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Abstract
Vibration and acoustic emission have received great attention of the research community for condition-based maintenance
in rotating machinery. Several signal processing algorithms were either developed or used efficiently to detect and classify
faults in bearings and gears. These signals are recorded, using sensors like tachometer or accelerometer, connected directly
or mounted very close to the system under observation. This is not a feasible option in case of complex machinery and/or
temperature and humidity. Therefore, it is required to sense the signals remotely, in order to reduce installation andmaintenance
cost. However, its installation far away from the intended device may pollute the required signal with other unwanted signals.
In an attempt to address these issues, sound signal-based fault detection and classification in rotating bearings is presented.
In this research work, audible sound of machine under test is captured using a single microphone and different statistical,
spectral and spectro-temporal features are extracted. The selected features are then analyzed using different machine learning
techniques, such as K-nearest neighbor (KNN) classifier, support vector machine (SVM), kernel liner discriminant analysis
(KLDA) and sparse discriminant analysis (SDA). Simulation results show successful classification of faults into ball fault,
inner and outer race faults. Best results were achieved using the KLDA followed by SDA, KNN and SVM. As far as features
are concerned, the average FFT outperformed all the other features, followed by average PSD, RMS values of PSD, PSD and
STFT.

Keywords Acoustic signal analysis · Condition-based maintenance · Time domain analysis · Frequency domain analysis ·
Machine learning

B Muhammad Uzair
muhammad.uzair@unisa.edu.au

Muhammad Altaf
mohammadaltaf@gmail.com

Muhammad Naeem
muhammadnaeem@iiu.edu.pk

Ayaz Ahmad
ayaz.uet@gmail.com

Saeed Badshah
saeed.badshah@iiu.edu.pk

Jawad Ali Shah
jawad@unikl.edu.my

Almas Anjum
almasanjum@yahoo.com

1 COMSATS University Islamabad, Wah, Pakistan

2 University of South Australia, Adelaide, Australia

1 Introduction

Rolling element bearings are one of the most important com-
ponents of any industrial setup from motors to turbines,
compressors and heavy ground and air vehicles [14]. During
the mechanical process, different faults arise that generate
vibration and acoustic emission (AE) signals having differ-
ent characteristics. The differences are due to the complexity
of the mechanical setup and the correlation between differ-
ent mechanical components. Real-time monitoring and fault
detection can avoid disastrous failures [38] and severe losses
[66] and hence have received considerable attention [39]. A
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variety of condition-based monitoring methods have been
developed and discussed in the literature, including but not
limited to vibration, acoustic emission, oil debris, electro-
static and temperature analysis [30,37,44,53].

Vibration signal can be used for detection and location
of faults like mass unbalance, misalignment, gear faults and
cracks along with their propagation in rotating shafts and
gear wheels [27].However, early detection of these cracks
in shafts and gears is possible with acoustic emission [56]
with the typical frequencies range from 20KHz to 1MHz
[29]. Sound is a vibration signal that propagates in audi-
ble frequency range, while acoustic emission is generated as
transient elastic wave resulting from fast strain energy dis-
charge as a result of damage within or on the material surface
[48]. Audible sound frequency ranges from 20Hz to 20KHz
and hence requires much less samples as compared to acous-
tic emission.

Vibration and AE signal analysis are the effective tools
for studying local defects and detecting its size in rolling
elements. However, the vibration signal analysis has limited
efficiency in fault detection in low-speed rotating machines
and early detection of faults as compared to acoustic emis-
sion, making AE as one of the extensively reported tech-
niques in the literature [53]. These signals are complicated
and non-stationary in nature with heavy background sounds
[18]; therefore, a pattern recognition process is combined
with different signal processing algorithms to detect and clas-
sify different faults. Signal characteristics to be used with
artificial intelligence (AI) are extracted using signal process-
ing techniques like time domain analysis, frequency domain
analysis, time–frequency domain analysis, etc. [13,18,67].
However, recent development in AI with the ability of
extracting features from original signals, such as deep neural
networks, is being used in fault diagnosis [55,60,63,68].

