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Abstract
Machine health condition monitoring is evidently a crucial challenge nowadays. Unscheduled breakdowns increase operat-
ing costs due to repairs and production losses. Scheduled maintenance implies taking the risk of replacing fully operational 
components. Human expertise is a solution for an outstanding expertise but at a high cost and for a limited quantity of data 
only, the analysis being time-consuming. Industry 4.0 and digital factory offer many alternatives to human monitoring. 
Time, cost and skills are the real stakes. The key point is how to automate each part of the process knowing that each one is 
valuable. Leaving aside scheduled maintenance, this paper copes with condition-based preventive maintenance and focuses 
on one fundamental step: the signal processing. After a brief overview of this specific area in which numerous technologies 
already exist, this paper argues for an automated signal processing at an expert level. The objective is to monitor a system 
over days, weeks, or years with as great accuracy as a human expert, and even better in regard to data investigation and 
analysis efficiency. After a data validation step most often ignored, any multimodal signal (vibration, current, acoustic, …) 
is processed over its entire frequency band in view of identifying all harmonic families and their sidebands. Sophisticated 
processing such as filtering and demodulation creates relevant features describing the fine complex structures of each spec-
trum. A time–frequency feature tracking constructs trends over time to not only detect a failure but also to characterize and 
localize it. Such an automated expert-level processing is a way to raise alarms with a reduced false alarm probability.

Keywords  Automated processing · Health monitoring · Vibration · Fault detection · Data validation · Feature trend

1  Introduction

Machine health condition monitoring is evidently a crucial 
challenge nowadays. Unscheduled breakdowns and down-
time increase operating costs due to repairs and production 
losses. Conversely, scheduled maintenance implies taking 
the risk of replacing fully operational components while 
possible failures can still occur between inspections. To go 
further, condition-based maintenance allows action before 
a failure and the adaptation of the maintenance plan to the 
current state of the machine.

As illustrated in Fig. 1, condition-based preventive main-
tenance or condition-based maintenance is part of preven-
tive maintenance with the aim of determining the condition 
of a system while in operation. It opens the door to asset 

reliability. Analyzing data from sensors located close to 
critical components is a crucial step in this process. Never-
theless, the way to do it is often complex. Human expertise 
is a solution for an outstanding expertise but at a high cost 
and for limited data only. Nowadays, industry 4.0 and digital 
factory offer many alternatives to human monitoring. Time, 
cost and skills are the real stakes. The key point is how to 
automate each step of the process knowing that each one 
is valuable. So, leaving aside scheduled maintenance, this 
paper copes with condition-based preventive maintenance 
and focuses on one of its fundamental steps: the signal pro-
cessing. The question is then how to automate this step? 
Section 2 will list some of the papers dealing with this sub-
ject, looking at both pioneered and more recent publications 
to evaluate the state of the art. Section 3 will highlight an 
approach that aims at automating the whole signal process-
ing process while obtaining the same relevant results as a 
human expert. The objective is to automatically monitor a 
system over days, weeks, or years with as great accuracy as a 
human expert, and even better in regard to data investigation 
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and analysis efficiency Sect. 4 will conclude by drawing 
perspectives.

2 � Brief Assessment of Automated Health 
Monitoring

Early twentieth century, the monitoring of a machine relied 
solely on a sharp human ear. The 1950s saw the arrival of 
the first vibration meter. In the 1970s, the notion of a sig-
nature of a rotating machine signs the birth of condition 
monitoring accelerated by digital signal processing. A fast 
growth from the 1990s first reached the first power genera-
tion and chemical industries, and then all other fields such 
as mining industries, hydroelectric power plants and more 
recently wind turbines.

Without being exhaustive, this section will highlight a 
few references over the past time to grasp the innovation 
trend in automated signal processing. The aim is to briefly 
review some methods proposed to provide automated moni-
toring. In this context, machine learning is an often-cited 
approach for managing automated surveillance. This par-
ticular area of research is not considered in this paper, which 
will concentrate on automated signal processing only, know-
ing that the signal processing can be combined with machine 
learning afterwards.

First, let us see how the words ‘automated’, ‘automatic’ or 
‘autonomous’ are present in the literature. Curiously, these 
words are more frequent for structure monitoring than for 
machine monitoring. Unlike the word ‘automated’, the word 
‘automatic’ is essentially attached to many machine learn-
ing approaches, and obviously to many automatic feature 
selections. Let us cite only one reference. In a Danish patent 
[1], independently of the proposed method, there is a clear 
statement about the difficulty of training a system from a 

knowledge base due to many different types of faults. To this 
remark can be added many different types of components 
and many different types of operating conditions.

