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Abstract Continuous linear and quadratic boundary elements are often applied to numerical solution. Discontinuous higher-
order boundary elements are developed for 2D acoustic problems to achieve higher accuracy in this paper. The Burton–Miller
formulation is used to overcome the fictitious frequency problem when using a single Helmholtz boundary integral equation
for exterior boundary-value problem. The strong singular integrals in Burton–Miller formulation using different types of
element discretization are evaluated explicitly and directly, respectively. An example of scattering by an infinite rigid cylinder
is presented to compare the performance of different types of elements. The effect of the position of nodes on the performance
of discontinuous elements is studied, and an empirical value for optimal nodal position is concluded in this paper. Adjoint
variable method is applied to evaluate the sensitivity value of the objective function, and the method of moving asymptotes
is used for structural optimization analysis of noise barrier.

Keywords Discontinuous boundary element · Shape sensitivity analysis ·Adjoint variable method · Structural optimization
analysis

1 Introduction

Optimization algorithms can be categorized in many ways.
One technique is dividing optimization algorithms into direct
and approximate methods [1]. Direct methods, such as
genetic algorithms and simulated annealing, are based on
a clever choice of parameter variations to determine a global
minimum. Examples for genetic algorithms and simulated
annealing are discussed in [2,3] and [4,5], respectively. Both
examples are applied to optimization problems in structural
acoustics. Direct methods frequently find a global mini-
mum but require a large number of function evaluations. By

B Leilei Chen
chenllei@mail.ustc.edu.cn

1 College of Civil Engineering, Xinyang Normal University,
Xinyang 464000, Henan, People’s Republic of China

2 CAS Key Laboratory of Mechanical Behavior and Design of
Materials, Department of Modern Mechanics, University of
Science and Technology of China, Hefei 230026, Anhui,
People’s Republic of China

contrast, approximate methods converge with fewer func-
tion evaluations may also only converge to local minimum.
Distinguishing global, mid-range, and local approximations
is reasonable among approximation concepts. These cate-
gories comprehend local andglobal approximations,whereas
the gap between the two is filled by mid-range approxima-
tion. Local approximation assumes that the approximation
is only valid within the vicinity of one point in the design
space, whereas global approximation is valid in the entire
design space or at least in a large region of the entire space.
Mid-range approximation attempts to utilize the strengths
of local and global approximations and typically covers a
larger range of the design space than local methods. A good
review of these concepts is found in the doctoral thesis of van
Houten [6], and a discussion is also provided in [1]. Local
approximation methods also apply sensitivity information
(i.e. gradient information) although global and mid-range
methods canparticularly benefit fromsuch information.Most
local approximation methods are based on a Taylor series
approximation of the objective functionwithin the vicinity of
a certain designpoint (i.e. parameter set). First-ordermethods
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use gradient information, whereas second-order methods use
the Hessian in addition to gradient information. A compari-
son between the results of a structural acoustic optimization
problem with seven different optimization methods using a
local approximation is found in [7]. The latter and other older
applications in structural acoustics [8–11] indicate that gra-
dient information is provided using global finite differences
that require at least one function evaluation per parameter to
evaluate the entire gradient. This evaluation is easy to imple-
ment and therefore, has been widely used. Semi-analytic and
analytic sensitivity analyses are distinguished in addition to
global finite differences. These categorizations have been
sufficiently reviewed and discussed byHaftka andAdelmann
[12], see also [1,13]. Analytic and semi-analytic sensitivity
analyses are significantly more accurate than global finite
differences and typically require less computational costs.
Analytic sensitivity analysis, which has been used as a direct
differentiationmethod in recent years, is applied to structural
acoustic problems[14–16]. Another development, particu-
larly for problems with many design variables, becomes
possible using an adjoint operator approach that has already
been applied to structural acoustic problems [17,18]. Aside
from local approximation, an acoustic design sensitivity
analysis also provides information on the effect of a para-
meter on the acoustic performance of a given structure. In
this paper, adjoint variable method is applied to evaluate the
shape sensitivity of the objective function, andMMAmethod
is used for optimization analysis of noise barrier.

