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Abstract Fisheries acoustics is now a standard tool for monitoring marine organisms. Another use of active-acoustics
techniques is the potential to qualitatively describe fish school and seafloor characteristics or the distribution of fish density
hotspots. Here, we use a geostatistical approach to describe the distribution of acoustic density hotspots within three fishing
regions of the Northern Demersal Scalefish Fishery inWestern Australia. This revealed a patchy distribution of hotspots within
the three regions, covering almost half of the total areas. Energetic, geometric and bathymetric descriptors of acoustically
identified fish schools were clustered using robust sparse k-means clustering with a Clest algorithm to determine the ideal
number of clusters. Identified clusters were mainly defined by the energetic component of the school. Seabed descriptors
considered were depth, roughness, first bottom length, maximum Sv , kurtosis, skewness and bottom rise time. The ideal
number of bottom clusters (maximisation rule with D-Index, Hubert Score and Weighted Sum of Squares), following the
majority rule, was three. Cluster 1 (mainly driven by depth) was the sole type present in Region 1, Cluster 2 (mainly driven
by roughness and maximum Sv) dominated Region 3, while Region 2 was split up almost equally between Cluster 2 and 3.
Detection of indicator species for the three seabed clusters revealed that the selected clusters could be related to biological
information. Goldband snapper and miscellaneous fish were indicators for Cluster 1; Cods, Lethrinids, Red Emperor and
other Lutjanids were linked with Cluster 2, while Rankin Cod and Triggerfish were indicators for Cluster 3.
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1 Introduction

Fisheries acoustics is a tool used by scientists and fishermen
alike [1–3]. Fishermen often use active-acoustic instruments
(e.g., echosounders) to support their search for high-quality
fishing grounds, to determine bottom depth, and in some
situations to derive information about the seabed struc-
ture [4]. Fisheries scientists commonly use active-acoustics
to estimate stock abundance and biomass of marine fish
species [5–8]. Due to the growing interest of fishers and sci-
entists in active-acoustic technology, it is unsurprising that
manymodern fishing vessels are equipped with scientifically
rated echosounders [1,4,9–11]. Such echosounders can be
calibrated and are capable of recording rawacoustic datawith
a minimal amount of internal data manipulation [1,4,10].
Due to their time at sea and distances travelled, opportunis-
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tic recording of acoustic data by fishers at sea can deliver new
insights into the distribution and structure of the targeted fish
species in the area. Such data can be used to compliment data
collected during existing scientific monitoring programmes,
to improve the spatial and temporal effectiveness of these
surveys [4].Where dedicated scientific surveys provide good
snapshots of the presence and abundance of fish contained
within the surveyed region at the time of the survey, data
collected on vessels of opportunity (e.g., fishing vessels)
can give a broader picture on a wider temporal and spatial
scale [4]. Deriving information such as density hotspots [12]
or geostatistical indices [13–15] of this data can then support
an informed decision process on surveying strategies.

In the higher latitudes (north and south), in temperate cli-
mate regimes, fisheries acoustics have become a standard
tool for monitoring many pelagic fish stocks [8]. These fish
species generally form single-species aggregations, making
them ideal for acoustic monitoring. In contrast, in tropi-
cal ecosystems, fish often occur in mixed-species schools
with a much higher species diversity and, as such, species-
specific acoustic assessment is more difficult [16–19]. While
post-processing techniques based on multi-frequency acous-
tic data are able to distinguish between different functional
groups, such as phytoplankton, zooplankton, swimbladder
and non-swimbladder fish, distinguishing between similar
species in mixed schools is more challenging [17,20,21].
Although supervised (e.g., feed forward neural networks [22,
23]) and unsupervised (e.g., clustering [16,24], random for-
est classification [25] and self-organising maps [26,27])
methods for acoustic target classification exist, their applica-
tion remains limited. Most classification methods used in
fisheries acoustics are empirical, for example, the use of
classification feature libraries [28] or frequency response
characteristics [17,29]. These methods are both data-driven
and dependent on expert judgement [30]. They generally
require data collected by additional sampling methods [31].
Unsupervised or supervised modelling approaches to tar-
get classification are advantageous in situations where no,
or limited, dedicated alternative sampling observations are
available [16].

Moving towards an ecosystem approach in fisheries man-
agement (EBFM), the identification of different habitats and
their association with different marine species is impor-
tant [32,33]. Fisheries acoustics is considered as being one
of the main tools to provide the basis for EBFM [19,32,33].
In addition to the detection of fish, active-acoustics can be
used to derive information about seabed characteristics [34–
37]. Seabed properties have been shown to play an important
role in the habitat description of demersal and semi-demersal
fish species [38–42]. An enhanced understanding of the
distribution of acoustic density hotspots and fish school char-
acteristics, in conjunction with habitat characteristics, has
the potential to improve the monitoring and management

Table 1 Summary of the three fishing regions

Region Area
(nmi2)

Mean
depth (m)

Depth
range (m)

Period of data
collection in 2014

1 33 124 120–130 03/12–07/12

2 129 78 61–90 29/10–08/11

3 211 91 76–103 19/08–30/08

of mixed-species fisheries in tropical environments [43,44].
Here, we use acoustic and catch information collected on a
commercially operating trap fishing vessel to identify den-
sity hotspots, describe acoustic diversity of fish schools and
identify different acoustic seabed habitats within three fish-
ing regions.Defined clusters of school and seabed descriptors
were then linked to catch information to investigate the eco-
logical meaning of the clusters.

2 Methods

2.1 Study Area

The Northern Demersal Scalefish Fishery (NDSF) is a
mixed-demersal trap fishery which encompasses an area of
408,400km2. In the northwest of Australia, off the coast
of Broome, the NDSF extends to the shelf edge close to
the Indonesian border. All data were collected on board FV
CarolinaM, a 15m trap fishing boat, during normal commer-
cial operations. In this study, we focussed on three fishing
regions where simultaneously collected acoustic and biolog-
ical information was available. Details on the total area of
the three fishing regions, delimited by manually drawn poly-
gons, and the period of data collection are given in Table 1,
with additional information found in [11,45]. Fishing regions
were defined as areas where high densities of fishing and
acoustic data were available. An overview of the locations of
the three fishing regions and acoustic recordings are given in
Fig. 1.