Limiting itself to health monitoring, the oldest reference 
dates back to 1993 in a US patent [2] for automated heli-
copter maintenance monitoring. The system collects and 
processes many types of data such as vibration ones and 
operational ones to detect helicopter faults and proposes 
flight parameters to the pilot in order to aid in the mainte-
nance process.

More recently, a fully automated spectral analysis 
restricted to periodic signals and the estimation of the sig-
nal period has been proposed in [3] in 2003. In addition, an 
automated feature selection approach based on signal statis-
tical properties has been presented in [4] in 2006. Moreo-
ver, an automatic method has been developed in [5] in 2006 
to estimate the shaft angular position without speed sen-
sor to perform a time synchronous averaging. Furthermore, 
in 2010, the authors of [6] used thresholds on short time 
Fourier transformed data to propose an automated detection 
system for gear, gearbox and bearing faults. For a different 
objective, the automaticity can be in the parameter selec-
tion of the related analysis method. Also, in [7] in 2011 
the authors automatically select the mode functions of an 
Empirical Mode Decomposition to diagnose gear faults. 
In the same year, an automatic detection and estimation of 
harmonic components with a threshold selection adapted to 
white noise was published in [8]. In a challenge involving 
several teams in 2017, an interesting conclusion has been 
made in [9] that is completely relevant to the present time: 
‘In this respect, possible directions for future research are 
the automatic removal of large numbers of discrete compo-
nents, the automatic tuning of the envelope spectrum, and 
the automatic recognition of fault signatures in the envelope 
spectrum;’ We are particularly receptive to this conclusion 
and will address this in the following section. More recently, 
in 2020, a model-free method for performing spectral analy-
sis of nonstationary signals is proposed in [10].

Even if this review is not exhaustive, references skip 
quickly from 1993 to 2003. Indeed, finding papers in the 
field of automatic/automated or autonomous analysis is 
rather difficult.

3 � The Context of Automatic Signal Analysis

With a view to monitoring a complex rotating equipment, 
sensors are located on the critical components. An on-board 
acquisition system digitalizes the sensor outputs. This acqui-
sition can be triggered by operational parameters such as 
being within a range of wind speed in a wind turbine for 
example. Data are then transferred to a cloud or a local 
server and are processed manually or automatically. In the 

Fig. 1   Preventive maintenance versus corrective one
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perspective of a top of the range monitoring, continuous 
data acquisition adds sequential new data with processing 
results linked to the previous ones. Figure 2 highlights all 
these necessary steps from the acquisition to the processing. 
This continuous monitoring is a key for an accurate follow-
up of the system state and then the ability to perform earlier 
fault detection.

On the other hand, the large amount of data requires 
extensive processing. Apart from an armada of experts in 
vibration analysis, the automation of the processing cannot 
be overlooked. However, this complete automatic analysis 
is challenging given that it should produce extensive reports 
of high quality, equivalent or even better than the quality 
of a human expert, with a clear view of the truly faulty 
components.

If the reports include the same information as those 
performed by human experts, the operators could act on 
the maintenance plan in due time, and the production will 
increase while reducing the maintenance cost.

Within this objective, the signal processing step can be 
divided into 5 phases, see Fig. 3:

Phase 1: Data validation. This phase is often forgotten, 
whereas it is fundamental to be sure that the data are 
well acquired in good operational conditions without 
sensor problems and without acquisition and commu-
nication troubles, in order to satisfy the properties of 
the following processing.

Phase 2: Data processing. This is the key phase of 
the process. Processing the data while taking the 
data properties into account will make it possible 
to handle the next phase, namely feature extraction, 
in the greatest possible condition. What is the best 
mapping according to the data? Different options are 
possible, for example staying in the time-domain, 
transforming the data into the frequency or quefrency 
domains, or mapping them to the time-frequency or 
the time-scale ones. What is the most suitable pro-
cessing among a panoply of advanced methods such 
as deconvolution, inverse filtering, demodulation, 
and angular resampling?
Phase 3: Feature extraction. This phase is decisive. 
Without a good and appropriate feature extraction, 
the following, whatever its quality, will have no 
validity.
Phase 4: Alarm raising by tracking features over 
time. The alarms identify a meaningful change in one 
or several features indicative of a developing fault.
Phase 5: Diagnosis. This phase reports the health of 
the analyzed system to be transmitted to the operator. 
The established conclusions will then escape from 
the signal processing domain in order to be written 
in concepts adapted to operators in the field of the 
monitored system. This health condition will drive 
the maintenance plan.

