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Abstract
The engineering implementation of the multi-channel active noise control (MCANC) system for turboprop aircraft cabin is
seriously hampered by its enormous computational complexity. This paper proposes the variable-P-sequential-partial-update
filtered-x least mean square (VP-SPUFxLMS) algorithm, which achieves noise reduction performance comparable to that of
the multi-channel FxLMS (MCFxLMS) algorithm while significantly reducing the computational complexity. Additionally,
considering the time-varying nature of the secondary paths in practical applications, the Eriksson online secondary path
modeling (OSPM) method is extended from single-channel to multi-channel, the problems that may be faced when the
method is applied to MCANC systems are analyzed, and an improved alternative online secondary path modeling (AOSPM)
method is proposed to address the above problems, which exhibits great online modeling capabilities without introducing
excessive computational load. Simulation and experiment results validate the noise control performance of the proposed
method, and the ANC experiment has achieved an average reduction of more than 15 dB in the sound pressure level (SPL) of
the four channels, which fully demonstrates its broad engineering application prospects.

Keywords Adaptive filters · Active noise control · Multi-channel FxLMS algorithm · Online secondary path modeling

1 Introduction

In recent years, there has been a growing focus on the com-
fort of air travel, prompting aircraft manufacturers to actively
seek ways to enhance the comfort of flight. Bouwens et al.
[1] have identified several crucial environmental factors that
significantly influence the comfort of passengers in air travel,
including anthropometrics, noise, odors, climate, vibrations,
and light, ranked in descending order of importance. A short
test flight study with 94 participants revealed that noise was
mentioned as a major contributor to discomfort by over 91%
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of the participants [2]. Notably, among the various types of
aircraft used for passenger transportation, turboprop aircraft
face a particularly severe noise problem. Consequently, it
becomes imperative to find an effective solution to the prob-
lem of cabin noise in turboprop aircraft.

Turboprop noise is the main noise source of turboprop air-
craft, characterized by a typical spectrum consisting of line
spectrumnoise superimposed on a broadband noise base. The
main energy is distributed on the blade pass frequency (BPF)
and its harmonic components, usually not exceeding 500 Hz.
There are two main methods for noise control: passive noise
control (PNC), which utilizes acoustic materials and struc-
tures to convert noise energy into thermal energy, such as
sound insulation and vibration isolation, and ANC, which
applies the superposition principle to counteract the noise by
emitting sound waves with the same amplitude as the noise
but with the opposite phase from a secondary sound source.
PNC technology, due to its inherent principles, exhibits lim-
ited effectiveness in addressing low-frequency noise with
longer wavelengths. Conversely, ANC method has proven
to be effective in suppressing low-frequency noise, while
also offering the advantages of smaller system volumes and
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weights [3–5]. Therefore, for noise control in the cabin of
turboprop aircraft, the ANC method is a superior choice.

As soon as the ANCmethod was proposed, it was applied
to the cabin of turboprop aircraft. Nelson and Elliott from
the University of Southampton in the UK conducted ANC
flight experiments on the cabin of the BAE748 twin pro-
peller aircraft in the early 1990s. The experiment used 32
error microphones to collect sound signals, and 16 speakers
were employed as secondary sound sources to control the
noise generated by the turboprop. The experiment achieved
good results: the cabin noise was measured at the BPF of
the turboprop at 88 Hz and its two harmonic frequencies at
176 Hz and 264 Hz being reduced by 13 dB, 9 dB, and 6 dB,
respectively [6, 7]. On this basis, ANC was soon applied to
turboprop aircrafts, such asDornier 328,ATR42/47,A400M,
Q4000, etc., some of which are still in service today [8].
However, decades later, the commercial application of ANC
technology to aircraft has not expanded, which is mainly due
to the fact that in order to effectively reduce noise in the cabin
of airplanes with large space, it is necessary to expand the
scale of the ANC system, and the computational complexity
of the system increases drastically, which leads to difficulties
in the implementation of ANC algorithms.