2.2 Biological Sampling

Catch information on all specimens was obtained by a GoPro
Hero 3 cameramounted on each trap as itwas hauled onboard
(see [11,45] for details). The downwards looking camera,
facilitated recording of all fish caught within the trap before
the catch was split into commercially relevant species or
returned to sea. The optical recordings of the catch facilitated
counting of fish per species group. Length measurements of
the individual fish was based on pixel counting, calibrated
through the known, constant mesh size of the traps. Cali-
brated video recordings were corrected for the built-in wide
angle distortion, and subsequent processing was performed
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Fig. 1 Map of a part of the NDSF area off Broome in Western Aus-
tralia. The location and extents of the three selected fishing regions are
indicated by the three white polygons. Locations of acoustic recordings
are shown as red dots

using a custom built software package, FishVid [11,45].
Specimens were categorised into nine groups [11,45] (for
simplicity referred to as species groups): Goldband snap-
per (Pristipomoides multidens), Red Emperor (Lutjanus
sebae), Saddletail (Lutjanus malabaricus), Lutjanids (mem-
bers of the Lutjanidae family, other than Saddletail, Red
Emperor or Goldband snapper), Lethrinids (members of the
Lethrinidae family), Rankin Cod (Epinephelus multinota-
tus), Cods (members of the Epinephelidae family other than
Rankin Cod), Triggerfish (members of the Balistidae family)
and a miscellaneous group containing all other species.

2.3 Acoustic Data Processing

All acoustic data were collected (Fig. 1) using calibrated [46]
hull-mounted SIMRAD ES-70 split-beam echosounders
operating at 38 and 120kHz. All settings were the same as
those used during normal commercial operations. A detailed
description of these settings and the acoustic processing steps
can be found in [11,45]. All acoustic processing was con-
ducted in Echoview 7.0 [43]. Ping geometry and times were
matched for 38 and 120kHz [47,48]. Effects of impulse noise
(mainly caused by non-synchronised echosounders), tran-
sient noise (mainly caused by poor weather conditions) and
background noise (mainly caused by the vessels engine and
bad weather [49,50]), were minimised through adaptation of
filters described by Ryan et al. [50].

All fish observed in the catch possessed a swimbladder.
This allowed for the application of a simple bi-frequency
algorithm to differentiate between fish and fluid-like (e.g.,

plankton) targets [45,51,52]. Volume backscattering coef-
ficients (sv; m2m−3) of acoustically detected fish schools
were integrated (sA; m2 nmi−2) and averaged over 1nmi by
10m grid cells, starting at a depth of 10m (outside the near-
field) to 1m above the seabed (to avoid inclusion of seabed
echoes). Effects of the acoustic deadzone were compensated
through the application of methods described by Ona and
Mitson [53].

2.4 Acoustic Density Hotspots: A Geostatistical
Approach

In this study, acoustic density hotspots (hereafter referred
to as hotspots) are defined as areas with high concen-
trations of sA. These hotspots are considered as proxies
for areas of higher than average fish densities. Generally,
hotspots are identified through the application of a subjec-
tive threshold [54] which are mostly based on the cumulative
distribution function of the data [55] or defined through a
kernel [56]. Here, we apply a local, nonlinear rule for iden-
tifying hotspots [12]. Thresholds are based on the spatial
relationship between data points above a cut-off value and
those below the cut-off value [12]. Cut-off values are based
on local transition probabilities, which can be temporally and
spatially variable [12].

Seven sA cut-off values (0.01, 10, 50, 100, 200, 400 and
600m2 nmi−2), ranked from one to seven, were used. For
each of the sA cut-off values binary indicator sets (1 if above
sA cut-off; 0 if below sA cut-off) and variograms were gener-
ated. The ratio between two indicator variograms of a lower
first sA cut-off value and a higher second sA cut-off value pro-
vides the transition probability of moving from the indicator
set defined by the lower sA cut-off value into the indicator set
defined by the higher sA cut-off value. The variogram ratio
is defined over the distance described within the variogram
models. If the variogram ratio increases with distance, the
indicator set defined by the higher sA cut-off value tends to
be positioned in the central part of the indicator set defined
by the lower sA cut-off value. If the variogram ratio is flat
(pure nugget), the data points contained within the indicator
set of the higher sA cut-off value are randomly distributed
within the indicator set of the sA lower cut-off value, the
geometries of both indicator sets are spatially uncorrelated
(no edge effect). If the sA cut-off is high, the variograms tend
to be described by a pure nugget effect (unstructured data),
due to destructuration [57]. The sA cut-off is defined as the
lower value of the pair where no edge effect is observed and
above which the residuals are ideally pure nugget. This sA
cut-off value becomes the top cut in the model described in
detail by Rivoirard et al. [58]. Ordinary kriging was used to
map the hotspot probabilities and indicator kriging was used
to clearly differentiate the hotspots.
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Table 2 Description of the
eleven acoustic school
descriptors used as inputs into
the robust sparse k-mean
clustering algorithm used to
define school clusters

Descriptor Unit Definition

Geometric

Height mean m The extent of the school in the vertical direction

Corrected length m The horizontal dimension of the school in the plane of an
echogram, corrected for beam geometry

Corrected thickness m The vertical dimension of the school in the plane of an
echogram, corrected for beam geometry

Corrected area m2 The cross-sectional area of the school in the plane of the
echogram, corrected for beam geometry

Corrected perimeter m The length of the perimeter of the school, in the plane of an
echogram, equivalent to the distance around each sample at
the edge of the region, corrected for beam geometry

Image compactness Indicator of roundness of the school. It is the dimensionless
ratio between the squared perimeter of the school and the area
of the school. A perfect circular school will have an image
compactness of 1

Energetic

Sv mean dB re 1m2 m−3 The mean volume backscattering volume is the sum of the
backscattering cross-section divided by the sampling volume

Corrected MVBS dB re 1m2 m−3 The mean volume backscattering volume corrected for known
beam geometry based on the corrected mean amplitude in the
school