4 � One Solution to Automate the Signal 
Processing Step

This section will discuss in details the different phases of 
the signal processing step outlined in the previous section, 
with a greater focus on the data validation and the data 
processing phases.

An important preliminary phase that needs to be taken 
into account is adapting the choice of the sensors and the 
acquisition system to the analyzed system. Answering the 
following list of questions is key to selecting the most 
appropriate sensors and acquisition system:Fig. 2   The schematic principle of an automatic signal analysis

Fig. 3   The 5 phases of the sig-
nal processing step to monitor 
a system
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•	 Which physical variables: vibration, strain, current, volt-
age, speed, displacement, acoustic…?

•	 Which sensors, which adequate frequency band, which 
conditioner, which antialiasing filter, which dimension, 
1D, 2D or 3D?

•	 Which sensor location and how many sensors?
•	 Which periodicity measure?
•	 What are the operational parameters?
•	 Which sampling frequency?
•	 Which measurement duration?

The last two questions should be thought of in agreement 
with the possible failure characteristics. The challenge ahead 
for this acquisition part consists in moving toward a diver-
sity of sensors and a fusion of modalities, toward a relevant 
number of sensors considering their current cost, toward 
3D sensors for a 3D processing, toward smart wireless sen-
sors with more autonomy and more memory capacity. The 
theory will have to link the failure characteristics, geometry 
and kinematics, to the type of sensor and the physical vari-
able measured. For example, bearings in a compressor are 
of small size, work at a high speed and generate vibration 
failures at very high fault frequencies. On the contrary, the 
main bearing of a wind turbine is of big size, works at a very 
low speed and generates vibration failures at very low fault 
frequencies. The acquisition choices are necessarily different 
for these two examples.

4.1 � Phase 1: Data Validation

When the acquisition process is validated and properly set, 
before analyzing the signal whatever the analysis method, it 
is really of importance to check the integrity of the acquisi-
tion. That is the objective of this phase which is frequently 
too often overlooked.

Even after a proper acquisition design, problems occur 
more frequently than expected. They may originate from the 
malfunction of a sensor, an unstuck sensor, an inadequate 
setting of the acquisition system leading to time saturation, 
inadequate quantization, or a violation of the Shannon rule 
implying spectral aliasing. Another major problem is time-
varying systems caused by a variable input such as wind or 
load in a wind turbine or variable operational conditions.

For time-varying systems, at least two approaches can 
be considered.

Specific non-stationary algorithms can be developed to 
track the non-stationarities as in [11] for example. Or else 
well-known efficient stationary methods can be applied on 
stationary parts of the signal if specific algorithms are devel-
oped to spot these stationary time segments. The interest 
of this last approach is strengthened when the algorithm is 
continuously automatic. Hereinafter one approach, presented 
in [12] and [13], is highlighted.

To design a non-stationary detection test, it is necessary 
to go back to the definition of a stationary process. A ran-
dom process is strictly stationary if its probability density 
function is identical regardless of the process realization. 
If the process is assumed to be ergodic, it means its prob-
ability density function and consequently all the moments 
are identical over time. This strict definition explains the 
various definitions of non-stationarity and so the existence 
of several tests, none of them being as strict as the defini-
tion. What matters are clear assumptions linked to the used 
test, which often concerns only moments up to a given 
order. In the context of vibration analysis, a method based 
on moments of order 2 can be used. A natural approach is 
to define such a test in a time–frequency plane where the a 
priori time resolution will mechanically set the minimum 
detection scale of a non-stationary event.

Let x[n] be a discrete time signal of length N and fre-
quency sampling fs. The observation set Lk is a subset of 
ℝ

2 so that

with k the frequency index and �x[n, k] an estimation of the 
time–frequency representation of x[n]. Lk is a cross section 
of �x[n, k] at a constant frequency k. The time–frequency 
estimator can be a spectrogram or a gliding correlogram 
evaluated from a biased autocorrelation estimate. Other 
choices are possible but without interference terms. In the 
following, the particular case of the spectrogram is consid-
ered without loss of generality.