To alleviate the computational complexity, numerous
algorithms have been proposed to reduce the computations
involved in the adaptation process [9–15]. The block FxLMS
algorithm reduces the update frequency of filter weight
coefficients [16–19], while the frequency-domain FxLMS
algorithm uses fast Fourier transform (FFT) to convert the
convolution operation in the time domain into the multi-
plication operation in the frequency domain [20, 21]. Both
methods can effectively reduce the amount of calculation, but
the introduction of latency deteriorates the performance of
ANC system. The sign-FxLMS algorithm reduces multipli-
cations in theweight update equation by replacing the filtered
reference value with its sign, but this improvement comes
at the cost of slower convergence and compromised noise
reduction performance [22]. The block coordinate descent
MCFxLMS algorithm takes each control filter as a block
coordinate group to update alternatively during the control
progress, resulting in a substantial reduction in computational
load but poor convergence performance [23]. The partial-
updateFxLMSalgorithm (PUFxLMS)updates only a portion
of the filter weight coefficients within one iteration cycle and
it also suffers from slow convergence [24, 25].

These algorithms demonstrate various trade-offs between
computational complexity and noise control performance.
To strike a balance, this paper proposes the Variable-P-
Sequential-Partial-Update FxLMS (VP-SPUFxLMS) algo-
rithm, which aims to update more control filter weight
coefficients during the early stages of system operation and
fewer weights as the system converges. By dynamically
adjusting the update strategy according to the state of the

system, the VP-SPUFxLMS algorithm achieves a favorable
trade-off between computational complexity and noise con-
trol performance.

In addition, accurate modeling of the secondary path is
crucial for the implementation of the FxLMS algorithm and
its variations, as they rely on the estimation of the secondary
path to facilitate the updating of adaptive noise control fil-
ters [26, 27]. Typically, a secondary path includes a sequence
of components, such as a DAC (digital-to-analog converter),
reconstruction (lowpass) filter, power amplifier, loudspeaker,
acoustic path, error sensor, preamplifier, anti-aliasing (low
pass) filter, and an ADC (analog-to-digital converter) [28].
In practicalANC implementations, the secondary path is time
varying, necessitating online modeling to ensure the perfor-
mance of ANC systems based on FxLMS-type algorithms.

Eriksson [29] proposed the OSPMmethod in 1989, where
he used additional random white noise as the modeling sig-
nal to model the secondary path online. This method has a
drawback where the secondary modeling signal and the con-
trol signal can interfere with each other, leading to potential
system instability, and the algorithm may diverge in severe
cases. To address the limitation,Ming et al. [30, 31] proposed
a cross-update secondary channel modeling method using an
additional filter, effectively eliminating interactions between
the noise active control and the secondary path modeling
sessions. Akhtar [32, 33] introduced the variable step size
LMS algorithm and proposed a method for continuous con-
trol of additional random white noise power, which serves to
mitigate the effect of the secondary modeling signal on the
noise active control session. Taking advantage of fractional
signal processing, Aslam et al. [34] developed a new adap-
tive procedure using a multidirectional step size strategy in
fractional LMS algorithm and applied it to weight adaptation
of modeling filters, which demonstrates distinct advantages
in terms of model accuracy and convergence rate. Ma et al.
[35] used a decoupling filter consisting of multiple band-
pass filters to separate the broadband noise component from
the narrowband noise component for narrowband ANC. The
remaining sinusoidal noise from the linear prediction filter
output is used to update the controller and scale the auxiliary
white Gaussian noise, while the linear prediction filter error
signal is used as the desired signal for the OSPM subsystem.
This approach effectively minimizes the coupling between
the controller and the OSPM subsystem.

In fact, the current practical application of ANC systems
rarely employs online modeling method. There are several
challenges when applying the online modeling method to
MCANCsystems, including the coupling between theOSPM
filters and the control filters, interchannel coupling effect,
and the introduction of enormous computational complexity.
This paper introduces a method that alternately updates the
secondary paths corresponding to each group of secondary
sources, effectively addressing these issues. Table 1 provides
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Table 1 Abbreviations used in this paper

Abbreviations Expansion

1 MCANC Multi-channel ANC

2 MCFxLMS Multi-channel filtered-x LMS

3 OSPM Online secondary path modeling

4 PUFxLMS Partial-update FxLMS

5 SPUFxLMS Sequential-partial-update FxLMS

6 VP-SPUFxLMS Variable-P-sequential-partial-update
FxLMS

7 AOSPM Alternative online secondary path
modeling

Fig. 1 Diagram of MCANC system

the abbreviations used in this paper along with their counter-
parts.