Constant discretization is widely used for the numeri-
cal solution of acoustic BEM [14,15,19–21]. Discontinuous
elements with higher accuracy are investigated in [22–26].
Error dependence in terms of frequency, element size, and
location of nodes on discontinuous elements is presented by
Marburg [24], and the result that discontinuous boundary ele-
ments perform more efficiently than continuous ones is also
obtained in [24]. However, the research on the sensitivity
analysis cannot be seen in these papers. In this paper, dis-
continuous higher-order boundary elements are developed
for the acoustic shape sensitivity analysis to achieve higher
accuracy. For discontinuous boundary elements, interpola-
tion nodes are located inside the elements and the expressions
of the interpolation functions are dependent on the position
of the node inside the elements. So, different computing
accuracy can be obtained by setting different nodal posi-
tion. The major part of the paper consists of the investigation
of the computational example of scattering from an infinite
cylinder. For that, the numeric solution is compared with
the analytic solution. The performance of different types of
boundary elements is presented and compared, and the opti-
mal values of the nodal position are also obtained in this
paper.

On the other hand, the implementation of a single
Helmholtz boundary integral equation may have the diffi-

culty of non-uniqueness for exterior boundary-value prob-
lems. Burton–Miller method [27] which consists of a linear
combination of the conventional boundary integral equation
(CBIE) and its normal derivative equation (NDBIE) is used to
overcome this problem. The NDBIE is hypersingular when
the boundary is non-smooth, and some special treatments
should be employed in its numerical evaluation. In this paper,
the singular integrals in Burton–Miller formulation for dif-
ferent types of element discretization are evaluated explicitly
and directly using Cauchy principal value and the Hadamard
finite part integral method, respectively.

This paper is organized as follows. The 2DBEM formula-
tions in acoustic state analysis and acoustic design sensitivity
analysis are introduced in Sects. 2 and 3. In Sect. 4, numeri-
cal examples are presented to demonstrate the efficiency and
validity of the proposed algorithm. Section 5 concludes the
paper with further discussions.

2 2D BEM Formulation

Consider the following Helmholtz equation governing time-
harmonic acoustic wave fields:

∇2φ(x) + k2φ(x) = 0, ∀x ∈ �, (1)

where φ is the acoustic pressure with harmonic time depen-
dence e−iωt , i the imaginary unit, k = ω/c the wave number,
ω the angular frequency, and c the wave speed in the acoustic
medium �.

The integral formulation of the solution to the Helmholtz
equation is

φ(x j ) =
∫
S
G(x j , x)q(x)dS(x)

−
∫
S
F(x j , x)φ(x)dS(x), x j ∈ �, (2)

where x j is the source point, x thefield point andG(x j , x) the
Green’s function. For two-dimensional problem, the Green’s
function is given by

G(x j , x) = i

4
H (1)
0 (kr), (3)

and

F(x j , x) = ∂G(x j , x)

∂n(x)
= − ik

4
H (1)
1 (kr)

∂r

∂n(x)
, (4)

where r =| x − x j |, H (1)
n denotes the first kind Hankel

function of the n-th order. The derivative of Eq. (2) with
respect to the outward normal at point x j can be expressed
as
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q(x j ) =
∫
S
G1(x j , x)q(x)dS(x)

−
∫
S
F1(x j , x)φ(x)dS(x), (5)

where

G1(x j , x) = ∂G(x j , x)

∂n(x j )
= − ik

4
H (1)
1 (kr)

∂r

∂n(x j )
, (6)

and

F1(x j , x) = ∂F(x j , x)

∂n(x j )
= ik

4r
H (1)
1 (kr)nl(x

j )nl(x)

+ ik2

4
H (1)
2 (kr)

∂r

∂n(x j )

∂r

∂n(x)
, (7)

nl is the Cartesian component of n(x j ) or n(x). ∂r
∂n = r,lnl ,

where an index after a comma denotes the partial deriva-
tive with respect to the coordinate component, such as r,l =
∂r/∂xl . Einstein’s summation convention is used throughout
the paper, so repeated indices imply a summation over their
range.