Time domain analysis like energy, average signal level and
duration count of AE signals has resulted in the detection of
shaft cracks [24], and the amplitude and energy of the acous-
tic emission signal are exploited for defects in roller bearings
[1]. Abdullah et al. [2] have compared the vibration and
AE signals for bearing defects and its size, using amplitude
and the root-mean-square (RMS) values of the signal under
test. Authors in [13] have analyzed vibration data of slew
bearing in detail with time domain kurtosis, wavelet domain
kurtosis and largest Lyapunov exponent (LLE) feature. The
authors have combined these algorithms with kernel-based
regression to detect the incipient damage and estimate the
useful life of the slew bearing. Kurtosis and its variations
like spectral kurtosis, short-term Fourier transform (STFT)-
based kurtosis, kurtogram and adaptive spectral kurtosis of
the vibration signals for rotating machinery are discussed in
detail in [65].Antoni et al. [5] have described the algorithmof
fast kurtogramwith computational complexity similar to that

of fast Fourier transform (FFT), for the detection of transient
faults.

In frequency domain, Fourier transform is one of widely
used signal processing technique [42]; however, it lacks
time information. As vibration signals are non-stationary in
nature, time–frequency methods are used. To provide local
feature information the STFT is proposed [26] that calcu-
lates local spectrum of the signal using a fixed window.
A more flexible approach in the time–frequency analysis
is the wavelet transform that can be used to detect faults
[7,23,31,34]. Authors in [15], have used time–frequency
technique like Hilbert–Huang transform (HHT) and con-
tinuous wavelet transform (CWT) to detect coupling shaft
cracks, misalignment and rotor–stator rub in the vibration
signals. HHT is combined with KNN classifier to effec-
tively monitor defects in bearing [49] and wavelet transform
for early stage fault detection in outer race [14]. At very
low signal-to-noise ratio (SNR), fault at incipient stage is
detected by [14], using wavelet transform for de-noising of
the AE signals and envelop detection with autocorrelation
for detecting faulty patterns. Authors in [22] have used the
spectral contents of intrinsic mode function (IMF) to ana-
lyze both the vibration and AE signals to detect broken bar,
bearing defect and unbalanced load distribution in the induc-
tion motors. However, this method faces some limitations
like a priori knowledge of the number of modes in which
the signal is required to be decomposed and localization of
fault frequencies. Authors in [67] have used empirical mode
decomposition algorithm and convolutional neural networks
(CNNs) to extract features from raw vibration signal. The
SVM and Softmax training algorithms were used for the
classification of faults into outer race, inner race and ball
faults.

To detect the vibration and acoustic signals, sensors like
tachometer or accelerometer are directly connected to the
machinery under test. In case of complex machinery and/or
high temperature and humidity, mounting of sensors directly
on the machinery under test becomes infeasible. Therefore,
to reduce the installation and maintenance cost of the CBM
system, it is required to remotely sense the signals. One of
solution is to use noninvasive sensors like microphones for
recording machine sounds [32]. Use of sound signals for
the maintenance is a cost-effective method and can easily
be utilized by small-scale industries [4]. The microphones
are generally mounted 2–10cm away and positioned toward
the machinery under observation [11,64]. In most of the
cases, microphone arrays are used for recording machine
sounds [6,17,25,41,43,58], but the use of single microphone
for fault detection did not receive much attention due to its
complexity [64] and due to contamination of sound from
the surrounding environment and, hence, require complex
source separation algorithms like wavelet and blind source
separation (BSS) [45,70].
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Sound recognition and classification using a single micro-
phone have reported in the literature for speaker and envi-
ronmental sound recognition [62], like wavelet packet trans-
form (WPT), mel-frequency cepstral coefficients (MFCCs),
hidden Markov model (HMM), Gaussian mixture model
(GMM), etc., and some of these algorithms are also used
in vibration-based fault diagnosis. These algorithms can be
and are being used inmachine fault diagnosis, as themachine
sounds are less dynamic as compared to human speech [40].
In [46], multi-scale fractal dimension (MFD) is success-
fully used for feature extraction from vibration signals of
faulty bearings. These features are used with HMM and
GMM classifier, giving better results, but with expensive
computation. Similarly, a combination of MFCC and kur-
tosis for feature extraction with HMM gave similar results
as MFD and HMM [46]. Wavelet packet transform com-
bined with FFT and artificial neural network (ANN) was
used for fault diagnosis and prognosis in blower using low-
frequency vibration recordedwith three sensors [69]. In [52],
MFCC and linear predictive coding (used in speech encod-
ing), combined with Euclidean distance and KNN, resulted
in 92% and 94% accuracy, respectively, in vibration-based
bearing fault detection. In [40], MFCCwithKNN and multi-
variate Gaussian distribution (MGD) was used to classify
different machine sounds. In this research work, features
like frequency cepstral (FFC) coefficients were extracted
using linear, log and mel filters of different lengths. In this
research work, the FFC features with linear filter and MGD
were classified as the most appropriate method. Similarly,
certain time–frequency algorithms, like STFT [28,35,50],
Wigner–Ville distribution (WVD) [10,36,51,59] that were
successfully used for vibration analysis, were also used
for fault detection in fuel injection system using array of
microphones [3]. Authors in [54] have used the statisti-
cal and histogram methods to extract features from sound
signals in audible frequency range. Statistical methods like
standard deviation, mean, mode, median and variance are
combined with the histogram features. Decision tree algo-
rithm is used to select the best features that are then
forwarded to ANN for classification of faults into unbal-
anced shaft, outer and inner race faults. The results show
that statistical features outperform the histogram-based fea-
tures.