The sections are organized as follows: Section 2 describes
the VP-SPUFxLMS algorithm. The proposed online sec-
ondary path modeling method is presented in Sect. 3. The
computational complexity analysis is given in Sect. 4. Sec-
tions 5 and 6 exhibit the simulation and real-time experiment
results of the proposed method, respectively. Finally, Sect. 7
gives the concluding remarks.

2 Variable-P-Sequential-Partial-Update
FxLMS (VP-SPUFxLMS) Algorithm

It is assumed that theMCANC system consists of I reference
microphones, J secondary sources, andK errormicrophones,
as shown in Fig. 1. There is a primary path between each ref-
erence microphone and each error microphone, resulting in
a total of IK secondary paths, where Pik denotes the pri-
mary path between the ith reference microphone and the
kth error microphone. Correspondingly, there is also a sec-
ondary path between each secondary source and each error
microphone, resulting in a total of JK secondary paths. The
secondary path between the jth secondary source and the kth

error microphone is denoted as S jk(n), and̂S jk(n) represents
the secondary path modeling estimation of S jk(n), where n
represents the time.

The ith reference signal vector is denoted by
xi (n) � [xi (n)xi (n − 1) · · · xi (n − L + 1)]T , and
W i j (n) � [wi j1(n)wi j2(n) · · ·wi j L(n)]T represents the
adaptive filter weight vector corresponding to the ith ref-
erence signal and the jth speaker with the length of L,
where T is the transpose operation. The cost function of the
MCFxLMS algorithm is the sum of the mean squares of the
K error signals, as shown below

J (n) �
K

∑

k�1

E
[

e2k (n)
]

(1)

Actually, it is impossible to record the error signal data at
each moment, so the objective function is usually replaced
by the sum of the squares of the instantaneous errors [36]:

J (n) �
K

∑

k�1

e2k (n) (2)

where ek(n) represents the error signal captured by the kth
error microphone, which can be expressed as:

ek(n) � dk(n) −
J

∑

j�1

y j (n) ∗ S jk(n) (3)

where * is the linear convolution operator. y j (n) �
[y j (n)y j (n − 1) · · · y j (n − M + 1)]T indicates the output
signal of the jth secondary sourcewith the length ofM, which
can be expressed as:

y j (n) �
I

∑

i�1

WT
i j (n) • xi (n) (4)

By substituting (3) and (4) into (1), the gradient of (1) in
the terms of W i j (n) can be derived as:

∇i j J (n) � −2
K

∑

k�1

ek(n) • [xi (n) ∗ S jk(n)] (5)

The adaptive filterweight coefficients get updated byLMS
algorithm as

W i j (n + 1) � W i j (n) + 2μ
K

∑

k�1

ek(n) • [xi (n) ∗ S jk(n)]

(6)

where μ stands for the step size. Since the secondary path is
unknown, its modeling estimation result̂S jk(n) is used as a
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substitute in the calculations. Note that the filtered-x signal
is x

′
i jk(n) � xi (n)∗̂S jk(n), then Eq. (6) can be rewritten as:

W i j (n + 1) � W i j (n) + 2μ
K

∑

k�1

ek(n) • x
′
i jk(n) (7)

When the number of channels and the length of the control
filters increase, the computational burden of the MCFxLMS
algorithm increases rapidly, which poses a significant chal-
lenge to the real-time implementation of the algorithm.
To tackle this challenge, the SPU-MCFxLMS algorithm is
introduced, based on the core concept of assuming grad-
ual changes in the statistical characteristics of the reference
signal. It divides the weight coefficients of the control fil-
ter into P equal parts and updates the corresponding subset
of coefficients at each sampling cycle while leaving the
remaining coefficients unchanged. As the number of itera-
tions increases, all weight coefficients are updated after P
iterations. The weight coefficients update equation of the
algorithm can be expressed as:

Wi jl(n + 1)

�
⎧

⎨

⎩

Wi jl(n) + 2μ
K
∑

k�1
ek(n) · xi jk ′(n − l), (n − l)%P � 0

Wi jl(n), otherwise
(8)

where % represents the remainder operation, and l repre-
sents the lth element in the control filter weight coefficient
array. From (8), it can be observed that the algorithm does
not need to calculate the filtered-x signal at each iteration,
but only needs to recalculate the new filtered-x signal every
P iterations. It is worth noting that this algorithm not only
reduces the computational complexity of the weight coeffi-
cient updating process, but also reduces the computational
complexity of the filtered-x calculation, since it is no longer
necessary to compute the corresponding filtered-x values for
theweight coefficients that havenot beenupdated.As a result,
the SPU-MCFxLMS algorithm provides a significant reduc-
tion in computation.