Sv max dB re 1m2 m−3 Sv max is analogous to Sv mean the maximum Sv value within
the school, above the defined minimum threshold and below
the minimum threshold

Skewness A statistical measure of how skewed the distribution of the
samples within the school are

Bathymetric

Mean depth m Mean depth of the school where depth is the linear distance
from the surface along the vessel axis to the centre of the
school

2.5 Acoustic School Descriptors

A set of eleven school descriptors (six geometric, four ener-
getic (for both frequencies 38 and 120kHz) and one bathy-
metric) were extracted for each school from the acoustic data,
largely following the methods described in [16] (Table 2).
The geometric descriptors were mean height [height mean
(m)], length [corrected length (m)], area [corrected area
(m2)], perimeter [corrected perimeter (m)] and roundness
of the school (Image compactness) (Table 2). Energetic
descriptors were mean backscattering volume [Sv mean (dB
re 1m−1)], beam geometry corrected Sv mean [corrected
MVBS (dB re 1m−1)], maximum Sv [Sv max (dB re 1m−1)]
and skewness (skewness) (Table 2). The bathymetric descrip-
tor was mean depth of the school [mean depth (m)] (Table 2).
These descriptors were used to describe the characteristics
of the fish schools to categorise them into different clusters.

2.6 Clustering

Clustering of acoustically detected fish schools, using school
descriptors, was applied to each of the three fishing regions

separately, as they were spatially and temporally discon-
nected. Only schools observed at an altitude of less than 20m
from the seabed were considered. This allowed for improved
comparisonwith biological information and omitted analysis
of pelagic fish species. Schools observed during night-time
were excluded from clustering as diurnal migration patterns
have been observed within the study area [45]. Times of sun-
rise and sunset within the study area were around 06:00 and
18:00, respectively [11] at the time of data collection.

An unsupervised clustering algorithm, robust sparse k-
means clustering (RSKC) [59], was used to label the differ-
ent school clusters based on the energetic, geometric and
bathymetric descriptors. Ideally, clustered groups should
represent biologically meaningful categories, for example,
group together species that have similar morphology and
which show similarities in their aggregation structure [16].
RSKC is a relatively new clustering algorithm which com-
bines the trimmed k-means [60] and the sparse k-means [61]
algorithms, which are both derivatives of the k-means algo-
rithm. The main strength of the RSKC, compared to other
k-means algorithms, is its robustness against noisy data con-
taining outliers. This is useful for acoustic data where sudden
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large variations are not uncommon. Maximisation of dissim-
ilarities is based on the squared Euclidean distance, rather
than the normal Euclidean distance, giving more weight to
points at a greater distance [59]. The algorithm assumes
that the dissimilarity between clusters is additive, depend-
ing on the contribution of each descriptor. Using the Lasso
method [62], a weight w, constrained to a tuning parameter
I1 [1:

√
Nfeatures] is attributed to each descriptor in order to

maximise the separation of clusters. Here, I1 was kept at a
maximum, giving non-zero weights to all descriptors.

Any k-means algorithm requires the number of clusters to
be defined a priori [24]. The number of clusters was selected
using the “Clest” algorithm [59,63]. The optimal number
of clusters is based on the maximisation of the predictive
power of the model, which is based on random subsamples
of the data (random validation was executed 15 times). Vali-
dation of the predictive power is based on the Classification
Error Rate (CER) [64]. The accepted optimal number of clus-
ters is obtained through minimisation of the subtraction of
the median CER for different numbers of clusters (CERObs)

and the median expected CER under the null hypothesis,
where the number of clusters equals one. The expected CER
was computed using five different datasets generated through
Monte Carlo sampling.

The similarities of the schools and the cluster they were
attributed to were tested through revised silhouette val-
ues [65]. The revised silhouette plot and value represent a
measure of cohesion, i.e., they describe how similar a school
is to the cluster it is contained in compared to the other clus-
ters. Revised silhouette values range from −1 to +1, where
a value close to +1 has a high similarity with the cluster
[65]. The influence of the different descriptors on the clus-
tering was shown through Principal Component Analysis
(PCA) [66]. The characteristics of the different clusters are
illustrated through a parallel coordinate plot [67]. Indicator
kriging was used to producemaps of themost dominant clus-
ters within the three regions. Catch information was linked
with school descriptor clusters through distance minimisa-
tion.

2.7 Habitat Description

To describe the habitat associated with the fish schools,
seafloor characteristics were assessed using acoustic tech-
niques. Seabed characteristics were determined based on
the scattering properties of the first bottom echo on the
recorded echograms. The seabed features exported from
Echoview [68] were bottom depth, bottom roughness, first
bottom length, maximum Sv , bottom rise time, skewness and
kurtosis (see below for details on each seabed feature). All
seabed features, except for bottomdepth,whichwas exported
for every ping, were based on intervals of 15 pings to min-
imise measurement variability [35,69].

Bottom depth was detected using the “best bottom can-
didate” algorithm in Echoview. The algorithm searches for
peaks (i.e. the shallowest detections) within a ping window,
containing eight pings in this study. If no peak is found, the
average of the peaks in the surrounding pingwindows is used.
The maxima of the different retained peaks are summed, and
the highest (i.e. shallowest) value is considered representative
of the bottom response for that pingwindow. These points are
connected to form the final bottom line which is then shifted
towards the transducer until the detected value at individual
points drops below the discrimination level (−50dBrem−1).
Finally, a backstep of 0.2m is added.

The first bottom length refers to the total duration of the
first bottom echo. Firstly, for a bottom echo to be considered
valid, a minimum of three consecutive sample values above
a given threshold (here −60dBrem−1) are required. These
consecutive sample values determine the beginning of the
first bottom echo (i.e. bottom depth). The end of the first bot-
tom echo is then determined using a bottom echo threshold at
1m (dB). The first of three consecutive sample values below
this threshold indicate the end of the first bottom echo.