Therefore, sound-based signals using microphones can be
used for fault detection in rotating machines, as a noninva-
sive or wireless approach. This will reduce the installation
and maintenance complexity and also the sampling rate as
compared to AE signals. In this research work, a single
microphone is used to record sound signals of bearings with
different faults. As selecting the audio signal for detecting
the bearing fault and classifying them into ball, inner and
outer race fault was a first attempt of its type (as per our
knowledge). The audio signal is a mechanical/compression

signal like vibration and acoustic emission signal; there-
fore, an attempt is made to study all the available range of
algorithms for fault detection. Therefore, a subset of can-
didates from each domain, which is time, frequency and
time–frequency domains, were selected for testing. Differ-
ent feature extraction methods from time, frequency and
time–frequency domains were used with ML algorithms to
detect and classify these faults. The candidate feature extrac-
tion methods used are kurtosis, skewness, spectral kurtosis,
envelop detection, STFT, FFT, PSD, etc. These features were
used to train different classifiers likeKNN, SVM,KLDA and
SDA classifiers. Rest of the paper is organized as: Sect. 2
gives a brief introduction of the signal analysis and classifi-
cation methods like kurtosis, FFT, STFT, envelop detection,
etc. In Sect. 3, the sound signals are analyzed using signal
analysis methods and the signal graphs of different faults
are discussed. Discussion on classifier and classification of
faults into inner race, outer race and ball faults are dis-
cussed in Sect. 4, while the concluding remarks are given
in Sect. 5.

2 Signal Processing Algorithms

This section summarizes the basic concepts of the signal pro-
cessing algorithms used in the rest of the paper. As discussed
above, the sound signals have not been extensively analyzed
for fault classification, and it exhibits the similar characteris-
tic like vibration and acoustic signals except for the frequency
range. Therefore, a subset of all the different types of analysis
techniques that were used for vibration or acoustic emission
fault detection are considered here. As far as passing of the
signals through different frequency bands and the calcula-
tion of average FFT or PSD, etc., is considered, it has not
discussed by the research community. Moreover, this will
limit the size of feature vector and computational burden on
the machine learning algorithm.

2.1 Statistical Features of Raw Signals

The given raw sound data were used to extract statistical fea-
tures like maximum, minimum, standard deviation, mean,
median, variance, range, skewness, kurtosis, Petrosian frac-
tal dimension [8], Fisher information ratio [8,33] and entropy.
The results of skewness, kurtosis and standard deviation are
discussed and presented in the next sections. These features
were also concatenated to obtain the final statistical feature
representation of the signal under test and were then fed to
different classification algorithms. The RMS values of the
frequency domain features were also calculated and, how-
ever, discussed in the frequency domain section.
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Fig. 1 Filter bank procedure

2.2 Frequency Domain Features

Frequency domain is one of the important signal analy-
sis domains, in which all the spectral components, from
which the raw signal is formed, are analyzed. In frequency
domain analysis, the Fourier transform, envelop detection
and power spectral density are calculated. Fourier transform
is calculated using fast Fourier transform algorithm, while
for envelope detection, the Hilbert transform of the Fourier
components is used, as given in Eqs. 1 and 2, respectively,
while the PSD can be calculated using Fourier transform of
the autocorrelation function. For further details, the inter-
ested readers are referred to [47].

y[k] =
N−1∑

n=0

x[n]e− j2πnK
N k = 0, 1, 2, 3, . . . , N − 1 (1)

where y[k] is the Fourier transform and x[n] is the signal
under test.

x̂[n] =
{

2
π

∑
n=odd

x[n]
k−n if k is even

2
π

∑
n=even

x[n]
k−n if k is odd

(2)

where x̂[n] is the Hilbert transform, taking Fourier transform
of x̂[n] results in the envelope of the signal x[n].