However, compared to the MCFxLMS algorithm, the
SPU-MCFxLMS algorithm requires more time to complete
a full update of all weight coefficients, and the weight coef-
ficients are not entirely up-to-date at each moment, which
results in slower convergence speed and a delayed response
to external changes [24]. Specifically, the larger the P-value,
the fewer the weight coefficients updated in each iteration,
the slower the convergence speed; the smaller the P-value,
themore theweight coefficients updated in each iteration, the
faster the convergence speed. To solve this problem, the SPU-
MCFxLMS algorithm is improved by updating more weight

coefficients, or even all of them, at the beginning of conver-
gence and gradually updating fewer weight coefficients as
the algorithm stabilizes. The value of P, which determines
how many weight coefficients are updated, is calculated as
follows:

P(n) � floor[ρ(n)Pmin + (1 − ρ(n))Pmax] (9)

where floor denotes the floor operation, Pmin and Pmax can
be determined by experiments, as long as their values do not
cause the system to diverge, and ρ(n) is determined by the
power of the error signal ek(n) and the output signal y j (n) as
follows:

ρ(n) � Pe(n)/(Pe(n) + Py(n)) (10)

It is evident that the range of ρ(n) is from 0 to 1. The
calculation of Pe(n) and Py(n) is smoothed to mitigate the
interference of external noise, particularly impulse noise.

Pe(n) � λPe(n − 1) + (1 − λ)
K

∑

k�1

e2k (n) (11)

Py(n) � λPy(n − 1) + (1 − λ)
J

∑

j�1

y2j (n) (12)

whereλ is the forgetting factor and typically close to 1, which
determines the extent to which the previous power value is
considered in the current increment.

Actually, ρ(n) can be approximated as the ratio of the
power of error signal power ek(n) to the power of primary
noise signal dk(n), since the power of dk(n) is nearly equal
to the sum of the power of ek(n) and yk(n). Therefore, the
adjustment of P can be seen as being based on the amount of
reduction in noise power. When the system converges, ρ(n)

is close to 0 and P is close to its maximum value, while when
the residual noise is high, ρ(n) is close to 1 and P is close
to its minimum value. By dynamically adjusting the value
of P, the proposed algorithm not only enhances convergence
performance but also ensures a significant reduction in com-
putational complexity.

3 Alternative Online Secondary Path
Modeling (AOSPM)Method

The offlinemodeling approach estimates the secondary paths
before the system starts, and once the results are imported
into the control system, the model of the secondary paths
will remain constant throughout the control process. How-
ever, when there are modeling errors, the FxLMS algorithm
converges to a biased solution, which is inevitable in prac-
tical applications because the secondary paths are subject
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Fig. 2 Block diagram of Eriksson’s method

to constant changes that can be attributed to factors such
as component aging, thermal variations, and environmental
modifications [37].

The presence of modeling errors will lead to inaccu-
rate updates of the control filter weight coefficients, thereby
affecting the performance of the ANC system and leading to
control failure in more severe cases [26]. OSPM is preferred
to solve the problem. The fundamental method for ANC sys-
tems with OSPM was proposed by Eriksson et al. [29], as
shown in Fig. 2.

Eriksson introduces auxiliary white noise and another
adaptive filter for secondary path modeling. The error sig-
nal e(n) comprises auxiliary noise filtered by the secondary
path and the residual noise of the ANC system, where the
auxiliary noise cannot be canceled out. To enhance the mod-
eling accuracy, it is necessary to increase the energy of white
noise. However, the error signal used to update the control
filter coefficients contains this component, resulting in a devi-
ation in the direction of coefficient updating and subsequently
leading to a decline in control performance. In addition,when
the OSPM is extended toMCANC, there is not only coupling
between the OSPM filters and the control filters but also cou-
pling between the different secondary paths. Actually, this
cross-coupling effect occurs for both online and offline mod-
eling. As an example, a 1 × 2 × 2 ANC system is used to
briefly illustrate the cause of the problem, as shown in Fig. 3.

