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Abstract
An accurate head-related transfer function can improve the subjective auditory localization performance of a particular
subject. This paper proposes a deep neural network model for reconstructing the head-related transfer function (HRTF) based
on anthropometric parameters and the orientation of the sound source. The proposed model consists of three subnetworks,
including a one-dimensional convolutional neural network (1D-CNN) to process anthropometric parameters as input features
and another network that takes the sound source position as input to serve as a marker. Finally, the outputs of these two
networks are merged together as the input to a third network to estimate the HRTF. An objective method and a subjective
method are proposed to evaluate the performance of the proposed method. For the objective evaluation, the root mean square
error (RMSE) between the estimated HRTF and the measured HRTF is calculated. The results show that the proposed method
performs better than a database matching method and a deep-neural-network-based method. In addition, the results of a sound
localization test performed for the subjective evaluation show that the proposedmethod can localize sound sources with higher
accuracy than the KEMAR dummy head HRTF or the DNN-based method. The objective and subjective results all show that
the personalized HRTFs obtained using the proposed method perform well in HRTF reconstruction.

Keywords Head-related transfer function · Personalization · Point-net network · Deep neural network (DNN) · Convolutional
neural network (CNN)

1 Introduction

In recent years, technologies for virtual reality and aug-
mented reality have undergone rapid development. Virtual
stereo, as an important component of virtual reality that can
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be played back through either speakers or headphones, has
also attracted the attention of researchers [1]. For headphone
playback, the head-related transfer function plays a major
role.

The head-related transfer function (HRTF), or the equiv-
alent head-related impulse response (HRIR) in the time
domain, describes how sound is filtered by the head, torso,
and pinnae of a listener as it propagates from the source to
the listener’s eardrum in free space [2]. The listener obtains a
sense of space based on the interaural time differences (ITDs)
and interaural level differences (ILDs) at various positions.
Since the head, torso, and auricle structures of different lis-
teners are different, to achieve better auditory perception,
each listener’s HRTF needs to be personalized [3].

Researchers have proposed a variety of HRTF person-
alization methods, including measurement methods [4],
anthropometric parameter matching methods [5–7], numer-
ical methods [8], and anthropometric parameter regression
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methods [9–12]. Among them, anthropometric parameter
regression methods have received the most attention.

Regarding the selection of anthropometric parameters,
different combinations of anthropometric parameters have
been chosen in different studies, which can naturally have a
great impact on the ultimate customizedmodel. To date, there
is still no clear conclusion regarding which anthropometric
parameters to choose for modeling.

In recent years, deep learning has played an increasingly
significant role in multiple industries, such as manufactur-
ing, finance, and medical care. This is mainly due to the
rapid advancement of big data capabilities, which make it
easier to obtain various types of data. Thus, as existingmodel
systems and optimization methods continue to advance, the
performance ofmodels can be continually improved. In addi-
tion, deep learning makes it easy to extract relevant features,
allowing complex mathematical models to be described in
terms of simple inputs and outputs.

Deep learning considers inputs and outputs individually
but does not consider the relationship between the inputs
and outputs. Numerous studies have used machine learning
to describe the relationship between anthropometric parame-
ters and theHRTF.Hu et al. [13] used a backpropagation (BP)
neural network to reveal the relationship between anthropo-
metric parameters and the HRTF. This model first reduces
the dimensionality of the HRTF, then filters out unrelated
anthropometric parameters, and finally uses the BP network
to realize the regression of the anthropometric parameters
with respect to the HRTF. Chun et al. [14] proposed a deep
neural network (DNN) model to achieve a direct connec-
tion between anthropometric parameters to HRIRs instead of
extracting both the anthropometric parameters and the fea-
tures of the HRTF. The operational steps of that model were
simplified by virtue of the intent to reveal the relationship
between the anthropometric parameters and the HRIR. This
DNN model was further optimized through integration with
a convolutional neural network (CNN), as proposed by Lee
et al. [15]. However, this integrated model only convolves
the anthropometric parameters of the pinnae; moreover, the
model is built in only one direction, meaning that 1250 mod-
els in total are needed to obtain HRTFs for all directions in
the CIPIC database.