In frequency domain, to further analyze the behavior of
different signals with and without faults, the signals were
passed through different bandpass filters. The average values
of the Fourier transform and PSD at those specific frequency
bands were calculated. The generalized operation is given
in Fig. 1. In this figure, BPFs are the bandpass filters with
subscripts from 1 to n and represents each band. The number
of bands depends on the range of frequencies of interest and

is variable. The features of the signals are first calculated
without subjecting it to any filtering operation, as discussed
above. The same input signal is also passed through different
bandpass filters with desired centered and band frequencies.
The FFT and the PSD of the filtered signals are averaged
over that frequency range. To the best of our knowledge, this
procedure of dividing signal into different frequency bands
and taking average of the FFT and PSD as feature vectors for
fault detection in rotating machinery is not reported in the
literature.

2.3 Time–Frequency Domain Features

The input signal was first divided into multiple segments of
equal length using Hanning window, and then, the STFT of
each segment was computed using Eq. 3

X(m, w) =
∞∑

N=−∞
x[n]w[n − m] exp− jwn (3)

where x[n] is the data, w[n] is the window function and
X(m, w) is the STFT of x[n]w[n − m]. In the simulation,
the Hanning window is used. To compute the feature vector,
the STFT values of each windowed segment were averaged
to form a spectrogram-based feature vector.

3 Signal Analysis for Fault Detection

This section gives the statistical and signal processing analy-
sis of audio signals. The machine learning (ML) techniques
have the ability to detect minute differences and hence can
classify the signals into different faults. However, to discuss
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Fig. 2 Test rig block diagram and specifications

the signals in depth, the graphs that can be analyzed with
naked eyes are discussed here. The sound signal of healthy
and faulty signals was recorded, using a single microphone,
with a sampling rate of 40,000 samples per second and shaft
rotating at a rate of 800 revolutions per minute. The micro-
phone was mounted at different distances ranging from 2 to
3cm from the machinery under test, with bearings having
ball, inner race and outer race faults. The block diagram of
the test rig and other specifications are given in Fig. 2.

In contrast to the laboratory settings, sound signals in
heavy industries are affected by noise contributed by differ-
ent types ofmachinery. Hence, in such cases it is necessary to
filter out the signal of interest from other unwanted signals.
This limitation can be overcome by physically installing our
sound signal-based fault detection system in amanner tomin-
imize the effects of unwanted noise. For example, in simple
machines such as vacuum cleaner, the same sound signal can
be used to classify different faults [12] and no signal separa-
tion is required. This physical isolation of sensors can work
efficiently in simple mechanical setups; however, in case
of heavy industry or for complex environments, additional
sound separation algorithms, e.g., independent component
analysis (ICA) [20], are required. Installation of sensors for

sound separationmayvary from industry to industry based on
how different mechanical systems are mounted. This paper
is an initial attempt of shifting toward sound-based fault
detection in rotating machinery only. With the help of signal
separation algorithms, our method can also be extended to
efficient classification of other faults like gear faults and shaft
misalignment, etc., in complex environments.

3.1 Statistical Analysis

Statistical techniques are widely used for the analysis of
almost every type of data, whether stationary or non-
stationary. These are well-established techniques including
median, mode, kurtosis, RMS, standard deviation, regres-
sion, correlation, etc. The timedomain sound signals of faulty
and healthy bearingswere analyzed using skewness, standard
deviation, RMS values and kurtosis.

Figures comparing the selected statistical analysis are
shown in Fig. 3. In Fig. 3a, the skewness comparison of the
healthy sound signal is compared with that of the signals
with ball fault, outer race fault and inner race fault. It can be
seen that the healthy signal has the highest skewness in all
the cases followed by that of the inner race fault, ball fault
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(a) (b)

(c) (d)

Fig. 3 Statistical analysis of healthy and faulty signals

and outer race fault and hence can easily be differentiated. In
Fig. 3b, the standard deviation of the same signals is shown.
Here a gradual decrease can be seen from healthy signal to
signals with ball fault, inner race and outer race fault. Similar
results were obtained using the RMS values of the signals as
shown in Fig. 3c. In case of kurtosis as in Fig. 3d, the kurtosis
of the signal with outer race fault is the maximum, followed
by that of the signal with inner race fault, healthy signal and
ball fault signal. The standard deviation and RMS support
results of each other, while the skewness and kurtosis give
similar patterns except for the outer race fault.