Define the error component attributed to the original noise
as

ep1(n) � d1(n) − y1(n) ∗ S11(n) − y2(n) ∗ S21(n) (13)

The control error and the modeling error can be expressed
as follows:

e1(n) � ep1(n) + v(n) ∗ S11(n) + v(n) ∗ S21(n) (14)

(15)

f1 (n) � ep1 (n) + v (n) ∗ (S11 (n) −̂S11(n))

+ v(n) ∗ (S21 (n) −̂S21(n))

Fig. 3 Secondary path modeling for a 1 × 2 × 2 ANC system

where v(n) represents zero-mean white noise that is uncor-
related with the reference signal x(n). The coefficients of the
modeling filter are updated by the LMS algorithm, which can
be expressed as follows:

Ŝ11(n + 1) � Ŝ11(n) + μsv(n) f1(n) � Ŝ11(n) + μsv(n)

×
[

ep1(n) + v(n)∗
(

S11(n) − Ŝ11(n)
)

+v(n)∗
(

S21(n) − Ŝ21(n)
)]

(16)

Ideally, the LMS algorithm can accurately estimate the
secondary paths S11(n) and S21(n) that can be represented
as

S11(n) � ̂S11(n) + μsv(n)
[

v(n) ∗ (

S11(n) −̂S11(n)
)]

(17)

S21(n) � ̂S21(n) + μsv(n)
[

v(n) ∗ (

S21(n) −̂S21(n)
)]

(18)

By substituting (17) and (18) into (16),̂S11(n + 1) can be
rewritten as:

̂S11(n + 1) � S11(n) +
(

S21(n) −̂S21(n)
)

+ μsv(n)ep1(n)

(19)

Since (n) is uncorrelatedwith (n), and ep1(n) is also uncor-
related with v(n), the LMS solution will not be influenced
by ep1(n). In Eq. (19), ̂S11(n) will converge to S11(n) +
(

(S21(n) −̂S21(n)
)

instead of the expected value S11(n).
When the number of channels increases, this coupling effect
will be more serious, and the accuracy of modeling will fur-
ther decrease.

Furthermore, the additional computational complexity
associatedwithOSPM is often considered unacceptable. The
number of secondary paths is determined by both the number
of secondary sources and the number of error signals. As the
scale ofMCANC systems expands from 1× 2× 2 to 1× 4×
4, the number of secondary paths increases from 4 to 16, indi-
cating that online modeling necessitates 16 adaptive filters,
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Fig. 4 The proposed secondary path modeling strategy (A group con-
tains a secondary source)

while the number of control filters is only 4. In practice, the
length of the secondary path model is often longer than that
of the control filter, resulting in the computational burden of
online modeling frequently exceeding that of the active con-
trol part, which severely increases the overall computational
load of the MCANC system.

To address these problems, this paper proposes the
AOSPM method, which employs the key strategy of group-
ing several secondary sources and alternately updating the
secondary path models corresponding to each group online.
Figure 4 provides an illustration of the modeling process.

The specific process of this method is as follows: Firstly,
the system is turned on, and the first group of secondary
sources emits white noise to model its corresponding sec-
ondary paths. After a certain duration, the first group ceases
emitting white noise, and the next group emits white noise
to model the corresponding secondary paths, and then, the
process is repeated. It can be summarized as follows:

Ŝ jk(n + 1) �
{

Ŝ jk(n) + μsv(n) fk(n), j ∈ group(n)

Ŝ jk(n), others
(20)

where group(n) represents the group of secondary sources
that should emit white noise to model the corresponding
secondary paths at time n. The duration of modeling for
each group can be determined based on preliminary exper-
iments. The principle of grouping secondary sources is to
minimize the mutual interference of white noise emitted by
the secondary sources in the group at the error sensors, which
is mainly achieved by selecting secondary sources that are

positioned at a considerable distance from each other. This
method attenuates or even directly eliminates (when each
group contains only one secondary source) the mutual cou-
pling between secondary paths within the group and greatly
reduces the computational complexity.