Bottom roughness is determined from an integration of the
tail energy of the first bottom echo [70,71] as it is assumed
that the energy contained in the first echo is mainly [36]
dependent on the bottom roughness. A rough bottom will
have an increased, more complex surface and therefore an
increased integration interval (longer tail due to the delayed
arrival of energy packets at the transducer face), resulting
in an increased bottom acoustic roughness index. Smoother
seabeds act more like acoustic mirrors, reflecting the incident
energy directly to the transducer, resulting in a steep, sharp
peak, with a small or no tail.

Kurtosis and skewness describe the shape of the probabil-
ity distributionof sample values.Kurtosis sometimes referred
to as “peakedness” is a measure of the variability in sample
values in the first bottom echo and is defined by the “tailed-
ness” of the data. This means that the higher the kurtosis,
the higher the proportion of variance which is explained by
extreme deviations. Skewness describes the asymmetry, i.e.
how unbalanced the sample values are, or how the distri-
bution of sample values deviates from a normal distribution
towards either tail.

Maximum Sv is the maximum energy reflected by the bot-
tom and can, to a certain extent, be considered as a proxy for
density. For example, a dense substrate such as bedrock is
likely to reflect more energy than a less dense substrate like
sand and therefore have a higher maximum Sv .

Bottom rise time is the rise time of the first bottom echo in
the integration interval. Bottom rise time ismainly influenced
by sudden drops or rises of the seabed.

Maps of the different seabed descriptors were generated
using ordinary kriging. Seabed types were defined and clas-
sified using PCA analysis with k-means clustering. The ideal
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number of clusters (k) was determined using a combination
of the Hubert score [72], D-Index [73] and Weighted Sum of
Squares (WSS) [74]. For WSS, the number of clusters was
determined through comparison of WSS against the num-
ber of clusters. The ideal number of clusters was located
where WSS was minimised or a larger number of clusters
contributed very little to the minimisation of WSS [74]. For
the Hubert score (correlation coefficient between two matri-
ces) [72] and the D-index [73], a knee point that corresponds
to a significant increase of the measurement value was iden-
tified. The final number of clusters was defined through the
majority rule, where the most frequently detected ideal num-
ber of clusters was accepted as the final number. Maps of
the resulting seabed clusters were produced using indicator
kriging.

The clusterswere related tobiological information (derived
from catch data) through indicator species analysis [75],
where the nine species groups were treated as potential indi-
cators. Significance of the relationship was tested through a
permutation test [76]. Indicator values are a statistical tool
used to define which species can be seen as indicators of
a given cluster [76] or a group of habitat clusters [77]. A
significant benefit of the indicator values approach is that it
combines mean abundance and occurrence frequencies of a
given species within a cluster [24,76–78]. Indicator values
are a combination of two components called A and B [24].
A is the probability that a given cluster belongs to the target
cluster, since the selected species group was detected (also
known as specificity or positive predictive value). B is the
fidelity or sensitivity, which is the probability of encounter-
ing the species group within a given cluster [24]. In order
to assess the validity of indicator species for a given cluster,
proportion coverage was computed [75]. Proportion cover-
age or quantity coverage is the proportion of sites where one
of the indicators is found [75].

3 Results

3.1 Acoustic Hotspots

The highest mean sA of 73.6m2 nmi−2 [standard deviation
(SD) 228.24m2 nmi−2] and highest percentage of zero val-
ues (50.9%)were observed in Region 2. Lowermean sA were
observed in Region 1 (54.0m2 nmi−2, SD 120.5m2 nmi−2)

and Region 3 (51.8m2 nmi−2, SD 165.7m2 nmi−2). Region
3 had a percentage of zero values (45.2%) comparable to
Region 2, while this percentage was much lower in Region
1 (25.2%). Within Region 1 and Region 2 the sA cut-off
value was 100m2 nmi−2 which corresponded to the fourth
hotspot indicator value. In Region 3, the region with the low-
est mean sA, the sA cut-off value was detected at the third
hotspot indicator value with an sA cut-off of 50m2 nmi−2.

Fig. 2 Geostatistical hotspots of acoustic density within the three
regions (a Region 1, b Region 2, c Region 3), with the probability
maps on the left and the identified hotspots on the right (light hotspot,
dark no hotspot), relative sA is indicated by size of black circles

In all three regions about half of the total areas were iden-
tified as hotspots (44% in Region 1, 52% in Region 2 and
51% in Region 3). The hotspot indicator, in all regions, was
the last structured indicator defined by the selected sA cut-
off. For higher sA cut-offs, no structure was detected and the
variograms were described by a pure nugget. Hotspots were
patchily distributed in the three regions (Fig. 2). The central
part of Region 1 contained the main density hotspot with
smaller patches observed in the north and south of the region
(Fig. 2a). In Region 2, hotspots were mainly concentrated
in the south of the region while they were largely absent in
the north (Fig. 2b). In Region 3 hotspots were distributed as
patches throughout the region (Fig. 2c).

3.2 Acoustic School Descriptors

The optimal number of clusters determined by the Clest algo-
rithm was two in Regions 1 and 3, and five in Region 2
(Table 3). The median observed Classification Error Rate
(CERObs) was low in all three regions (0.03, 0.12 and 0.08
in Regions 1, 2, and 3, respectively; Table 3). During clus-
tering, the energetic descriptors were the most important for
all clusters in all three regions (Fig. 3; Table 4).
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Table 3 Results of the Clest algorithm which identified three as the
optimal number of school clusters (bold row), with k, number of clus-
ters; dk , test statistic; CERobs and CERref , observational and reference