These statistical values were used as characteristic vectors
for training differentmachine learning algorithms, to classify
the signals into different fault groups and is discussed in
Sect. 4.

3.2 Frequency Domain Analysis

In this section, the frequency domain analysis is carried out
using Fourier transform, envelop analysis and power spectral
density (PSD) analysis of the faulty and non-faulty signals.
In the first attempt, the FFT, envelope detection and PSD
of the whole signal are calculated as shown in Figs. 4, 5
and 6, respectively. In the second part, both the healthy and
faulty signals were passed through bandpass filters and the
average values of the FFT and PSD at those frequency bands

were calculated as shown in Figs. 7a, b, respectively. In all
these figures, the x-axis shows frequency inHz and the y-axis
shows magnitude in watts/Hz.

Figure 4 shows the frequency spectrum of the healthy sig-
nal and signals with ball fault, inner race fault and outer
race fault. Figures are zoomed for easy readability. Fig-
ure 4a shows spikes at around 100, 200 and 300Hz, while
after 400Hz the graphs become almost smooth, due to high-
frequency noise. The graphs at 100, 200 and 300Hz are
zoomed for easy readability and shown in Figs. 4b–d, respec-
tively. The healthy signal and signals with outer and inner
race faults are almost centered at 99.7Hz, while the signal
with ball fault is centered at 100.3Hz as shown in Fig. 4b.
The high spike of outer race shows that the fault in outer
race is thin and hair like, while the wider spike of inner
race shows that the fault in inner race is dent like and rel-
atively wider as compared to the fault in inner race. The
signal showing ball fault is slightly shifted to the right as
the dent in ball has changed the ball frequency. The original
frequency of the shaft is 800 rev/min or 13.33Hz, and the
frequencies at which these spikes occur are multiples of the
basic frequency. However, all these spikes are slightly shifted
to right. Same patterns are repeated at almost 199.7Hz and
299.7Hz in Figs. 4c, d, respectively. There are some small
spikes at frequencies 13.33Hz and its multiples, correspond-
ing to the fundamental shaft frequency; however, their effect
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Fig. 4 FFT of healthy and faulty signals

is negligible as compared to the spikes at the above fre-
quencies. The cumulative effect of spikes, at fundamental
frequency and its multiples, will be analyzed using PSD, the
average FFT and average PSD discussed at the end of this
section.

Figure 5 shows the envelope detection of healthy and
faulty signals. These figures are also zoomed for easy read-
ability. These graphs show comparable results as discussed
above in the case of Fourier transform, having similar graphs
and spikes. Spikes related to healthy and faulty signals at
99.7Hz, 199.7Hz and 299.7Hz are given in Figs. 5b–d,
respectively. Similarly, spikes at fundamental frequency and
its multiples seem to be ineffective at this stage; however,
their cumulative effect will be discussed with PSD, the aver-
age FFT and average PSD.

To further assess the behavior of these signals, the power
associated with the spectral components (PSD) is shown in
Fig. 6. Figure 6a gives spikes at around 100, 200 and at
300Hz; however, after 300Hz, the graph becomes almost
smooth with no further information. Similarly, the spikes at
fundamental frequencies that were visible in the previous
graphs are negligible here. The graph is zoomed at 100Hz,
200Hz and 300Hz and is given in Fig. 6b–d, respectively.
In Fig. 6b, the spikes are more clear as compared to Figs. 4
and 5. The power associated with the signal having outer
race fault is concentrated in a very narrow frequency range
and leads the healthy signal. The power associated with the
signal having inner race fault is wider as compared to the
other signals and spans over the combined frequency range
of healthy and outer race fault, while signal with ball fault
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Fig. 5 Envelope detection of the healthy and faulty signals

lags all the signals. Similar patterns are repeated at 199.7 and
299.7Hz in Fig. 6c, d.

However, the differences between the graphs discussed
above can easily by classified into healthy and faulty signals.
However, to further analyze the signals at specific frequency
bands, the signals were passed through a bank of bandpass
filters, with frequencies centered at 15Hz and its multiples,
havingwidth of 30Hz each. The averages of the FFTandPSD
at those frequency bands were calculated and are shown in
Fig. 7.