4 Computational Complexity Analysis

The proposed algorithm and secondary path modeling
method, along with a detailed analysis of their computa-
tional complexity per iteration, are summarized in Table 2.
Assuming that the MCANC system has I reference sensors,
J secondary sources, and K error sensors, the length of the
control filters is L, the length of the secondary path models
is M, the partial update coefficient is P, and the secondary
sources are divided intoG groups. The calculations involving
’%’ and ’∈’ can be accomplished using conditional state-
ments without additional calculation, and the computational
complexity of division and conditional statements is not con-
sidered because they account for a small percentage.

In order to intuitively compare the computational com-
plexity of these methods, Fig. 5 shows the computational
complexity of the MCANC system with a scale of 1 × 16 ×
16, where I � 1, J � 16, K � 16, L � 128, M � 128, P �
4, G � 8.

It is evident that the proposed method, which directly
reduces the computational complexity of the key steps: calcu-
lating x

′
i jk , updatingWi jl , calculating v

′
jk , and updatinĝS jk ,

greatly reduces the computational complexity of the system
by nearly several times. In addition, the sustained large value
of P after system stabilization contributes to an even lower
computational load, which is advantageous for maintaining
low power consumption during the long-term operation of
the ANC system. This prevents excessive heat generation in
the hardware, which could result in performance degradation
and further cause the real-time requirements of the algorithm
to be unsatisfied.

5 Simulation Results

In this section, simulations were conducted to evaluate the
performance of the proposed method. The scale of the sim-
ulated MCANC system is 1 × 2 × 2, and its two primary
paths are shown in Fig. 6. The sampling frequency for all
simulations is 5 kHz and the primary and secondary paths
are the same.

A certain type of turboprop aircraft adopts a dual turbo-
prop engine, and its noise energy is primarily concentrated
in the blade passing frequency of 108 Hz and its first- and
second-order harmonic components of 216 Hz and 324 Hz.
As long as these frequencies of noise can be controlled, the
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Table 2 Algorithm description
and detailed computational
complexity analysis of the
proposed method, MCFxLMS
and MCFxLMS with OSPM
(Eriksson)

Calculation step Multiplications ( ×) Additions ( +)

x
′
i jk(n) � xi (n) ∗̂S jk (n) I J KM/P I J K (M − 1)/P

W i j (n + 1) �
W i j (n)+μ

∑K
k�1 ek(n)•x ′

i jk (n)

I J K L/P + K I J K L/P

y j (n) �
∑I

i�1 W
T
i j (n) • xi (n) + v j (n)

IJ L J (I L − 1) + J/G

̂S jk(n + 1) �
̂S jk(n) + μsv(n) fk(n)

J KM/G + K JKM/G

fk(n) � ek(n) − v
′
jk(n) 0 K/G

v
′
jk(n) � v j (n) ∗̂S jk (n) J KM/G JK (M − 1)/G

P(n) � floor[ρ(n)Pmin +
(1 − ρ(n))Pmax]

2 2

ρ(n) � Pe(n)/(Pe(n) + Py(n)) 0 1

Pe(n) �
λPe(n − 1)+(1−λ)

∑K
k�1 e

2
k (n)

K + 2 K + 1

Py(n) �
λPy(n − 1)+(1−λ)

∑J
j�1 y

2
j (n)

J + 2 J + 1

Total I J KM+I J K L
P + I J L+ 2J KM

G +3K + J +6 I J K (L+M−1)
P + I J L + K +

J+K+J K (2M−1)
G + 5

MCFxLMS I J KM + I J K L + K + I J L I J K (L +M − 1) + I J L − J

MCFxLMS with OSPM
(Eriksson)

I J KM + I J K L + I J L +2J KM +2K I J K (L + M − 1) + I J L −
J + K + J KM

Fig. 5 The computational
complexity of the MCANC
system with a scale of 1 × 16 ×
16, where I � 1, J � 16, K � 16,
L � 128,M � 128, P � 4, G � 8

overall noise level can be significantly reduced. Therefore,
the primary noise for simulation consists mainly of the above
three specified frequencies with a certain amount of white
noise superimposed to approximate reality, the spectrum of
which can be seen in Fig. 11.