Classification Error Rates respectively; p, probability of the absolute
CER being higher than the CER under the null hypothesis

k Region 1 Region 2 Region 3

dk CERobs CERref p dk CERobs CERref p dk CERobs CERref p

2 −0.31 0.03 0.34 0.00 0.17 0.24 0.06 1.00 −0.08 0.08 0.15 0.00

3 −0.07 0.24 0.30 0.00 0.21 0.34 0.13 1.00 −0.09 0.16 0.25 0.20

4 0.04 0.13 0.09 0.80 0.00 0.20 0.21 0.40 0.07 0.27 0.20 1.00

5 0.00 0.18 0.18 0.40 −0.05 0.12 0.17 0.00 −0.02 0.17 0.18 0.20

6 −0.01 0.16 0.17 0.20 −0.03 0.11 0.14 0.20 −0.01 0.15 0.17 0.20

7 0.01 0.16 0.15 0.80 0.00 0.12 0.13 0.40 0.01 0.15 0.14 0.60

8 0.01 0.17 0.15 0.60 0.00 0.11 0.12 0.60 0.02 0.14 0.12 1.00

9 0.04 0.17 0.12 1.00 0.00 0.11 0.11 0.60 0.01 0.13 0.11 0.80

Fig. 3 Biplot of the first (PC1) and second (PC2) principal components of the school clusters with circles indicating the 68% confidence intervals
of the clusters obtained from robust sparse k-means clustering for the three regions (a–c), with an indication of the pulling direction of the school
descriptors, where mSv38, mean Sv at 38kHz; mSv120, mean Sv at 120kHz; SvMax38, maximum Sv at 38kHz; SvMax120, maximum Sv at
120kHz; MVBS38, corrected Sv at 38kHz, MVBS120, corrected Sv at 120kHz, H, height, S, skewness, L, length, R, image compactness, P,
perimeter, T, thickness, A, area, D, depth

Table 4 Weights of the descriptors within the robust sparse k-means clustering (RSKM weights) defining the school clusters and contributions to
the first (PC1) and second (PC2) components of the Principal Component Analysis

Region 1 Region 2 Region 3

RSKM weights PC1 PC2 RSKM weights PC1 PC2 RSKM weights PC1 PC2

Svmean38 0.08 −0.27 0.00 0.48 0.29 0.07 0.31 −0.29 0.16

Svmean120 0.47 −0.40 0.15 0.32 0.46 −0.16 0.42 −0.40 0.17

Svmax38 0.19 −0.38 −0.17 0.40 0.40 0.21 0.48 −0.43 −0.04

Svmax120 0.72 −0.53 0.06 0.25 0.43 0.00 0.41 −0.46 0.03

MVBS38 0.11 −0.26 0.22 0.44 0.31 −0.07 0.29 −0.28 0.21

MVBS120 0.33 −0.40 0.23 0.30 0.42 −0.18 0.36 −0.39 0.21

Height 0.00 −0.02 −0.15 0.02 0.10 0.07 0.21 −0.15 −0.27

Skewness 0.31 −0.31 −0.21 0.06 0.24 0.24 0.14 −0.20 −0.17

Length 0.00 −0.05 −0.36 0.26 −0.02 0.41 0.01 −0.05 −0.24

Image compactness 0.00 −0.05 −0.29 0.26 −0.03 0.53 0.00 −0.02 −0.25

Perimeter 0.00 −0.08 −0.52 0.11 −0.01 0.44 0.04 −0.10 −0.39

Thickness 0.00 −0.02 −0.30 0.01 0.08 0.15 0.24 −0.21 −0.50

Area 0.00 −0.06 −0.45 0.01 0.01 0.38 0.03 −0.10 −0.29

Depth 0.00 0.01 0.05 0.01 −0.09 −0.09 0.00 −0.03 0.37
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Fig. 4 Revised silhouette plot for the three regions (a–c), where each silhouette represents one cluster, composed of single lines, each representing
a school. The y axis represents the revised silhouette value and the printed values are the mean revised silhouette value for each cluster

Fig. 5 Parallel coordinate plot of the descriptors considered in the robust sparse k-means clustering for the three regions (a–c), with scaled values
on the y axis. Each thin line represents one school and the thick, coloured lines represent the scaled mean descriptor value of each cluster, where
mSv38, mean Sv at 38kHz; mSv120, mean Sv at 120kHz; SvMax38, Maximum Sv at 38kHz; SvMax120, Maximum Sv at 120kHz; MVBS38,
Corrected Sv at 38kHz; MVBS120, corrected Sv at 120kHz; H, height; S, skewness; L, length; R, image compactness; P, Perimeter; T, Thickness;
A, area; D, depth

The first two principal components of the PCA explained
63.9% of the variation contained within the data in Region
1; 66.0% in Region 2 and 66.2% in Region 3 (Fig. 3). Princi-
pal component 1 (PC1) accounted for 44.5% of the variance
in Region 1, 50.9% in Region 2 and 44.3% in Region 3.
PC1 was predominantly driven by the energetic descriptors
(Table 4). Principal component 2 (PC2) explained 19.4% of
the total variance in Region 1, 15.1% in Region 2 and 21.9%
in Region 3 and wasmainly influenced by geometric features
(Table 4; Fig. 3). All three clusters were mainly separated by
PC1, hence mostly determined by energetic features. High
agreement was found in Regions 1 and 3with average silhou-
ette values of 0.83 and 0.71, respectively (Fig. 4). The highest
agreement was found for Cluster 1 in Region 1, with a silhou-
ette value of 0.89. In Region 2, moderate to high agreement
was found, with an average silhouette value of 0.57. The
highest agreement in Region 2 was found for Cluster 2 with
a silhouette value of 0.70 and lowest for Cluster 4 (0.44)
(Fig. 4).

Given the high influence of the energetic descriptors on the
cluster separation, the clusters can best be described bymean,

correctedmean,max Sv andMVBSat 38 and120kHz (Fig. 5;
Table 4). In Regions 1 and 3, clustering largely followed
the same trends, with Cluster 1 being considered a high-
energy cluster, while Cluster 2 was regarded as a moderate
to low-energy cluster (Fig. 5). In Region 3, schools within
Cluster 1 were generally found to occupy a much larger area,
with a slightly greater thickness, a larger perimeter and of
marginally greater height (Fig. 5; Table 5).

In Region 2, one high-energy cluster (Cluster 3) and one
low-energy cluster (Cluster 2) could be identified (Fig. 5;
Table 4).Clusters 1, 4 and5were consideredmoderate energy
clusters, with Cluster 1 mainly differentiated through higher
energetic values at 120kHz (Fig. 5; Table 4). Cluster 4 was
mainly separated from other clusters due to more elongated
and larger schools, with a larger perimeter (Fig. 5; Table 4).