Let us define two hypotheses:

1.	 H0: x[n] = b[n], a stationary Gaussian random process, 
non-white, with zero mean and unknown variance �2[k] , 
Under this hypothesis, for each time segment, and what-
ever the window, �x[n, k] ∼ Γ

(

r

2
, �[k]

)

= p0 [14], a 
Gamma distribution with an equivalent degree of free-
dom r and �[k] a parameter defined as

with varn the normalized variance of �x[n, k] independ-
ent of the signal, determined by the chosen time–fre-
quency estimator and its parameters.

	   Time–frequency points verifying H0 are distributed 
as p0 and belong to a set denoted as Lk

H0
 , a subset of Lk , 

such as

2.	 H1: x[n] is nonstationary. Time–frequency points verify-
ing H1 belong to Lk

H1
 the complement set of Lk

H0
 in Lk.

(1)
L
k =

{

(n, k) ∈ ℝ
2∕∃�x(n, k) for the given k and for all n = 0,… ,N − 1

}

(2)r = 2∕varn, �[k] = 2�2[k]∕r,

(3)
L
k
H0

=
{

(n, k) ∈ L
k∕�x[n, k] = �[k]for the given k

}

,
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Then, at each frequency k, a decision rule between H0 
and H1, is defined as

with �Pfa[k] a threshold set according to a given false alarm 
probability and �b[k] an estimation of the variance �2[k] . 
The noise variance being unknown, the partition of Lk is 
unknown. An iterative algorithm is proposed to apply the 
decision rule (4). See [13] for more details.

If b[n] is added with a stationary deterministic signal d[n] 
with �d(n, k) an estimation of its time–frequency representa-
tion, a variant of H0 denoted H′

0
 , the law of �x[n, k] , denoted 

p′
0
 , is proportional to a noncentral Chi-square variable, 

�2
r
(�[k]) with the same degree of freedom r , noncentrality 

parameter �[k] = r�d[n, k]∕�b[n, k] In this case, the normal-
ized variance denoted varn�[k] is [15],

varn�[k] in (5) is always lower than varn in (2). So, in the 
proposed detection test, if we use the Gamma distribution 
p0 instead of p′

0
 , the true Pfa will be lower but the test is 

still relevant. This remark is noteworthy given it extends H0.
For viewing the test results in a time–frequency plane, the 

elements of 
⋃

k L
k
H1

 , the set gathering all the detected 
time–frequency points, are encoded with values denoted 
I(n, k) equal to 1 and all elements of Lk

H0
 for all k are encoded 

with I(n, k) = 0.
A second test based on the properties of the normalized 

variance is also of interest. Indeed, the Fourier transform 
has nice properties. The normalized variance of a Fourier 
spectrum under H0 is equal to a constant denoted � that is 
determined by the Fourier parameters only, [14]. Under H1, 
the normalized variance is higher than this constant. This 
property is tolerant towards the Gaussian noise assumption.

Then, at each k , a test is defined as,

with the bar above meaning the average over all dates n at 
the given k and γx∕H0

[n, k] the mean of the time–frequency 
elements under H0 only. The threshold � ′ is higher than the 
theoretical value � to take a confidence interval into account. 
This test is able to detect all the nonstationary frequency 
points in a set denoted FH1

.
So finally, the two presented tests are qualified to detect 

the occurrences of nonstationary events in a time–fre-
quency domain represented by 

⋃

k L
k
H1

 for the first test and 

(4)𝛾x[n, k]

H0

≶

H1

𝜆Pfa[k]E
(

𝛾b[k]
)

,

(5)varn�[k] = (2r + 4�[k])∕(r + �[k])2.

(6)
𝛾x[n, k]

2 − 𝛾x∕H0
[n, k]

2

𝛾x∕H0
[n, k]

H1

≶

H0

𝜁 �,

in a frequency domain only represented by FH1
 for the 

second test. These two tests can be complementary for 
some types of non-stationarities, hence the interest of a 
nonstationarity index defined from these two tests. For that 
purpose, 4 quantities are defined as

Nbtime represents the number of columns associated 
to time segments where almost one detection has been 
made by the first test along the frequency axis, Nbfreq is 
the dual, i.e., the number of frequency lines where almost 
one detection has been made along the time axis. To com-
plete the information brought by the second test, Nbnew is 
the number of frequency lines for which the first test has 
made no detection while the second test has pointed out 
a possible non stationarity and Nbwarn is the number of 
frequency lines where the first test has made almost one 
detection (thus being included in Nbfreq), while the second 
test concludes with non-detection.