As shown in the previous graphs, most of the signal power
is concentrated below 450Hz; therefore, the signals are fil-
tered upto a maximum of 1000Hz only. The average FFT
in Fig. 7a shows spikes at around 99.7, 199.7 and 299.7Hz,
while beyond 450Hz the amplitude decreases rapidly. The

average PSD in Fig. 7b is more clear, giving spikes at same
frequencies, with maximum power related to healthy signal,
followed by signals with inner race, ball and outer race fault.
Here the power drops considerably after 350Hz.

Similarly, the RMS values of the FFT and the PSD are
shown in Fig. 8a, b, supporting the results of the averaged
FFT and PSD graphs shown in Fig. 7.

3.3 Time–Frequency Analysis

Time–frequency graphs give analysis of the spectral com-
ponents along with the time of its occurrence. These include
algorithms like short-term Fourier transform, Hilbert–Huang
transform,wavelet transform, etc. In this section, the STFTof
the signals is taken and discussed and other time–frequency
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Fig. 6 Power spectral density of healthy and faulty signals

techniques will produce different graphs and may give bet-
ter results, however, including all types of time–frequency
analysis algorithms which need a full and dedicated research
paper. The STFT of the signals is given in Fig. 9, show-
ing graphs of healthy signal, signal with ball, inner race and
outer race faults, in Fig. 9a–d, respectively. All the graphs
support previous results by giving spikes at the frequen-
cies discussed above, while the smaller spikes at multiple
of 13.33Hz are negligible, except for the outer race fault as
shown in Fig. 5a, d. It can be seen that the high power fre-
quency components are present between 200Hz and 300Hz
and at frequencies near 100Hz, giving reasons for the high
amplitude of signal with outer race fault in the previous fig-
ures.

4 Classification of Faults

This section outlines the supervised machine learning tech-
niques for fault classification with our proposed features
extracted in the previous steps.

We begin by defining s = [s1, s2, . . . , sp]� ∈ R
p to be

the p-dimensional feature vector that is constructed from the
statistical and frequency domain features extracted from a
sound signal. Let G = {s j }gj=1 ∈ R

p×g be the training data
matrix containing g normalized feature vectors. The number
of fault categories (classes) is denotedwith c, and the discrete
class labels are represented by Y = {y j }gj=1.

The problem of sound-based fault classification involves
estimating the label yt of a test feature vector st ∈ R

p (rep-
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Fig. 7 Comparison of average FFT, PSD and power bins of the healthy and faulty signals
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Fig. 8 Comparison of RMS values of FFT and PSD of the healthy and faulty signals

resenting the sound signal) given the labeled training data
G. To demonstrate the effectiveness of our proposed features
for fault classification, we perform experiments using well-
known classical supervised learning algorithms including
support vector machines (SVMs), Mahalanobis distance-
based nearest neighbor (NN), sparse discriminant analysis
(SDA) and kernel linear discriminant analysis (KLDA).

A brief summary of these learningmethods is given below.

4.1 K-nearest neighbors (KNN)-based classification

A popular distance measure between two feature vectors si
and s j is the Mahalanobis distance which is defined as [61]

d = (si − s j )�C−1(si − s j ) (4)

where C ∈ R
p×p is the covariance matrix computed using

the training feature vectors. For small training sample size,
C is computed as a diagonal matrix where diagonal elements
correspond to the feature variances. A test feature vector st is
assigned the label of the training sample having theminimum
distance d with st . We then extend this strategy to a voting-
based K -nearest neighbor classification.

4.2 Support Vector Machine (SVM)

Support vector machine is a popular supervised learning
method originally designed for two class classification prob-
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Fig. 9 STFT of healthy and faulty signals

lems (y j ∈ {1,−1}). SVM algorithm learns the parameters
of an optimal hyperplane that separates two classes with the
largest possible margin. This is achieved by optimizing the
following objective function using the training data:

min
w,b,ξ

⎛

⎝1

2
w�w + C

∑

j

ξ j

⎞

⎠

s.t . y j (ws j + b) ≥ 1 − ξ j , ξ j ≥ 0 (5)

where C is the regularization constant, w and b represent
the hyperplane and ξ j are used to incorporate the non-
separable cases. For nonlinear separation, the constraint
y j (wφ(s j ) + b) ≥ 1 − ξ j , ξ j ≥ 0 can be introduced to

perform the computation in an implicit higher-dimensional
space. After computing the parameters of the optimal hyper-
plane, the label yt of a test feature vector st is determined
using the sign of wst+b

‖w‖ . Since we are classifying multiple
faults categories (four classes), therefore, we have extended
the binary SVM to multi-class SVM via a one-versus-all
strategy. For a more elaborate understanding of the SVM
method, readers are referred to [21,57]. We used LibSVM
[16] library to compute the parameters of the hyperplane.