The percentage of traps taken and the percentage of
schools observed, generally agreed well (Table 6). In Region
1, the low-energy Cluster 2 was dominant in terms of area
coverage (76.8%) (Fig. 6), amount of schools (73.6%) and
traps (66.0%) (Table 6). In Region 2, almost half of the area
was dominated by the high-energyCluster 3 (49.2%) (Fig. 6),
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Table 6 Total number of eligible acoustic schools and number of traps
recorded in each region with the percentage of the area (% area) of
dominance of the school clusters and percentage of traps (% traps)
taken within each cluster for the three regions

Region Nschools Ntraps Cluster % area % traps

1 212 209 1 28.2 34.0

2 76.8 66.0

2 525 584 1 10.5 12.0

2 12.9 16.0

3 49.2 37.7

4 8.8 10.8

5 18.7 23.5

3 530 604 1 52.4 55.6

2 47.6 44.4

encompassing 19.4% of the observed schools and 37.7% of
the recorded traps within this region (Table 6). In Region 3,
the two clusters were more evenly spread, with 52.4% of the
area covered by the high-energy Cluster 1 (Fig. 6) (55.6% of
the traps, 41.1% of the schools) (Table 6).

Indicator species could be detected for some of the school
clusters at a significance level of 5% (Table 7). No significant
indicator species could be detected for Cluster 2 in Region
1 and Clusters 4 and 5 in Region 2. In general, high A val-
ues were observed (up to 0.86), while B values remained
low (<0.45 except for Cod in Cluster 1, Region 3, where
B = 0.60) (Table 7). If considering only one species group,
Triggerfish were the only indicator species group for Clus-
ter 1 in Region 1. In Region 2, Lutjanids were detected as
an indicator species for Cluster 1, Rankin Cod for Cluster
2 and Lethrinids for Cluster 3 (Table 7). In Region 3, Cod
was detected as an indicator species, while no singular indi-
cator species could be detected for Cluster 2 (Table 7). If
a combination of up to three species groups was accepted,
combinations ofMisc, Goldband and Lutjanids with Trigger-
fish were detected as indicator species (Table 7). In Region

2, for Cluster 2, various combinations including Miscel-
laneous, Rankin Cod, Red Emperor, Cod and Triggerfish
were obtained (Table 7). For Cluster 3, Lethrinids and/or
Red Emperor, with or without Triggerfish were accepted
as indicator species groups. In Region 3, for Cluster 1 a
combination of (1) Lutjanids, Miscellaneous and Cod were
considered indicative and combinations ofGoldbandwith (2)
Red Emperor and Triggerfish; (3) Saddletail, Lutjanids and
Triggerfish; (4) Red Emperor and Saddletail or (5) Saddletail
and Triggerfish for Cluster 2 (Table 7).

3.3 Habitat Description

Region 1 was the deepest (120–130m) of the three regions
throughout, while Region 2 was the shallowest (61–90m)
(Fig. 7; Table 1). In Region 1 the deepest parts were observed
in the north, gradually decreasing southwards and eastwards
(Fig. 7). Within Region 2 the deeper areas were in the west
getting shallower towards the east, while in Region 3 the
deepest partwas found in the central area (Figs. 6c, 7b respec-
tively). Regions 2 and 3 showed similar roughness indices
with values over 7 for the majority of the areas (Figs. 7,
8b, c respectively). Region 3 contained only a small channel
of less rough seabed in the central part (Fig. 8c). Region 1
appeared to be less rough with maximum roughness values
of around 7.5 (Fig. 8a). First bottom length and maximum Sv
showed similar trends and distributions of patches to bottom
roughnesswith lowest values of each seabed feature observed
throughout Region 1. Maps for bottom skewness and kurto-
sis were almost identical to one another for the three regions
(Fig. 9). Like the other seabed features the lowest values for
skewness and kurtosis were observed in Region 1 and similar
values, with well defined, patchy hotspots found in Region 2
and 3 (Fig. 9).

According to the majority rule, the ideal number of clus-
ters for the bottom classification within the three regions was
three. The first two principal components (PC1 and PC2)
of the PCA explained 73.9% of the variance (Fig. 10). PC1

Fig. 6 Indicator kriging maps of the occurrence of the school clusters in the three regions (a–c)
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Table 7 Indicator species
groups associated with the
respective school cluster within
the three selected regions with
the corresponding indicator
value (indval), the p value (p)
and the indicator variable A and
B

Region School cluster Species Indval p A B

1 1 Triggerfish 0.29 0.02 0.86 0.10

Misc+Triggerfish 0.25 0.02 0.88 0.07

Goldband+Triggerfish 0.25 0.09 0.84 0.07

2 1 Lutjanid 0.37 0.04 0.31 0.45

2 Rankin 0.34 0.05 0.27 0.41

Rankin+Red.Emperor 0.33 0.01 0.32 0.34

Rankin+Red.Emperor+Triggerfish 0.32 0.00 0.43 0.23

Rankin+Triggerfish 0.31 0.01 0.38 0.26

Misc+Rankin+Red.Emperor 0.21 0.04 0.48 0.09

Misc+Rankin+Triggerfish 0.20 0.03 0.54 0.08

Rankin+Cod+Triggerfish 0.20 0.01 0.53 0.08

3 Lethrinid 0.35 0.01 0.33 0.38

Lethrinid+Red.Emperor 0.34 0.01 0.38 0.31

Lethrinid+Red.Emperor+Triggerfish 0.26 0.04 0.36 0.19

5 Rankin+Cod+Saddletail 0.15 0.07 1.00 0.02

3 1 Cod 0.59 0.02 0.58 0.60

Lutjanid+Misc+Cod 0.29 0.05 0.62 0.13

2 Goldband+Red.Emperor+Triggerfish 0.26 0.03 0.68 0.10

Goldband+Saddletail 0.24 0.04 0.70 0.08

Goldband+Lutjanid+Triggerfish 0.23 0.04 0.66 0.08

Goldband+Red.Emperor+Saddletail 0.23 0.01 0.74 0.07

Goldband+Saddletail+Triggerfish 0.14 0.04 0.88 0.02

Fig. 7 Kriged bottom depth maps for the three regions (a–c)

(explained 46.6% of variance) caused separation between the
three clusters with some overlap found betweenCluster 1 and
Cluster 2. PC2 increased the difference betweenCluster 1 and
Cluster 2 as well as removing the overlap between Cluster 2
and Cluster 3 (Fig. 10). Cluster 1 mainly occurred at greater
depths, in areas with low roughness, first bottom length, bot-
tom rise time, maximum Sv , kurtosis and skewness (Fig. 11).
In short, Cluster 1 describes a deep, smooth seabed. Cluster
2 was predominantly characterised by high levels of rough-
ness and maximum Sv , but low bottom rise time, skewness
and kurtosis (Fig. 11). This suggests that Cluster 2 describes

a rough bottom with low variance within the sample values.
Cluster 3 contained high levels of all descriptors except for
depth (Fig. 11). Cluster 3 describes a rough, complex bottom,
with high inter-sample variance.