When the source point x j in Eqs. (2) and (5) is close to
the boundary S, we can get the following boundary integral
equations:

c(x j )φ(x j ) =
∫
S
G(x j , x)q(x)dS(x)

−
∫
S
F(x j , x)φ(x)dS(x), (8)

and

c(x j )q(x j ) =
∫
S
G1(x j , x)q(x)dS(x)

−
∫
S
F1(x j , x)φ(x)dS(x), (9)

where the coefficient c(x j ) is determined by the boundary
geometry at the source point x j . Equations (8) and (9) are
referred to as the CBIE and NDBIE formulas. It is well-
known that the CBIE or NDBIE for exterior boundary-value
problems may have difficulty of non-uniqueness. However,
the linear combination of them can yield unique solutions
for all frequencies, when the coupling constant of the two
equations is a complex [28]. If the boundary is non-smooth,
Eq. (8) is a strong singular boundary integral equation and
Eq. (9) is a hypersingular boundary integral equation. Such
integrals usually need special treatments, but they can be
evaluated explicitly and directly with the Cauchy principal
value and the Hadamard finite part integral method respec-
tively, please see Appendix 1 for the details of the deduction
process.

If the boundary S is divided into N elements, one can
obtain the following system of linear algebraic equations:

[H ]{φ} = [G]{q}. (10)

Moving all the unknown terms of Eq. (42) to the left-
hand side and all the known terms to the right-hand side
by considering the boundary conditions (e.g. for Neumann
type problems, the pressure φ is unknown and the normal
derivative q is specified), one finally obtain the following
system of linear equations:

[A]{x} = {b}, (11)

where [A] is the coefficientmatrix, {x} the vector of unknown
boundary values at the nodes, and {b} the known vector. All
the unknown boundary state values can be obtained after
Eq. (11) is solved. Finally, one can calculate the sound pres-
sure φ at any interior point using Eq. (2).

A well-known disadvantage for directly solving the above
equation is that the coefficient matrices [H ] and [G] are
dense and non-symmetrical, which induce O(N 2) arithmetic
operations when dealing with a problem with N unknowns.
The fast multipole method (FMM) accelerates the solution
of the conventional boundary element system of equations
and decreases thememory requirement [14,15,19]. Themain
idea of FMM is to approximate the fundamental solution
for BEM in terms of spherical Hankel functions, Legen-
dre polynomials, and plane waves. The coefficient matrices
consist of two parts. One is the near-field part, which is
evaluated by integration in the usual way in the vicinity
of the source point. The other is the far-field part, which
is not directly computed. Applying FMM on a hierarchy
of clusters reduces the complexity of BEM from O(N 2)

to O(N log N ). FMM has two forms. One is the original
FMM (low-frequency method) based on a series expansion
formula of the fundamental solution; the other is the diagonal
form FMM (high-frequency method) based on a plane wave
expansion formula of the fundamental solution. The origi-
nal FMM is inefficient for high-frequency problems, and the
diagonal form FMMhas instability problems for the solution
of low-frequency Helmholtz equations. However, the wide-
band FMM obtained by combining the original FMM and
the diagonal form FMM can be used to overcome these dif-
ficulties [19,21]. Detailed information about the wideband
FMM algorithm can be found in[19,21].

3 Sensitivity Analysis Based on Adjoint Variable
Method

Acoustic design sensitivity analysis can provide insights into
the effects of geometric changes on the acoustic performance
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of the given structure and thus, this analysis is important to
the acoustic design and optimization processes. Without loss
of generality, the objective function W can be defined as
follows:

W =
∫
S
w1(φ, q)dS +

∫
�

w2(φ)d�, (12)

where w1 is an arbitrary continuous function of sound
pressure and its normal derivative, andw2 is an arbitrary con-
tinuous function of sound pressure in the acoustic domain. By
differentiating the above equation with respect to the design
variable ϑ , the first-order sensitivity of the objective function
can be obtained as follows:

∂W

∂ϑ
=

∫
S

∂w1

∂φ

∂φ

∂ϑ
dS +

∫
S

∂w1

∂q

∂q

∂ϑ
dS +

∫
S
w1

∂dS

∂ϑ

+
∫

�

∂w2

∂φ

∂φ

∂ϑ
d� +

∫
�

w2
∂d�

∂ϑ
. (13)

According to [17], the derivatives of the boundary and
domain element are respectively given by

∂dS

∂ϑ
=

[
∂2xl

∂ϑ∂xl
− ∂2xl

∂ϑ∂x j
nl(x)n j (x)

]
dS, (14)