In this paper, an acoustic model that determines the
head-related impulse responses (HRIRs) based on both the
anthropometric parameters and the direction of the sound
source as training parameters is proposed as an alternative
to an acoustic model that needs to be separately trained for
each orientation of the sound source. The anthropometric
parameters used in this model are three-dimensional param-
eters obtained through measurement. When sound waves
are transmitted from different directions, the anthropomet-
ric parameters that serve to filter the sound waves are also
different; therefore, the HRIRs are significantly related to

Table 1 The number of HRTF measurements at different elevations
and azimuth intervals

φ ±40◦ ±30◦ ±20◦ ±10◦ 0◦ 50◦ 60◦ 70◦ 80◦

Δθ 6◦/7◦ 6◦ 5◦ 5◦ 5◦ 8◦ 10◦ 15◦ 30◦

N 57 61 73 73 73 47 31 25 13

both the anthropometric parameters and the location of the
sound source. Existing regression methods for human phys-
iological HRTF parameters also support this conclusion.

To reduce the complexity of existing models arising from
the need to build a different model for each sound-source
direction, we propose a deep learning model. The model
relies on a point network [16] and takes the anthropometric
parameters in combination with the direction of the sound
source as input, which greatly reduces the number of neural
networks that need to be built (the CNN + DNN method
requires 1250 individual networks) and shortens the time
spent on model training. The proposed model uses deep
learning tomine the relationship between the anthropometric
parameters and the HRTF, thereby achieving HRTF person-
alization in a single network.

The performance of the proposedmethod is evaluated both
objectively and subjectively. As an objective measure, the
root mean square error (RMSE) between the reference and
estimated HRTFs is calculated.

2 Database Used

All the researches in our study were conducted with the
Chinese pilots HRTF database [17]. The database contains
the measured HRTF of 63 subjects in 723 different direc-
tions. Table 1 describes the direction selected of the HRTF
database. In Table 1, the φ represents the elevation, which
ranges from −40◦ to 80◦. The Δθ represents the interval of
azimuth. In the elevation of −40◦ and 40◦, the Δθ of 6◦ /
7◦ means the azimuth selected with an interval of 6◦ and 7◦
in turn, while in other elevation, the Δθ is a value, which
means the interval is constant. The N represents the number
of HRTF direction in different elevation.

Different from the CIPIC database [4], which uses dis-
tance and angle to quantify anthropometric parameters, in
the Chinese pilots database, we quantify the subject’s anthro-
pometric parameters by using a series of three-dimensional
coordinates of anthropometric characteristic points (such as
the apex of the head and the tragus point).

For the three-dimensional anthropometric parameters, we
selected 93 feature points, which consist of 50 feature points
of the ears (25 for each ear), 33 feature points of the face,
and 10 feature points of the torso. Figure 1 shows some of
the anthropometric characteristic points.
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Fig. 1 Block diagram of a deep neural network for the HRIR estimation method based on three-dimensional anthropometric data and the position
of the sound source (partial physiological parameters are marked on the figure Anthropometric)

Also, there were 69 anthropometric parameters in the Chi-
nese pilots database extracted from the 93 anthropometric
parameter points which included 37 features for head and
torso in addition to 32 features for ears.

3 Proposed HRTF PersonalizationModel

3.1 Neural Network Architecture

This section proposes a method for estimating personal-
ized HRTFs. The detailed structure of the proposed model
employed in this experiment is summarized in Fig. 1. In this
model, the anthropometric parameters and the elevation and
azimuth of the sound source are used as input features, and
the HRIRs are the target features. As shown in Fig. 1, the
proposed neural network is composed of three subnetworks.
Thefirst subnetwork, referred to as “subnetworkA”, is aCNN
that takes anthropometric measurements as input features to
represent the relationship between the anthropometric mea-
surements and the HRTF. The second subnetwork, referred
to as “subnetwork B”, is a feature representation network
based on the position of the sound source. The outputs of
these two subnetworks are then combined to form the input
to another DNN, referred to as “subnetwork C”, to estimate
personalized HRTFs. Thus, the neural network is composed
of three parts.