4.3 Kernel Linear Discriminant Analysis (KLDA)

KLDA is used to represent data more efficiently via super-
vised dimensionality reduction. It means that the features
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that are less useful for fault classification will be suppressed
by KLDA. KLDA is applied when the classes to be sepa-
rated are not linearly separable in the original feature space.
For achieving this, KLDA learns nonlinear projections that
transform the p-dimensional training feature vectors to c−1-
dimensional vectors which are then classified using linear
methods (such as SVM) with higher accuracy. KLDA relies
on a kernel matrix computed via dot products in a very
high-dimensional feature space induced by nonlinear map-
ping function φ : R

p �→ H. However, due to huge cost
involved in the explicit computation of the mapping φ, the
kernel trick is used and the kernel matrix is computed in
the original feature space using a valid kernel function:
K(i, j) = k(si , s j ). We employ the polynomial family of
kernel functions k(si , s j ) = (si .s j )β , where (·) denotes the
dot product and β is the order of the kernel. Given an input
kernel K, KLDA solves the following objective function [9]

αopt = argmax
α�KWKα

α�KKα
, (6)

where α = [α1, . . . , αg]�. W ∈ R
g×g is a block-diagonal

matrix:W = diag{W1,W2, . . . ,Wc}, whereW j ∈ R
m j×m j

have every elements equal to 1
m j

(m j represent the number
of samples in class j). The largest eigenvectors of (KK +
εI)−1(KWK)α = λα give the optimal solution. A transfor-
mation matrix is then constructed from the (c− 1) dominant
eigenvectors ( Λ = [α1, . . . ,αc−1] ∈ R

p×(c−1)), and the
training data matrix is projected onΛ to perform dimension-
ality reduction. At testing stage, the test feature vectors are
also projected to the discriminative low-dimensional KLDA
space and any linear classifier can be deployed for label
estimation. We used the nearest neighbor after KLDA for
simplicity.

4.4 Sparse Discriminant Analysis (SDA)

SDA learns discriminative feature representations as sparse
linear combinations of the given features. In our case, SDA
will learn sparse combinations of statistical and frequency
domain features to represent the sound signals more dis-
criminatively. Let Q ∈ R

g×c be a indicator matrix where
Qi j indicates whether the i th observation belongs to the j th
class. The formulation of SDA involves a combination of the
optimal scoring criterion and the elastic net [19]

min
βi ,θ i

(
‖Qθ i − G�β i‖ + λ‖β i‖1 + γ ‖β i‖2

)

s.t .
1

g
θ�
i Q

�Qθ i = 1, θ�
i Q

�Qθ l = 0∀l < i (7)

where θ i ∈ R
c is the score vector and β i ∈ R

p is the coeffi-
cient vector. The SDA algorithm in [19] is used to compute

Table 1 Classification of faults with statistical analysis

Classifier Kurtosis Skewness STD Combined

SVM 0.241 0.241 0.241 0.2944

KNN 0.250 0.250 0.250 0.3823

SDA 0.241 0.214 0.213 0.6181

KLDA 0.424 0.424 0.424 0.6620

the solution B = [β1, . . . ,β(c−1)]. The training features are
then projected on B for a low-dimensional representation.

At testing stage, the test feature vectors are also projected
on B and a linear classifier is used for label estimation. We
used the nearest neighbor for simplicity.

4.5 Experimental Settings

To simulate the practical settings for sound-based fault clas-
sification, classification was conducting on the sound signals
measured in different sessions. For every fault class, sound
signals measured in one session were randomly chosen as
testing data and signals measured in the rest of the sessions as
training data. Hundred experiments were conducted by ran-
domly generating different training and test combinations.
Average classification accuracy of these 100 experiments
was then reported. The simplest test settings were chosen
for the classification algorithms by setting parameter β to 1
(linear kernel) in KLDA and SVM. C = 100 in SVM. The
experiments were performed with the base setting to assess
the effectiveness of the proposed features. Careful parameter
tuning can be performed to further enhance the accuracy of
classification further.