∂d�

∂ϑ
= ∂2xl

∂ϑ∂xl
d�, (15)

where ∂xl
∂ϑ

will be evaluated when the boundary of the
analysed domain is fully parameterized with the design vari-
able. Directly using Eq. (13) to evaluate the sensitivity of the
objective function, it seems essential to know all sensitivity
values of pressure φ and normal derivative q. Actually, when
directly differentiating Eqs. (8) and (9) with respect to the
design variable and then solving the combined differentiation
equation, the sensitivity values of nodal pressure and normal
derivative can be obtained. But the combined differentiation
equation depends on the design variable ϑ . Consequently,
m design variables ϑ j with j = 1, 2, ...,m will produce m
sensitivity equation, and thus the linear system of equations
needs to be solved for m times, which is very time consum-
ing. For a large number of design variables, adjoint variable
method performs more efficiently than direct differentiation
method. During the analysis of adjoint variable method, the
unknown sensitivity values of sound pressure and normal
derivative are eliminated from the sensitivity equations of
the objective functions by introducing certain adjoint equa-
tion depending on the objective function, but not the design
variables.

In order to eliminate the unknown sensitivity values of
nodal sound pressure and normal derivative on the boundary,
a constraint condition is added to the objective function W
to form an augmented function as follows:

W̄ = W + R =
∫
S
w1(φ, q)dS +

∫
�

w2(φ)d�

+
∫

�

γ (x)
[
∇2φ(x) + k2φ(x)

]
d�. (16)

Actually W̄ is identical toW because the equation∇2φ(x)+
k2φ(x) = 0 is always satisfied in the domain. By using
the Green’s first identity, the constraint condition R can be
expressed as

R =
∫
S
γ (x)q(x)dS −

∫
�

γ,l(x)φ,l(x)d�

+
∫

�

k2γ (x)φ(x)d�. (17)

By differentiating the above equation with respect to design
variable and using Green’s first identity again, the sensitivity
formulation of R can be derived by

∂R

∂ϑ
=

∫
S
γ (x)

∂q(x)

∂ϑ
dS −

∫
S

∂γ (x)

∂n

∂φ(x)

∂ϑ
dS

+
∫
S
γ (x)q(x)

∂dS

∂ϑ
. (18)

By combining Eqs. (13) and (18), we can obtain the sensi-
tivity formulation of the objective function W̄ , as follows

∂W̄

∂ϑ
=

∫
S

(
∂w1

∂φ
− ∂γ

∂n

)
∂φ

∂ϑ
dS +

∫
S

(
∂w1

∂q
+ γ

)
∂q

∂ϑ
dS

+
∫
S
(w1 + γ q)

∂dS

∂ϑ

+
∫
S

(
γ, j q + ∂γ

∂n
φ, j −γ,lφ,ln j + k2γφn j

)
∂x j
∂ϑ

dS

+
∫

�

w2
∂d�

∂ϑ

+
∫

�

(
γ,ll + k2γ + ∂w2

∂φ

)
∂φ

∂ϑ
d�

−
∫

�

(
γ,ll + k2γ

)
φ, j

∂x j
∂ϑ

d�, (19)

where the adjoint equation can be defined as

∇2γ + k2γ + ∂w2

∂φ
= 0, ∀x ∈ �. (20)

According to the following boundary conditions

∂γ

∂n
= ∂w1

∂φ
, x ∈ Sq , (21)

γ = −∂w1

∂q
, x ∈ Sφ. (22)
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By substituting Eqs. (20)–(22) into Eq. (19), we can obtain
the following formulation

∂W̄

∂ϑ
=

∫
Sφ

(
∂w1

∂φ
− ∂γ

∂n

)
∂φ

∂ϑ
dS+

∫
Sq

(
∂w1

∂q
+γ

)
∂q

∂ϑ
dS

+
∫
S

(
γ, j q+ ∂γ

∂n
φ, j −γ,lφ,ln j + k2γφn j

)
∂x j
∂ϑ

dS

+
∫
S
(w1 + γ q)

∂dS

∂ϑ
+

∫
�

∂w2

∂φ
φ, j

∂x j
∂ϑ

d�

+
∫

�

w2
∂d�

∂ϑ
. (23)

Also, we have

∫
�

∂w2

∂φ
φ, j

∂x j
∂ϑ

d� +
∫

�

w2
∂d�

∂ϑ

=
∫

�

(
w2

∂x j
∂ϑ

)
, j
d� =

∫
S
w2

∂x j
∂ϑ

n jdS. (24)