Subnetwork A, the first subnetwork, takes the anthropo-
metric data as input. The first stage normalizes the anthro-
pometric parameters, followed by three convolutional layers
and then a max-pooling layer. The next stage comprises a
convolutional layer and a max-pooling layer, which is fol-

lowed by a flattening layer. In the CNN realization employed
here, 32 filters were used. Each filter had a kernel size of 1
cell, a pool size of 2 cells, and a stride of 1. The rectified
linear unit (ReLU) activation function was applied for each
layer because this function is known to be effective for solv-
ing the gradient vanishing problem [18]. Moreover, since the
ranges of anthropometric measurements differ betweenmea-
surements, measurements with a smaller range may have a
reduced influence on the learning process. Thus, each input
feature for the CNNwas normalized with respect to themean
and variance of all training data regardless of the subject from
whom the data were obtained, using the sigmoid function:

zi = 1

1 + e−zi
(1)

where zi and zi are the i th components of the input and
normalized feature vectors, respectively. Note that zi can rep-
resent any measured anthropometric parameters.

SubnetworkB takes the azimuth and elevationof the sound
source as its input; these parameters are also normalized
using the sigmoid function. The normalization layer is fol-
lowed by a flattening layer. In the proposed network, the
azimuth and elevation are mainly used as markers, so sub-
network B does not perform substantial processing.

The outputs of subnetwork A and subnetwork B are com-
bined to form the input to subnetwork C. This subnetwork
consists of hidden “dense” feedforward layers and uses the
sigmoid function as the activation function.

The proposed network constructs left and right HRTF,
respectively.
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3.2 Supervised Learning

Because well-initialized weights can enable a low initial cost
and fast convergence, during training, we used the Xavier
initialization technique to initialize the weights of all layers,
and all biases were initialized to zero [19]. Meanwhile, the
mean square error (MSE) between the original target and
the estimated target was selected as the cost function for
the network [20]. We utilized adaptive moment estimation
(“Adam”) optimization for the backpropagation algorithm
and set the moment decay rate to 0.9, with a learning rate
of 0.01 [21]. Finally, we trained the model for 62 epochs,
with 398 samples in each epoch. To prevent overfitting, the
dropout technique was applied with a probability of 0.7 [22].

4 Performance and Evaluation

In this paper, the performance of the proposed personalized
HRTF method is evaluated on the basis of objective and sub-
jective experiments. For the objective experiment, the root
mean square error (RMSE) between the reference and esti-
mated HRTFs was measured. Moreover, the performance of
the proposed method was compared with that of other HRTF
personalization methods: (1) the DNN-based method [15]
and (2) a database matching method [6]. The CNN-DNN
method [14] requires the ear anthropometric parameters to
be presented as images; however, the Chinese pilots database
does not provide ear images, making this method unsuit-
able for application to this database, whereas the DNN and
databasematchingmethods are both suitable for this purpose.
For the DNN method, the two-dimensional anthropometric
parameters in the Chinese pilots database were selected, and
the model presented in [15] was selected for training.

The databasematchingmethodwas implemented inMAT-
LAB version of R2015b, while the DNN method and the
proposed method were implemented in Anaconda Python
3.7.0.

The total number of HRTF samples in the Chinese pilots
database is 63 ∗ 723 = 45,549. The data from three subjects
were selected as the verification data. Among the remaining
60 subjects, the data from 60 ∗ 70% = 42 subjects were
selected as the training data, and the data from the remain-
ing 60 ∗ 30% = 18 subjects were selected as the test data.
Therefore, it was necessary to construct 21 models to ver-
ify the HRTFs for all subjects. For the DNN method, since
each model is established for a single direction, obtaining
the HRTFs for all sound-source positions required the con-
struction of 723 DNN models. Thus, in terms of the number
of models to be trained, the proposed method requires fewer
models.