Three sets of simulations were used to compare and evalu-
ate the performance of theVP-SPUFxLMSalgorithm and the

AOSPM method. In Case 1, the convergence speed between
theVP-SPUFxLMS algorithm and theMCFxLMS algorithm
was compared, and the ability of the adaptation strategy of
P to handle sudden changes in noise was also verified; In
Case 2, the AOSPM method was compared with the OSPM
(Eriksson) method; in Case 3, the reduction in sound pres-
sure level after convergence of the MCFxLMS algorithm,
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Fig. 6 Primary paths

Fig. 7 The waveforms of the MCFxLMS algorithm and the VP-SPUMCFxLMS algorithm running for 2 s
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Fig. 8 The variation of P over
time

Fig. 9 Modeling error. Sij
represents the secondary path
from speaker i to error sensorj
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Fig. 10 The waveform of the
OSPM and AOSPM running for
40 s

the MCFxLMS algorithm with OSPM (Eriksson) and the
VP-SPUFxLMS algorithm with AOSPM was analyzed.

5.1 Case 1

In this case, it is assumed that all the estimates of the sec-
ondary paths are accurate. The step size μ is set to 0.0001;
Pmin and Pmax are set to 2 and 16, respectively. The for-
getting factor λ is selected as 0.997. Figure 7 shows the
time-domain waveforms of the VP-SPUFxLMS algorithm
and the MCFxLMS algorithm running for 2 s.

From Fig. 7a, b, it can be observed that the VP-
SPUFxLMS algorithm has a slightly slower convergence
speed compared to the MCFxLMS algorithm, but both algo-
rithms can reach a stable state within two seconds. The
computational complexity of the VP-SPUFxLMS algorithm
can be roughly estimated by observing the value of P, and
the variation of P is depicted in Fig. 8a.

In Fig. 8b, the variation ofP is shown when a sudden
external disturbance occurs which is simulated by adding
a square wave with an amplitude of + 5 to the error sig-
nals from iterations 5001 to 5100. It can be seen that P
is not significantly affected by this disturbance; its value
briefly decreases from 14 to 11 and then increases back to 14
immediately. Therefore, the P adaptation strategy of the VP-
SPUFxLMSalgorithm is effective in resisting strong external
noise interference, ensuring low computational load during

system convergence, and enabling sustained operation with
low power consumption.

5.2 Case 2

In this case, the onlinemodeling performance ofAOSPMand
OSPM is compared. The initial values of the secondary path
models are set to 0, and it is assumed that the secondary paths
undergo changes after 20,0000 iterations. The step sizes μ

and μs are set to 0.00001 and 0.01, respectively. The white
noise with a variance of 0.005 is used for secondary path
modeling, and the switching time of AOSPM is 0.1 s. The
relative modeling error is defined as (21), its variation curve
is shown in Fig. 9, and the convergence of two error signals
can be seen in Fig. 10.

�S � 10log10

{

∑M
i�1 [si (n) − ŝi (n)]2
∑M

i�1 [si (n)]2

}

(21)

From the above results, it is evident that both online
modeling strategies successfully completed the modeling
of secondary paths and effectively track the changes in
secondary paths, and AOSPM exhibited a slightly slower
convergence speed compared to OSPM. However, in prac-
tice, AOSPM benefits from not considering the coupling
issue, which allows it to utilize white noise with a higher
energy for modeling, potentially enhancing its convergence
speed.
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Fig. 11 Power spectrums of the two error signals

Fig. 12 Experimental platform

5.3 Case 3

In this case, the steady-state performance of the MCFxLMS
algorithm, the MCFxLMS algorithm with OSPM, and the
proposed method are compared. It is assumed that the
MCFxLMS algorithm has accurately estimated secondary
path models, while the other two methods start modeling the
secondary paths from 0. The power spectra of the two resid-
ual noises for the three methods are shown in Fig. 11.

It can be seen that all three algorithms successfully
attenuate the primary noise and have similar noise power
spectra. TheMCFxLMS algorithm shows slightly better per-
formance, primarily due to its assumption of an accurately
estimated secondary pathmodel, which is impossible in prac-
tice. In contrast, the other two methods introduce additional
white noise, which affects the noise power spectrum.

In summary, with greatly reduced computational com-
plexity, the proposed method offers a convergence speed and
steady-state performance that is close to theMCFxLMSalgo-
rithm,while it also demonstrates comparable capability to the
OSPM method in terms of secondary path modeling.