Finally, a time–frequency index denoted Nonstattf  and 
representing the rate of nonstationarity, is defined as,

A null value means that the signal is stationary with 
respect of the size of the window in the spectrogram. The 
distribution in terms of time and frequency size plotted in 
Fig. 4 shows that the nonstationary index increases quickly 
with the time or frequency dimension. This distribution 
explains the set of possible alarms to manage this index 
also shown in Fig. 4. See [13] for more details about these 
two tests and the definition of the nonstationary index.

With the only a priori of the size of the window in the 
time–frequency estimator, an a priori which sets the size 
of the non-stationary event possible to detect, this index is 
really fruitful in a continuous surveillance where unknown 
problems can surge.

Figure 5 shows results on real-world vibration signals. 
Figure 5a is a vibration signal measured with an acceler-
ometer on a test bench of KAStrion project, a European 
project of the KIC InnoEnergy [16]. The signal duration 
is 40 s and the sampling frequency 25 kHz. The spectro-
gram is computed with a Blackman window over 1.31 s. 
Nonstattf  computed as described previously is equal to 0%. 
This test bench has been designed to simulate a wind tur-
bine and this signal is recorded under a stationary excita-
tion. So, the index value of 0% is coherent with both the 
spectrogram view and the operational conditions.

Figure 5b, c shows results of also two vibration signals 
but this time recorded in a true wind turbine in Arfons 
(France) also during KAStrion project.

(7)

Nbtime =
∑

n

min

�

1,
∑

k

I(n, k)

�

, Nbfreq =
∑

k

min

�

1,
∑

n

I(n, k)

�

,

Nbnew =
∑

k

J(k)

�

1 −min

�

1,
∑

n

I(n, k)

��

, Nbwarn =
∑

k

[1 − J(k)]min

�

1,
∑

n

I(n, k)

�

,

(8)Nonstattf = Nbtime ×
(

Nbfreq + Nbnew − Nbwarn
)

.
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Figure 5b is the analysis of one raw signal, which yields a 
Nonstattf  of 25%. This number is the number of nonstation-
ary time–frequency points expressed in percentage of the 
total number of time–frequency points. The value of 25% 
is very high and indicates that the signal is non-stationary. 
This non-stationarity mainly comes from the wind speed 
variations on the blades. This conclusion is also consistent 
with the time–frequency detection plot and even more with 
the normalized variance plot. Indeed, many frequencies are 
above the threshold, the green line, sign of nonstationarities 
knowing the Fourier spectrum properties.

The interpretation of a global Fourier analysis over the 
full duration of the signal should be done carefully particu-
larly in the frequency bands detected as nonstationary, the 
red points in the time–frequency plot and the frequencies 
whose amplitude are higher than the green threshold in the 
normalized variance spectrum.

The results are identical in both tests which is not always 
the case. This explains why both tests are used for defining 
the time–frequency rate. The context of a wind turbine with 
nonstationary excitation of the wind explains this result.

Figure 5c shows the result after performing an angular 
resampling of the Fig. 5b signal using the instantaneous 
speed signal. Nonstattf  is lowered to 2%, a value acceptable 
for a Fourier analysis. Both time–frequency and normalized 
variance plots show nonstationarities around order 300, that 
is around 8900 Hz. These frequency values correspond to 
the generator and do not cause any concern for mechanical 
fault detection, those faults appearing at much lower fre-
quencies. However, as it is well known, a drawback of the 
angular resampling is the modification it induces to all fre-
quencies independent of, or nonlinearly related to the speed. 
This is the case, in this example, for generator frequencies 
made to appear variable whereas they were constant. It is 

also the case with structural frequencies for which variations 
with the speed source can be nonlinear.

This nonstationary index is of interest in a continuous 
monitoring, as it can be used to select automatically the most 
stationary signals only.

In KAStrion project, this index has also been useful for 
detecting an acquisition problem. Figure 6 shows two sig-
nal sequences measured during the same month, November 
2015, in a wind turbine in Arfons (France). Above the signal 
list is the tracking of the time–frequency index, one value 
corresponding to each signal. Left plot shows the measure-
ment recorded by the sensor located on the main bearing; 
right plot shows the results of the planetary gear sensor. 
The results are edifying. The main bearing sensor presents 
very high nonstationary rates, with a mean of 39% over the 
last month. On the other hand, the planetary gear sensor has 
nonstationary rates with a mean of 12%.

Figure 7 shows a local mean of the nonstationary rate 
tracked over a longer time duration, 6 months for these 2 
sensors. It shows that the main bearing sensor started to 
present meaningful variations in September 2015.