4.6 Results

The statistical, frequency and time–frequency feature vectors
as discussed in Sect. 3 were used to train different classifiers
as discussed above. The results are tabulated in Tables 1, 2, 3
and 4 for statistical features, frequency domain features,
frequency domain features after passing the signal through
bandpass filters and time–frequency features, respectively.
There are a number of other statistical, frequency and time–
frequency features, which can be utilized; however, in this
researchwork only a subset of different domains are selected.

The statistical features, including kurtosis, skewness, stan-
dard deviation (STD) and the combination of these three,
were subjected to SVM, KNN, SDA and KLDA for classifi-
cation into healthy, ball, inner race and outer race faults. For
these statistical features, the results are not very encouraging.
The highest accuracy is given by KLDA with the combina-
tion of all the given statistical features as shown in the last
entry of Table 1.
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Table 2 Classification of faults with frequency domain analysis

Classifier FFT Envelop PSD Combined

SVM 0.398 0.401 0.281 0.369

KNN 0.544 0.760 0.876 0.557

SDA 0.810 0.916 0.964 0.986

KLDA 0.911 0.936 0.941 0.961

Table 3 Classification of faults with frequency domain using bandpass
filter

Classifier Average
FFT

Average
PSD

RMS
FFT

RMS PSD Combined

SVM 0.557 0.548 0.245 0.631 0.569

KNN 0.973 0.872 0.250 0.885 0.973

SDA 0.894 0.911 0.249 0.881 0.986

KLDA 0.99 0.981 0.241 0.982 0.991

The frequency domain features and their results from dif-
ferent classifiers are given in Table 2. The features include
FFT, envelope detection, PSD and the combination of all
these. The power of the FFT and envelope signals at the
frequency range with high spikes were calculated as fea-
ture vectors. In the first attempt as given in column nos.1,
2 and 3 of Table 2, only the FFT, envelope and PSD data
were forwarded to the classification algorithms. In the sec-
ond attempt, all the three types of data were concatenated
as a single vector and forwarded to the classification vector.
Considering the feature vectors of single entities like FFT
or PSD or envelope, etc., the SDA outperforms all the other
classificationmethods for PSD, followedbyKLDAwithPSD
and envelope detection. However, in case of combining all
these feature vectors, the SDA gives better results followed
by KLDA, KNN and SVM.

The results after passing the audio signal through the band
pass filter and averaging the FFT and PSD values, RMS val-
ues of PSD and RMS values of FFT and the combination
of all these features, are given in Table 3. In this case, the
KLDA gives better results for average FFT and for combined
features, followed by the average PSD values and RMS of
the PSD. The RMS values of the FFT give the worst results
with all the classifiers as compared to frequency and time–
frequency features, discussed below.

The time–frequency results are given in Table 4, using
STFT as the feature vector. Hanning window is used in STFT
as stated in Sect. 2. The Fourier transform values resulted
from each Hanning window are averaged before giving to
the classification algorithm, in order to reduce the number of
comparison points and reduce computational burden on the
classification algorithm. Here again the KLDA outperforms
the other classifiers.

Table 4 Classification of faults
with time–frequency (STFT)
analysis

Classifier STFT

SVM 0.566

KNN 0.604

SDA 0.671

KLDA 0.819

From the results given in these tables, it can be concluded
that in case of the classifiers, the KLDA accurately classified
the signals into different faults followed by SDA, KNN and
SVM. As far as the feature vectors are concerned, average
FFT and combination of all the features give better results,
followed by the average PSD and the RMS values of PSD.

5 Conclusion

In this work, we employed audio signals to detect and clas-
sify faults in rotating machinery that use bearings. The
sounds of machinery with and without faults were recorded
using a single microphone. Different statistical, time and
time–frequency features of the signals were calculated and
analyzed for different patterns arising from different faults.
These features were used to train different machine learn-
ing models, and the faults were successfully detected and
classified into ball, inner race and outer race faults. Best
results were achieved with the average FFT followed by
average PSD and the RMS values of the PSD. The time–
frequency features gave relatively lower results and worst
results by the statistical features. In the case of sound sig-
nals, the KLDA outperformed other classification algorithms
followed by SDA and KNN. From these results, it can be
concluded that the sound signals can be used as an alternate
method of fault detection to that of vibration and acoustic
analysis for fault classification in rotatingmachinery, atmuch
lower cost and with simple and remote installation.
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