4.1 Objective Experiment

The spectral distortion (SD) error metric was employed
to evaluate the precision of the synthesis of personalized
HRTFs. This metric is defined as follows:

SD(d)(H , Ĥ) =
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∥Ĥ (d)(n)

∥
∥
∥

⎞

⎠

2

(2)

where H (d) is the original HRTF in direction d, Ĥ (d) is the
matched HRTF at direction d, SD(d)(H , Ĥ) is the corre-
sponding SD, and n is the index of the frequency bin, with
N = 129 being the total number of frequency bins.

Then, the root mean square error (RMSE) was used to
calculate the mean SD for multiple directions:
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where, D is the number of directions.
Figure 2 compares the SD values of the personalized

HRTFs by subject as obtained using different HRTF estima-
tion methods, measured at (0◦, 0◦), (0◦, 45◦), and (0◦, 165◦).
Moreover, Table 2 compares the average over all HRTFs in
the Chinese pilots database for the same direction.

As shown in Fig. 2 and Table 2, the DNN-based method
[DNN (69)] and the proposed method achieved RMSEs that
were 2.77dB and 3.81dB lower, respectively, than that of
the database matching method. Because the performance of
database matching depends on the size of the database, the
SD is larger. When the database capacity increases, the per-
formance of database matching can also be enhanced to a
certain extent. Compared with that of the DNNmethod [15],
the SD of the proposed method is reduced by 1.04dB. The
primary reason is that the proposed method uses a 1D-CNN
to process the anthropometric parameters, thereby building
internal relationships between the anthropometric parame-
ters.

Although the proposed method reduces the SD by only
1.04dB compared to the DNNmethod, the proposed method
has a smallermodel size and requires less reconstruction time
than either theDNNmethod [14] or theCNN+DNNmethod
[15]

The proposed method can obtain the HRTFs for all posi-
tions in the database using only one model, whereas both the
DNNmethod [14] and the CNN+DNNmethod [15] require a
separate model to be built for each position. (For the Chinese
pilots database, 723 models need to be built.) Thus, the pro-
posed method greatly reduces the number of models needed
and reduces the storage space required for model packaging.
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Fig. 2 The SDs for individual subjects achieved with different person-
alization methods for different directions a (0◦, 0◦); b (0◦, 45◦) and c
(0◦, 165◦)

Table 2 RMSEs for different personalization methods at (0◦, 0◦), (0◦,
45◦), and (0◦, 165◦)

Direction Database matching DNN(69) Proposed method

(0◦, 0◦) 6.75 4.05 3.63

(0◦, 45◦) 6.92 4.45 3.11

(0◦, 165◦) 7.54 4.41 3.05

Average 7.08 4.31 3.27

In terms of model application, the proposed model needs
only the physiological parameters and sound source direc-
tion as input to reconstruct the given subject’s HRTF in the
given direction, whereas both the DNN method [14] and the
CNN+DNNmethod [15] require first finding the correspond-
ingmodel and then reconstructing theHRTF,which increases
the time required for reconstruction.

4.2 Subjective Experiment

In this section, we present a subjective evaluation based on
a localization experiment involving five male participants
without any auditory disease. In the localization experiment,
three types of HRTFs were tested: the personalized HRTF
obtained using the proposed method, the personalized HRTF
obtained using the DNN method and the HRTFs of the
KEMAR dummy head. A total of 8 directions were selected
on the horizontal plane: 0◦, 45◦, 80◦, 135◦, 180◦, 225◦, 280◦,
and 350◦. The test stimuli were produced via the convolution
of white noise with the HRTF in the determined direction.