After an onsite visit, the maintenance team has observed 
that the main bearing sensor on the housing was unstuck 
which makes the recorded signals useless from September 
2015. If the angular resampling allows the correction of 
speed variation, it cannot compensate for the shocks on the 
sensor.

With a view of an automatic condition monitoring pro-
cess, a condition-based computation according to the data 
validation should be performed before the signal processing. 
In the previous example, only signals with a generator input 
speed over 1600 rpm and a non-stationary rate below 4% are 
validated for the processing. Under these constraints, and 
before November 2015, when the computer had a problem 

Fig. 4   Distribution of the index 
Nonstat

tf
 in terms of time and 

frequency dimension
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Fig. 5   Time–frequency tests for 3 vibration signals, left plot is the 
spectrogram, middle one is the result of the time–frequency test with 
colored points marking the non-stationary detected points, the right 
curve is the normalized variance with the green line representing the 

threshold � ′ : (a) from KAStrion test-bench, Nonstat
tf
= 0% . (b) from 

a wind turbine Nonstat
tf
= 25% (c) the same as (b) but after angular 

resampling, Nonstat
tf
= 2%
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and prevented any data collection, only 168 among the 1710 
acquisitions are selected from the planetary gearbox sen-
sor, around one per day, and only 50 for the main bearing 
sensor before September 2015 due to the faulty sensor as 
mentioned above. It is much more appropriate to keep a few 
signals that are totally suitable for the further global Fourier 
analysis than including bad quality signals that will pollute 
the analysis.

To conclude phase 1, a suitable data validation module 
should be integrated in all condition monitoring systems to 
select automatically the right data according to the system 
monitored, the operational conditions, and the process-
ing that follows. In the example presented in this section, 
a time–frequency index computed remotely and continu-
ously has allowed a problem to be detected and offers the 
possibility to localize the nonstationarities both in time and 
frequency.

The key point is not necessarily to identify the type of 
problem, but to discard the inappropriate measurements 
which would lead to erroneous conclusions.

4.2 � Phase 2: Data Processing

After being assured of a reliable continuous supervised 
acquisition, data can be processed. Due to the variety of 
systems and existing methods, no optimal approach exists 
but many possibilities can be explored.

Possibly, a preprocessing will improve the further analy-
ses. As previously mentioned, an order tracking based on an 
angular resampling approach can remove small speed varia-
tions and make the signal more stationary, if the instantane-
ous speed is available. If possible, deconvolution or inverse 
filtering can reduce the influence of the transmission path 
between the sensor and the component to monitor.

From there, a wide range of processing methods exist 
in the literature. By focusing on spectral analysis, a part of 
all possibilities, the research of very high resolution could 
lead to parametric methods such as AR, ARMA, ESPRIT 
or MUSIC. These methods need very high computational 
time, a critical parameter tuning and then can be used 
for limited mode number. In modal analysis, the Fourier 
transform still has its letters of nobility! It is the basis 
of many methods whatever the domain is: in frequency, 
in order after an angular resampling, in cyclic frequency 

Fig. 6   The tracking of Nonstat
tf
 over a sequence of vibration measurements on a wind turbine in Arfons (France). Left plot is for the main bear-

ing sensor. Right plot is for the planetary gear sensor. Under the curves are the signal list, he older signals being at the bottom of the list

Fig. 7   Local averaging of 
Nonstat

tf
 tracked over the last 

6 months for signals of the main 
bearing sensor (in red) and the 
planetary gearbox sensor (in 
blue)
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for cyclostationary signals, in quefrency for cepstrum 
analysis adapted to noise/deterministic signal separation, 
in specific bandwidths for the demodulation process and 
the envelope analysis, at order two or more for using the 
Kurtosis for example. When signals are nonstationary, the 
time–frequency and time-scale domains can bring interest-
ing information but necessarily at a lower resolution. Non-
parametric approaches as the short time Fourier transform 
or Cohen class methods such as Wigner Ville, are simple, 
with a low computation time. Nonlinear filters such as 
Hilbert transform or Teager–Kaiser operators can be of 
interest to estimate the instantaneous frequency and then 
compensate for the lack of a tachometer.