By substituting Eq. (24) into Eq. (23), we can obtain

∂W̄

∂ϑ
=

∫
Sφ

(
∂w1

∂φ
− ∂γ

∂n

)
∂φ

∂ϑ
dS+

∫
Sq

(
∂w1

∂q
+γ

)
∂q

∂ϑ
dS

+
∫
S

(
γ, j q+ ∂γ

∂n
φ, j −γ,lφ,ln j + k2γφn j

)
∂x j
∂ϑ

dS

+
∫
S
(w1 + γ q)

∂dS

∂ϑ
+

∫
S
w2

∂x j
∂ϑ

n jdS. (25)

Obviously, Eq. (25) does not contain the unknown sensitiv-
ity values of sound pressure and normal derivative on the
boundary. However, it is noted that the boundary gradients
of sound pressure and adjoint function γ are introduced in the
sensitivity equation of the objective function. As the BEM is
employed in this study, the boundary gradients of sound pres-
sure can be calculated by differentiating Eq. (8) with respect
to the coordinate.

It is noticed that the adjoint problem in Eq. (20) is anal-
ogous to the acoustic prediction problem, but with different
boundary conditions and source term. So, the boundary inte-
gral equations and the solution procedures for the adjoint
solution are very similar to those for acoustic problem. How-
ever, because of the source term in Eq. (20), we need to carry
out integrals in the domain as well as on the boundary when
solving the boundary integrals for the adjoint problem.

4 Numerical Examples

4.1 Element Types and Surface Error

The approach of continuous linear and quadratic bound-
ary elements is often applied. Discontinuous higher-order
boundary elements are developed to achieve higher accu-
racy [22–24]. It is well-known that interpolation nodes are
located inside the element and the expressions of the inter-
polation functions are dependent on the position of the node
inside the element, see Fig. 1. In this figure, ‘DBEmn’ and
‘CBEmn’ denote discontinuous boundary element and con-
tinuous boundary element with ‘m’ geometry nodes and ‘n’
interpolation nodes, respectively. For example ‘DBE21’ in
Fig. 1 is the constant boundary element with two geomet-
rical nodes denoting that linear shape functions exist, and
‘DBE22’ is discontinuous linear boundary element with two
geometrical nodes. ‘CBE22’ element is used to be continuous
linear boundary element, and ‘CBE33’ element is quadratic
continuous boundary element. For detailed error comparison
between 3D continuous boundary element and 3D discontin-
uous boundary element, please see paper [24]. For constant
boundary element, the interpolation node is defined at the
centroid of the element. For discontinuous linear boundary
element, the values of a decide the position of these interpo-
lation nodes. In this paper, the error function for the surface
error based on the complex values is expressed as [24].

||e�(x j )|| = ||φe(x
j ) − φn(x

j )||, x ∈ �, (26)

whereφe represents the exact solution for the sound pressure,
and φn the numerical solution. The discrete error function is
evaluated in discrete points, and the discrete surface error is
determined as

||e�||2 =
⎛
⎝1

n

n∑
j=1

||e�(x j )||2
⎞
⎠

1/2

, (27)

where n represents the number of nodes on the surface �.
And then, we use the relative error e�

2 for the sound pressure
error

e�
2 = ||e�||2

||φ�
e ||2 , (28)

Fig. 1 Distribution of
geometrical nodes and
interpolation nodes

DBE21 DBE22 DBE33

CBE22 CBE33

geometrical node

interpolation node

-1 0 1 -1 - 1 -αα α 0 α 1-1

-1 1 -1 0 1
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where ||φ�
e ||2 represents the discrete Euclidean norm of the

exact sound pressure, and can be expressed as the following
formula

||φ�
e ||2 =

⎛
⎝1

n

n∑
j=1

||φe(x
j )||2

⎞
⎠

1/2

. (29)

4.2 Scattering from an Infinite Rigid Cylinder

Anumerical simulation of acoustic scattering froman infinite
rigid cylinder with Neumann boundary condition is given
to demonstrate the accuracy and efficiency of the present
algorithm. The computation is done on a desktop PC with an
Pentium 2.59 GHz processor and 3.24 GB memory.