During the experiment, the test stimuliwere playedback to
the participants through headphones. Before the test, experi-
mental questionnaires were handed out to all the participants.
All test azimuths were listed for each test stimulus in the
questionnaire. The participants were asked to select the most
accurate azimuth according to their own judgment after
hearing each stimulus. During the test, each stimulus was
presented three times in a row. Then, there was a 5-s time
interval during which the participants were asked to enter
their judgments about the presented stimulus in the ques-
tionnaire. Then, the next stimulus was presented in the same
way until all test stimuli had been presented using all three
tested HRTF types. The presentation order of the stimuli was
randomized using an altered Latin square scheme. Thus, the
possible bias caused by the order effect and sequential depen-
dencies could be minimized.

Figures 3, 4, 5 illustrate the sound localization results for
all five subjects, showing the azimuths as judged by the par-
ticipants versus the target azimuth for the KEMAR dummy
head HRTFs and the personalized HRTFs. In the figure, the
main diagonal solid line in eachpanel represents correct judg-
ment; a point lying on this line indicates that the subjects’
judgment was exactly the same as the target azimuth. The

123



130 Acoustics Australia (2021) 49:125–132

Fig. 3 Results of the localization test with the HRTF of the KEMAR
dummy head

Fig. 4 Results of the localization test with the DNN-based HRTF

upper and lower off-diagonal solid lines represent 30◦ mar-
gins of error, and the upper and lower off-diagonal dashed
lines represent 15◦ margin of error. It can be observed that the
personalized HRTFs show slightly better localization perfor-
mance.

Table 3 compares the accuracy within specific margins,
such as ±15◦ and ±30◦, achieved in the localization experi-
ment with the KEMAR dummy head HRTF, the DNN-based
HRTF, and the proposedmethod.As shown in this table, com-
pared with the KEMAR dummy head HRTF, the proposed
HRTF estimation method achieved higher average accura-
cies by 25% and 17.5% for the ±15◦ and ±30◦ margins,
respectively. Similarly, the accuracy of the proposed method
was improved by 10% and 5% compared to the DNN-based
HRTF method.

Fig. 5 Results of the localization test with the HRTF generated by the
proposed method

4.3 Data Augmentation

The number of subjects in the Chinese pilots database is
63, while the number of subjects in the CIPIC database is
31. Even though the database capacity of the Chinese pilots
database is twice that of the CIPIC database, in the deep
learning contest, this amount of data is still not large. When
the training database is small, this can easily result in over-
fitting of the model [23]. The processing of a CNN can be
invariant with respect to translation, viewpoint, size, illumi-
nation, or a combination of the above [24]. Subnetwork A
in the proposed model is a CNN; therefore, the data used as
input to this subnetwork can be subjected to data augmen-
tation processing. Accordingly, the data were enhanced by
applying two types of operations: shifting and rotating.

Table 4 compares the RMSEs for individual subjects
achieved using the proposed HRTF estimation method with
and without data augmentation, as measured at (0◦, 0◦), (0◦,
45◦), and (0◦, 165◦). The average RMSE decreased with data
augmentation. Shifting augmentation reduced the RMSE of
the proposed method by 0.2dB, while rotation augmenta-
tion reduced the average RMSE of the proposed method by
0.16dB.

4.4 Suitability for Application to the SYMARE
Database

The proposed method was also applied to the SYMARE
database [25], which differs from the Chinese pilots database
in terms of the anthropometric parameters and the direction
of the sound source.

The SYMARE database contains morphological data
from 10 subjects obtained through magnetic resonance
imaging (MRI), which is different from the format of the
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Table 3 Comparison of average accuracies within specific margins (15◦ and 30◦) for different HRTF estimation methods

KEMAR dummy head HRTF (%) DNN-based HRTF (%) Proposed HRTF (%)

Accuracy within 15◦ 40 55 65

Accuracy within 30◦ 65 77.5 82.5

Table 4 Comparison of the average RMSEs for the proposed HRTF estimation method with and without data augmentation at (0◦, 0◦), (0◦, 45◦),
and (0◦, 165◦)

Direction Proposed method Proposed method + shift Proposed method + rotation

(0◦, 0◦) 3.63 3.21 3.24

(0◦, 45◦) 3.11 2.98 3.00

(0◦, 165◦) 3.05 3.04 3.08

Average 3.27 3.07 3.11

anthropometric parameters in the Chinese pilots database.
To obtain physiological parameters equivalent to those in the
Chinese pilots database, we imported the .ply file under the
Meshes/HighResolution/HeadTorsoandEars directory in the
SYMARE database into MATLAB and manually obtained
the data.