In Region 1, only Cluster 1 was found (Fig. 12a). Almost
half of the area of Region 2 was attributed to Cluster 2
(53.4%) and the other half to Cluster 3 (46.6%) (Fig. 12b).
Region 3 contained all three clusters, but was strongly domi-
nated by Cluster 2 (85.6%), with some small areas identified
as Cluster 3 (7.8%) and a smaller proportion of the area
attributed to Cluster 1 (6.7%) (Fig. 12c).
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Fig. 8 Kriged bottom roughness maps for the three regions (a–c)

Fig. 9 Kriged bottom kurtosis maps for the three regions (a–c)

Fig. 10 Biplot of the first (PC1) and second (PC2) principal compo-
nents of the bottom clusters, with Depth, depth; BRT, bottom rise time;
K, Kurtosis; S, Skewness; FBL, first bottom length; SvMax, maximum
Sv; R, roughness. with circles indicating the 68% confidence intervals
of the clusters obtained from k-means clustering

Fig. 11 Radial plot highlighting the mean value of the bottom descrip-
tors scaled around its own mean for the three bottom clusters, identified
by colours

If only one species group is considered as an indicator
species group at a time, Goldband snapper and the Miscella
neous group was identified as an indicator species group
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Fig. 12 Indicator kriging maps of the three bottom clusters within the three regions

Table 8 Most relevant indicator
species groups, composed of up
to three species groups, with a
probability (p) < 0.01, an
indicator value (indval) >0.3, an
A value >0.5 and a B value
>0.2 for the three acoustic
habitat clusters

Seabed cluster Species group Indval p A B

1 Goldband 0.75 <0.01 0.76 0.73

Goldband+Lutjanid 0.35 <0.01 0.56 0.22

Goldband+Misc 0.43 <0.01 0.76 0.25

Misc 0.44 <0.01 0.55 0.36

2 Cod 0.52 <0.01 0.62 0.45

Cod+Red Emperor 0.42 <0.01 0.59 0.29

Lethrinid 0.54 <0.01 0.64 0.45

Lethrinid+Cod 0.38 <0.01 0.63 0.23

Lethrinid+Lutjanid 0.44 <0.01 0.73 0.27

Lethrinid+Red Emperor 0.43 <0.01 0.60 0.32

Lutjanid 0.50 <0.01 0.48 0.51

Lutjanid+Cod 0.40 <0.01 0.61 0.26

Lutjanid+Red Emperor 0.40 <0.01 0.50 0.32

Red Emperor 0.53 <0.01 0.45 0.62

3 Goldband + Red Emperor 0.32 <0.01 0.47 0.22

Rankin 0.39 <0.01 0.50 0.31

Rankin+Red Emperor 0.34 <0.01 0.52 0.23

Red Emperor+Triggerfish 0.34 <0.01 0.47 0.25

Triggerfish 0.51 <0.01 0.56 0.47

for habitat Cluster 1. Four groups were considered indica-
tor species groups in Cluster 2 (Lethrinids, Red Emperor,
Cods and Lutjanids) and two indicator species groups were
identified within Cluster 3 (Triggerfish and Rankin Cod).
If a combination of up to three species groups are consid-
ered, 129 species group combinations present in the data,
could be tested. Sixty-nine combinations, each containing up
to three species groups were significantly detected as indi-
cator species groups for one of the three habitat clusters.
A summary of the most relevant indicator species groups
(A > 0.5, B > 0.2, indicator values>0.3, p < 0.01) can be
found in Table 8.

4 Discussion

The concept of hotspots is an important part of conservation
and spatial management strategies [54]. As acoustic data can
be collected over large areas in short time periods, acoustics
are a valuablemethod for detecting hotspots [12]within large
survey areas [32]. Here, it was shown that within the three
fishing regions examined the acoustic density hotspots of
fish aggregations could be identified. The identification of
acoustic hotspots is a relatively easy metric to extract from
acoustic data. If this data was repeatedly (e.g., seasonally or
annually) collected over very large areas, it would be possible
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to track differences in the spatial structure of fish in the area
[12].

Almost half of the areas in the three regions were con-
sidered hotspots, which is unsurprising given they represent
fishing regions directly targeted by the fishers. The distribu-
tion of acoustic densities revealed that despite the small size
of the three fishing regions the distributions of high density
areas were patchy rather than uniform. The presence of such
spatial structures indicates the presence of different habitat
types,which are likely to encompass different organismswith
their specific habitat selection criteria [79,80]. For all three
regions, the area of detected hotspots increased for lower sA
cut-off values, an indication for the presence of lower sA val-
ues over significant parts of the regions, i.e., the regions are
not solely composed of zero or high sA values. Region 1 con-
tained the lowest percentage of zero values, and the lowest
percentage of hotspots (Fig. 2; Table 1). This suggests that
fish schools in Region 1 are distributed more evenly. The
main hotspot observed in the central part of the area coincided
largely with the area of highest bottom kurtosis and rough-
ness (Figs. 2, 8, 9). In contrast, Region 2 was characterised
by the highest mean sA values and the highest percentage of
zero values. Hotspots in Region 2 were patchier compared to
Region 1 (Fig. 2). The seabed descriptor and hotspot maps
show that the distribution of hotspots within Region 2 are
largely influenced by high bottom roughness (Figs. 2, 8).
This suggests that fish schools are concentrated around the
more rugged areas of Regions 1 and 2 [81]. In coral reef
ecosystems, areas of higher roughness are often linked to
coral patches, which often have higher species richness and
attract more individuals resulting in increased biomass when
compared to surrounding areas [82–86]. The distribution of
hotspots in Region 3 are patchier than Regions 1 and 2, but at
the same time the differentiation between hotspot areas and
non-hotspot areas was not as pronounced in Region 3.

