/10.20944/PREPRINTS201807.0588.V1
https://doi.org/10.3390/jsan10040072
https://doi.org/10.1109/ICASSP.2017.7952261
https://doi.org/10.1109/ICASSP.2017.7952132
https://doi.org/10.3390/s22239038

	Assessing the Acoustic Noise in Intensive Care Units via Deep Learning Technique
	Abstract
	1 Introduction
	2 Methods
	2.1 Description of Measurement System
	2.2 ICUs General Environment, System Deployment, and Measurements
	2.3 The Proposed Approach (AEC and Clustering) for Data Analysis
	2.4 Ethical Considerations

	3 Analysis of Recorded Datasets
	3.1 Results Based on Measurements in RICU1
	3.2 Results Based on Measurements in RICU2
	3.3 Results Based on Measurements in NICU

	4 Discussion
	4.1 AEC Model Performance
	4.2 Analysed Results
	4.3 Research Challenges with Limitations

	5 Conclusion and Future Work
	References