6 Experimental Results

To further validate the performance of the proposed method
in practical applications, a 1 × 4 × 4 MCANC system
was constructed based on the NI-PXI platform, as shown
in Fig. 12. The controller is PXIe-7862, which connects
16 analog input channels and 8 analog output channels
directly to the Kintex-7325 T FPGA, each with a dedicated
analog-to-digital converter (ADC) for independent timing
and triggering. All algorithms have been coded by the FPGA
module in the LabVIEW 2020 software.

The step sizesμ andμs are set to 0.00001 and0.01, respec-
tively, Pmin and Pmax are set to 2 and 16, respectively, the
forgetting factor λ is selected as 0.997, and the sampling
frequency is 5 kHz. The length of control filters and the sec-
ondary path modeling filters are both 128 taps. The primary
noise is generated as a combination of multiple frequency
components, including the frequencies of 108 Hz, 216 Hz,
and 324 Hz, which is consistent with the simulation. Only
model the secondary paths corresponding to one secondary
source at a time, and the switching time ofAOSPM is 2 s. The
time-domainwaveforms of theMCANC system based on the
MCFxLMS, MCFxLMS with OSPM, and VP-SPUFxLMS
with AOSPM in a steady state are shown in Fig. 13.
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Fig. 13 The waveforms of four
error signals, when MCANC,
based on the MCFxLMS,
MCFxLMS with OSPM, and
VP-SPUMCFxLMS with
AOSPM is in steady-state

(a) Without control

(b) MCFxLMS

(c) MCFxLMS with OSPM

(d) VP-SPUMCFxLMS with AOSPM
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Table 3 Total sound
pressure-level comparison Position 1 (dB) 2 (dB) 3 (dB) 4 (dB) Average noise reduction

(dB)

Control off 89.02 86.64 88.17 86.18

MCFxLMS 72.89 66.62 71.57 68.79 17.58

MCFxLMS with OSPM 80.69 79.76 77.67 75.65 9.06

VP-SPUMCFxLMS with
AOSPM

75.24 68.04 72.61 73.82 15.075

In the experiment, it was found that OSPM tends to
diverge when the energy of white noise is low, necessitat-
ing an increase in the white noise energy, which will lead to
a deterioration of the overall noise reduction performance.
On the other hand, AOSPM, which emits white noise from
only one secondary sound source at a time, had a relatively
smaller impact on the final noise reduction performance.
From Fig. 13, it can be observed that all three methods sig-
nificantly reduce the amplitude of the waveforms compared
to the uncontrolled waveforms. It is noteworthy that in the
OSPM, the waveforms tend to be rougher with higher ampli-
tude, while in the AOSPM this phenomenon is only more
pronounced in the waveform of the error noise 4, which is
closest to the secondary source emitting white noise. The
steady-state performance of the three methods also demon-
strates similar characteristics, as illustrated in Table 3 and
Fig. 14. The noise reduction performance of MCFxLMS
with OSPM is the poorest, with an average noise reduc-
tion level of 9.06 dB at the four positions. On the other
hand, VP-SPUFxLMS with AOSPM and MCFxLMS show
similar performance, with average noise reduction levels of
17.58 dB and 15.075 dB, respectively. Among the four posi-
tions, AOSPM only exhibits slightly inferior performance at
position 4, where the fourth speaker emits white noise, while
achieving almost the same level of noise reduction levels at
the other positions.

7 Conclusion

This paper proposed the VP-SPUFxLMS algorithm, which
significantly reduces the computational complexity of the
MCANC system while maintaining similar noise reduction
performance to the traditional MCFxLMS algorithm. Addi-
tionally, the AOSPM method was introduced to overcome
the challenges encountered in applying online modeling in
MCANC systems. This method avoids excessive compu-
tational burden, mitigates the coupling between secondary
paths modeling, and reduces the influence of modeling white
noise on residual noise. The simulation results validated the
performance of the proposed method. Finally, a 1 × 4 ×
4 MCANC system was built, and the results showed excel-
lent performance with an average total sound pressure level
reduction of 15 dB at the four test positions, which fur-
ther demonstrates the outstanding potential for the proposed
method in engineering applications.
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Fig. 14 The 1/3 octave power
spectrum the ANC control
results, when ANC, based on the
MCFxLMS, MCFxLMS with
OSPM, and VP-SPUMCFxLMS
with AOSPM, is turned off and
on
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