The patchiness of hotspots within such a small area can be
seen as an indication for the complexity of the habitat [81], at
scales smaller than those observed in the clusters. As catches
in the NDSF contain a mixture of species, often with simi-
lar morphology, the use of traditional acoustic classification
methods is not possible [16]. Furthermore, the verification of
acoustic detections is hindered by the lack of dedicated alter-
native sampling evidence [8,31]. Information obtained from
traps typically contains a temporal and spatial lag with the
collection of acoustic data. In general the traps are left to soak
over a number of hours, while the fishing vessel is resting
several miles away so not to induce an avoidance behaviour
[11,45]. The present study is among the first to describe the
acoustic diversity of fish schools within a tropical environ-
ment based purely on commercially collected acoustic data.

The acoustic geometric and energetic metrics used in this
study are widely used [16,22,23,87–89] to classify acous-
tic targets through ordination techniques or neural networks.

Similar to [16], the energetic descriptors contributed more
strongly to the classification than the geometric descriptors.
Geometric features had less influence on the categorisation
of the fish schools (Table 3). Geometric descriptors largely
followed the trends of the energetic features, but differences
were less pronounced (Table 5; Fig. 5). The lack of contribu-
tion from the shape related descriptors may be linked to high
levels of observed variance (Table 5; Fig. 5). This variability
it likely caused by external (e.g., prey–predator interac-
tion, vessel avoidance or fishing pressure) or internal factors
(e.g., size distribution or life history traits) which influence
the schooling behaviour of the fish [90,91]. Furthermore,
due to the relatively narrow beam width (38kHz=9.6◦;
120kHz=7◦) of the echosounders used, on occasion only
the edge of a fish school may have been detected [92,93].
This error is amplified inverselywith depth.Given the smaller
beamvolume at shallower depths, there is an increased risk of
missing parts of a school if the school is occurring in shallow
parts of the water column.

The stability of the school descriptor clustering results,
given by the Clest algorithm, indicates the presence of pat-
terns (mainly driven by energetic descriptors) that clearly
distinguish the three clusters. These may reflect biological
patterns, such as species composition [16,59]. Even though
significant indicator species groups could be detected for
some of the school clusters, the relationships were gener-
ally less pronounced than for the habitats. Mainly high A
values, indicating a strong association of the given species
group with the cluster, could be detected, while B values
generally remained low. Low B values are an indication that
school compositions of the given clusters are highly variable.
For example, in Region 1 for school Cluster 1, if Trigger-
fish are caught, there is an 86% chance that the surrounding
area is dominated by schools of Cluster 1, but if a school
which is classified as Cluster 1 is observed, there is only a
10% chance that Triggerfish will be caught. One exception
to this pattern is Cod in Region 3. If schools of Cluster 1 are
observed in Region 3, there is a 60% chance that Cod will be
observed within the catch. Other noteworthy B values were
observed for Lutjanids (0.45) and Cluster 1 in Region 2, as
well as for Rankin Cod (0.41) and Cluster 2 in the same
region. The lack of a clear relationship between the school
clusters and species group composition of the catch informa-
tion, may be an artefact originating from the nature of the
data. As previously stated, there is an element of spatial and
temporal separation between the detection of fish schools on
the echosounder images and the biological sampling process
[11]. Despite this, it has been demonstrated that distinctive
patterns, mainly explained by energetic descriptors, in fish
aggregations could be detected (Table 5; Figs. 3, 4, 5). It is
recommended that dedicated simultaneous sampling, such as
optical recordings at depth, to complement acoustic record-
ings should be undertaken [31,94,95].
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The bottom descriptors divided the area into three clus-
ters, within which Cluster 3 (Figs. 10, 11) was mainly driven
by depth. To relate these clusters to meaningful measures,
require the collection of high-resolution physical sampling
(e.g., grab samples) [34,37]. It should be noted that an impor-
tant component of many bottom classification algorithms
is the information contained in the second reflection of the
seabed [35,69,96]. In the present study, information on the
second bottom echo, which is used to describe the hardness
of the seabed, was unavailable. In broad terms, Cluster 1 and
2 are most likely to represent sandy bottoms with different
degrees of coral or rock cover when compared to maps pre-
sented in [97].

The different bottom clusters could be related to indica-
tor species groups. This is a strong indication for habitat
selectivity among the different species groups. For Gold-
band snapper in particular, the high A and B values within
Cluster 1 indicate that the location where Goldband can be
found, is likely to be classified within Cluster 1. Further-
more, if the location is categorised as Cluster 1, there is a
>70% chance of encountering Goldband. In Cluster 2, indi-
cator species groups were not as prominent, but Lutjanids,
Lethrinids and Cod remained strong indicators, with indica-
tor values as well as A and B values of around 0.5. Similarly,
for locations classified within habitat Cluster 3, the chance of
encountering Triggerfish is approximately 50%. Once more
detailed habitat information has been collected, indicator
species can be relatively easily extracted from commercial
catch information. The availability of suchmetrics could help
to quickly identify changes in the distribution pattern which
might be related to environmental or management changes
[43,44,98].

We have shown that acoustic data collected on a small
commercial fishing vessel, within a mixed-species environ-
ment, can be used to derive meaningful ecological metrics.
The methods presented here can be applied to a large vari-
ety of environments, but are especially valuable in tropical
ecosystems, where complimentary dedicated sampling is
often difficult to acquire and the structure of the environment
is too complex for currently available acoustic processing
techniques. All the metrics used in this study would benefit
from long-term data collection programs. If multi-seasonal
or multi-annual information from within the same area was
available, the metrics would be a useful tool for tracking
changes in the ecosystem.
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