The scope of this paper not being a review, this section 
highlights one possible approach based on a frequency 
analysis for which the full procedure has been automated 
in order to be applied in a continuous acquisition context. 
The main idea under this approach, besides the automaticity, 
is to process only the data measured on the currently ana-
lyzed system, and not the data coming from anterior data-
bases. Comprehensive details of this strategy can be found 
in [17–21]. Some results on sequences of real-world signals 
continuously acquired are presented in the remaining part 
of this section.

Once the method of spectral analysis and its parameters 
are given, the main difficulty consists in automatically read-
ing a spectrum. In [17], an automatic method based on 3 
steps is described:

1.	 Estimation of the noise spectrum or the base line by a 
nonlinear filter;

2.	 Detecting the non-noisy components thanks to a hypoth-
esis test;

3.	 Adjusting each detected peak to the spectral window in 
order to adjust the frequency and the amplitude and to 
valid the detection.

Figure  8 shows the results of the peak detection on 
one vibration signal acquired on the GOTIX test bench in 
GIPSA-lab (free online download) [19]. In “one click”, the 
method provides a table of all the relevant peaks with a 
descriptive list of numerical values such as frequency, ampli-
tude, bandwidth, local signal to noise ratio. Being liberated 
from the spectrum curve viewing, such a numerical table 
is the fundamental key for further processing. Moreover, it 
achieves an interesting data compression.

A specific method has then been developed to group the 
detected peaks into harmonic families in order to demodu-
late the carrier frequencies when sidebands occur around 
them. Figure 9 shows the same zoom as Fig. 8, but after the 
harmonic grouping. The harmonic families and their side-
bands are now listed in a new table.

This comprehensive method, which consists in interpret-
ing a spectrum in terms of harmonic families, is sequentially 
applied to each incoming signal from each sensor located on 
the system to monitor. The used sequence comes from a nat-
ural gearbox wear test without fault initiation during 3200 h 

Fig. 8   Two frequency zooms of an interpreted spectrum of a GOTIX 
vibration signal. The spectrum (purple) is estimated by a Welch 
method with Blackman window. The noise line (pink) is estimated 
by a nonlinear filter. Each detected peak has two colors: the upper 
color is related to its probability of false alarm (blue for high confi-

dence, green for middle confidence and red for low confidence) and 
the lower color to its bandwidth (red for equivalence with the spectral 
window, green for a higher bandwidth, orange for a bad spectral win-
dow match)
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of rotation. Figure 10 shows a zoom of a time–frequency 
view of the results for each gear sideband family around each 
meshing harmonic, each line being the result of one signal.

The interest of this grouping is not the figure but the 
ability to automatically set the filter bandwidth and the fil-
ter characteristics in a demodulation process. This demod-
ulation process, which can be performed around each 

meshing harmonic, estimates the amplitude, frequency 
and phase demodulation functions for each signal of the 
sequence. A synchronous averaging at the gear frequency 
is performed in order to remove every peak not associated 
to this sideband family. These functions can be plotted in 
a 3D space to see their evolution during the rotation hours.

Fig. 9   Frequency zoom of the same spectrum than Fig. 8 showing the result of the harmonic family grouping

Fig. 10   Time–frequency representation of one harmonic family asso-
ciated with one gear and its sidebands detected for a sequence of 
vibration signals coming from the natural wear test on GOTIX test 
bench. Each line is the result of one signal over a frequency zoom 

(see order axis above). The harmonics are identified by a number, the 
rank in the family, and their sidebands by black vertical lines. The 
other detected peaks are identified by colored lines according to their 
energy (max red, min blue)
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Figure 11 shows 2 demodulation results, one at the 
beginning of the experiment and another at the end. It 
clearly shows an evolution of the wear with a decrease of 
the amplitude at 2 angles corresponding to 2 particular 
teeth. The frequency or phase curves show less change. 
An observation of the dismantled gearbox confirms the 
existence of spalls at these 2 teeth. More details can be 
read in [19].

This example is interesting to monitor and characterize 
the wear of a machine. The last example goes back to the 
KAStrion project and illustrates a fault detection in a wind 
turbine. The comprehensive strategy has been applied to a 
sequence of vibration signals measured by a sensor located 
on the gearbox, the main bearing sensor being invalidated 
(see Sect. 4.1). It concerns the year 2015 and only the vali-
dated signals. The interest of this strategy is to be able to 
track relevant features issuing from this automatic expert 
processing.