Weobtained the three-dimensional anthropometric param-
eters of subjects 06 and 10 from the morphological data
files HTE06.ply and HTE10.ply and input these three-
dimensional anthropometric parameters and the direction of
the sound source into the trained model to reconstruct the
corresponding HRTF data. For the test, we chose a sound-
source elevation of 0◦ and azimuth angles ranging from 0◦
to 90◦ in intervals of 5◦.

Figure 6 shows the SDs for subject 06 and subject 10 in the
direction (0◦,θ ). The average SD in Fig. 6 is 4.51dB, which is
greater than the average SD reported for the proposedmethod
in Table 4.

The reasons for the poor performance of the proposed
model on the SYMARE database are as follows: (1) Addi-
tional deviations were introduced when manually extracting
the physiological characteristic parameters, and (2) the envi-
ronmental differences and differences in the measurement
methods between the measurements performed to construct
the SYMAREdatabase and theChinese pilots database result
in certain differences between the characteristics of the two
databases. However, it should be noted that the average value
in Fig. 6 is still less than the maximum spectral distortion of
5.7 dB of the method proposed by Nishino [26], which can
achieve rough localization.

5 Conclusion

In this paper, a personalized HRTF estimation method is
proposed on the basis of a deep neural network taking anthro-
pometricmeasurements and the direction of the sound source

Fig. 6 The SDs obtained for subject 06 and subject 10 in the SYMARE
database in the direction (0◦, θ) for the left ear using the trained model

as input. In particular, while the conventional DNN-based
method attempts to estimate HRTFs from anthropomet-
ric data such as head, torso, and pinna measurements,
in the proposed method, these anthropometric parameters
are replaced with point parameters. These anthropometric
parameter points are processed by a 1D-CNN. The neural
network used in the proposed method is composed of three
subnetworks. The first one is a 1D-CNN,which processes the
anthropometric parameters, and the second one normalizes
the location of the sound source. The outputs of these two
subnetworks are then merged to form the input to another
DNN to estimate a personalized HRTF.

The performance of the proposed personalized HRTF
estimation method was evaluated through objective and sub-
jective tests. In the objective test, the RMSEs between the
measured and estimated HRTFs were evaluated. For the sub-
jective test, a sound localization experiment was performed.
The performance of the proposed method was compared
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with that of a database matching method and the DNN (69)
method. The objective evaluation showed that the RMSE of
the proposed method was decreased by 3.80 dB and 1.04
dB, respectively, compared to those of the two methods con-
sidered for comparison. In addition, the subjective evaluation
showed that the proposedmethodprovided a 5%higher local-
ization accuracy than the DNN-based method.

Moreover, shift or rotation is used to enhance the data in
the Chinese pilots database, and the RMSE of the enhanced
data reduced by 0.2dB and 0.16dB, respectively. Further-
more, the SYMARE database was used to verify the trained
model, and the performance showed that the trained model
is suitable for application to the SYMARE database.

Although, comparedwith the othermethods, the proposed
model has the lowest average SD, this method still has some
limitations. The proposed network uses a 1D-CNN network
to process anthropometric parameters and thus requires the
anthropometric parameters to be quantified in the form of
one-dimensional data; consequently, it is not applicable to
databases such as the CIPIC database and the MIT database.
In addition, although the number of subjects in the database
used in this article is twice that in the CIPIC database, in the
context of deep learning, this database size is still limited.
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