In this example, we consider the acoustic scattering of a
plane incident wave with unit amplitude on an infinite rigid
cylinder with radius a = 1.0m centred at point (0, 0), and
the plane incident wave is travelling along the positive x-
axis (θ = 0). The analytical solution of the sound pressure
at point (r, θ) is given as

φ(r, θ) = −
∞∑
n=0

εni
n J ′

n(ka)

H (1)′
n (ka)

H (1)
n (kr) cos(nθ), (30)

where εn denotes the Neumann symbols, i.e. ε0 = 1 ; εn = 2
when n is greater than 0. ( )′ stands for the differentiation
with respect to ka.

When the design variable is chosen as a, one can obtain
the analytical solution of sound pressure sensitivity by dif-
ferentiating Eq. (30) with respect to the design variable, as
follows:

∂φ(r, θ)

∂a
= −

∞∑
n=0

εni
n

[
J ′
n(ka)

H (1)′
n (ka)

]′
H (1)
n (kr) cos(nθ).

(31)

Sample internal points are evenly distributed on a circle
with radius r = 2a and the coordinates of the computing
point are (2a, 0). In the procedure of FMM , the boundary of
the circle is discretized with 80000 elements and the maxi-
mum number of boundary elements per leaf is set to 60.With
this parameter, the number of tree levels is 10, the number of
leaves is 2196 and the number of cells is 3829.

In Fig. 2, “analytical” denotes the analytical solution of
acoustic pressure sensitivity, and “numerical” denotes the
results obtained by numerical methods. DBE33 element is
used for the numerical solution. From this figure, it can be
seen that the numerical solution is in good agreement with
the analytical solution at points located on circle r = 2a
with wave number k = 1, and it denotes the correctness and
validity of the proposed algorithm.
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Fig. 2 Acoustic pressure sensitivity at points on circle r = 2a with
k = 1
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Fig. 3 Real part of acoustic pressure sensitivity at the computing point
with different frequencies

Figures 3 and 4 show that the acoustic pressure sensitiv-
ity values obtained by CBIE have a big deviation from the
analytical solution at fictitious frequencies, but the values
obtained by Burton–Miller formulation is in good agreement
with the analytical solutions. The CPU time used to calcu-
late the sensitivity values at the computing point is plotted in
Fig. 5, which demonstrates the efficiency of fast multipole
boundary element method (FMBEM) for two-dimensional
acoustic design sensitivity analysis.

For discontinuous boundary elements, the interpolation
nodes are located inside the element, and the performance
with a moving position is investigated in detail. Figure 6
shows the surface error in terms of nodal position for DBE22.
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Fig. 4 Imaginary part of acoustic pressure sensitivity at the computing
point with different frequencies

Fig. 5 CPU time used to calculate the pressure sensitivity values at the
computing point with f = 1000 Hz
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Fig. 8 Surface error of acoustic pressure sensitivity for different types
of elements with f = 1000Hz

The step size for nodal position parameter is set as 0.01. From
this figure, it can be seen that the surface error increases with
frequency increases, and the optimal value of nodal position
has a very small deviation with frequency, and all around
0.58 which is close to the zeros of the Legendre polynomial
0.5773. Figure 7 shows the surface error in terms of nodal
position for DBE33 element. From this figure, it can be seen
that the optimal values of nodal position for different error
curves are all around 0.77 which is also close to the zeros of
the Legendre polynomial 0.7746.

The performance of different types of elements is com-
pared at similar computational cost. From Fig. 8, it can be
seen that continuous element CBE22 performs themost inef-
ficiently, and discontinuous element DBE33 with quadratic
shape approximation performs the most efficiently. In addi-
tion, the discontinuous elements perform better than the
continuous elements. Let us consider the convergence of
numerical solution obtained using different types of bound-
ary elements. Figure 9 shows the fitted curve for the five
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Fig. 9 Fitted curve for the relative error of sensitivity value

different boundary elements. The left figure in per subfig-
ure denotes the linear fit line of the date showed in Fig. 8. The
coefficients a and b for the linear fit line decide the relation
between the surface error and the discrete element number
in terms of logarithmic form. The right figure in per subfig-
ure shows a good convergence of numerical solution. The

Table 1 The value of the coefficient a and b for different types of
boundary element

DBE21 DBE22 CBE22 DBE33 CBE33

a −2.017 −2.962 −2.023 −2.680 −3.551

b 3.669 4.762 3.994 1.269 5.097
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T-shape with two wells T-shape with three wells T-shape with four wells

vertical T-shape Half-Y

Fig. 10 Noise barriers with different top

surface error can be expressed as a function of discrete ele-
ment number, such as y = 10bxa . Table 1 shows the value
of the coefficients a and b for different types of boundary
elements.