Figure 12 shows a tracking of 4 features computed on the 
same harmonic family, the one associated to the ball passing 
frequency on the inner race. The total energy of the har-
monic family and the average energy per harmonic increase 
from May onwards. It is a first alarm (see the orange bar 
on the 1st feature). The fundamental order decreases from 
August whereas it should be constant due to the angular 
resampling, it is the sign of galling provoked by a change 
of the geometrical characteristics of the bearing. It is an 
aggravation of the fault and then a more severe alarm (see 
the dark orange bar on the 3rd feature). The total harmonic 
distortion, that is the ratio between energy of harmonics and 
energy of the fundamental order, decreases in October. It 
denotes the increase in strength of the fundamental order. In 
parallel, the average energy per harmonic increases again at 
the same time. The fault severity increases again and then a 

“Stop” alarm can be raised (see the red bar on the 2nd and 
4th feature).

All this analysis has been realized a posteriori, which 
prevented the maintenance team from intervening before the 
complete failure of the faulty bearing. The main bearing 
broke at the end of December and the location of the fault 
was observed on the inner race after the dismantling, as pre-
dicted by the processing strategy. The cost of the downtown 
and loss of production was really significant. More details 
can be read in [22].

An automatic comprehensive expert strategy as illustrated 
in this paper would have raised a warning in May and then 
informed the operator about the different aggravations of the 
fault. The maintenance team could have planned the replace-
ment of the bearing long before the break.

5 � Conclusions‑Perspectives

As specified in the introduction, the objective of this paper 
is not a review but a focus on the importance of signal pro-
cessing in the context of automated condition monitoring 
of rotating machines. The temptation could be high to apply 
machine learning approaches on raw signals using huge 
datasets. Even if it is the right solution in many domains, 
in machine monitoring, signal processing should be first 
exploited to the fullest extent.

Many signal processing methods are proposed in the 
literature. Methods that have been proposed and used for 
40 years are still reliable for the analysis of vibration signals. 
More recent approaches are efficient in particular contexts. 
Indeed, of greatest importance are about the right way of 
application, the right choice of parameters and the right 
interpretation of the results.

Fig. 11   Amplitude, frequency and phase demodulation functions estimated automatically around the 3rd meshing harmonic, associated to one 
gear from a vibration signal at the beginning of the wear test (a) and after 3500 h of rotation (b)
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A continuous acquisition is the guarantee of an earlier 
fault detection and increases the chances of triggering the 
right action on the maintenance plan in due time. The quan-
tity of data it generates encourages the automation of the 
processing solution.

This paper highlights the importance of a data validation 
process before data processing. Quality and properties of 
the acquired data should be checked according to the type 
of processing. Many complementary tests can be designed. 
This paper focuses on a nonstationarity detection test.

Fourier spectra of vibration signals for example con-
tain a very rich information that will take a long time 
for a human expert to extract visually. This paper illus-
trates a way to automatically detect peaks over the whole 

frequency band by integrating the statistical properties of 
a Fourier spectrum. Once the peak list is created, group-
ing them by harmonic family and side bands enables the 
launching of a demodulation and envelope computation 
with the right parameters, a tricky task in practice. It also 
enables the tracking of each family over all signals.

In a last step, classifiers can be defined to raise alarms 
based on relevant and narrow spectral band features issu-
ing from a complex high-level processing.

Thinking about how to automate the signal processing 
methods not only in particular cases, but in the most gen-
eral context possible should be the main road to follow up 
for further research in signal processing. The automaticity 

Fig. 12   a Total energy of the 
harmonic family of the main 
bearing. (b) Average energy per 
harmonic of the main bearing 
harmonic family. (c) Fundamen-
tal order of the main bearing 
family. (d) Total harmonic dis-
tortion: ratio between energy of 
harmonics and energy of funda-
mental order for the main bear-
ing harmonic family. Tracking 
over 2015 of a vibration sensor 
on a wind turbine. Display of 4 
features for the harmonic family 
of the main bearing, all of them 
able to detect the fault at differ-
ent times
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should not reduce the quality of the processing. Based on 
experience, it also significantly improves performance.

And finally, experts in the field can conclude and manage 
the maintenance of a system with a high confidence even 
with no or a little knowledge of signal processing.

Challenges ahead are not only in the automaticity but in 
many other domains, for example, processing for 3D sen-
sors, processing under time-varying speed without tachom-
eter, the separation of speed-dependent and mode-dependent 
modulations, and specific processing under variable opera-
tion conditions. Instead of an “optimal” method for which 
a criterion is very often indefinable, it can be of interest to 
define a strategy comprising a set of judiciously interwoven 
methods. Whatever track is chosen, the challenge is great 
and exciting.
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