4.3 Scattering from Sound Barriers

Noise from expressways and railways is an important aspect
of noise pollution but can be rectified by erecting barriers
between the noise source and the zone to be protected [29].
For a long straight barrier and a line source, two-dimensional
model can be used to predict the acoustic field. The barrier
is assumed to have infinite length and its cross section is
uniform along the length. In this example, several types of
barriers that are erected on a rigid, flat and sufficient large
ground are examined, see Fig. 10. Figure 11 shows cross-
sectional contours of Y-shaped noise barrier over a plane
ground at a distance of 10.5 m from a coherent homoge-
neous monofrequency line source situated 1.0 m above the
ground. Thewidth d of the barriers is set to 0.2m. The source
frequency is 100 Hz and all surfaces of the barriers are rigid.
The vertical barrier is discretizedwith 120,000 elements with
equal length, the T-shaped barrier 138,000 elements and the
Half-Y-shaped barrier 124,230 elements. The coordinate of
the six sample points are (15, 2), (30, 2), (45, 2), (15, 5),
(30, 5), and (45, 5).

Figure 12 shows the sound pressure-level distribution for
the case of a vertical barrier, then T-shaped barrier in Fig. 13
and Half-Y-shaped barrier with angle θ = 40◦ in Fig. 14.
Absorbing material is used to improve the performance of
the noise barriers. In the three figures, the surface admit-

Fig. 11 Cross section of the
Y-shaped noise barrier

θ1θ2

l1l2

3.0m

10.4m
source point

1.0m

Fig. 12 Noise-level
distribution around a vertical
barrier (db)
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Fig. 13 Noise-level
distribution around a T-barrier
(db)
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Fig. 14 Noise-level
distribution around a
Half-Y-shaped barrier (db)
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Table 2 The sound pressure
level at sample points for
T-shaped noise barriers with a
series of wells

T-shape (15, 2) (30, 2) (45, 2) (15, 5) (30, 5) (45, 5) Mean δ I L

2 wells 38.91 40.93 44.94 46.88 47.48 38.40 42.92 0

3 wells 36.80 38.73 43.17 45.28 46.06 37.23 41.21 −1.71

4 wells 36.57 38.44 42.97 45.07 45.93 37.03 41.00 −1.92

5 wells 36.46 38.31 42.88 44.97 45.87 36.94 40.91 −2.02

6 wells 36.40 38.24 42.83 44.92 45.84 36.89 40.85 −2.07

7 wells 36.36 38.18 42.79 44.88 45.82 36.86 40.82 −2.11

tance is set to 1.0. From the above three figures, one can find
that T-shaped and Half-Y noise barriers perform more effi-
ciently than vertical noise barrier, and it denotes that adding
substructures at the top of noise barriers has the advantage
of improving the barrier performance without increasing its
overall height.

The performance of T-shaped noise barriers with a series
of wells is compared in Table 2. The whole height is 5 m, the
height of the bottom is 3 m, the height of the top is 2 m, and
the length of the top is 2 m. The thickness of the wells on
the top is 0.03 m. Absorbing material is used to improve the
performance of the noise barriers. In this example, the surface
admittance is set to 1.0. Table 2 shows that the noise barrier
with more wells produces smaller sound pressure level. The
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Fig. 15 Values of θ1 and θ2 with number of iteration
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Fig. 17 Values of objective function with number of iteration

mean sound pressure level for the noise barrier with 3 wells
decreases 1.71 dB than that for the barrier with 2 wells, and
then 1.92, 2.02, 2.07, and 2.11 dB in sequence. More wells
will not reduce significantly the sound pressure level, but
need more material and take high cost. In sum, the T-shaped
noise barrier with 3 wells performs the most efficiently.

In this section,MMA [30] is introduced for the shape opti-
mization of Y-shaped noise barrier. In optimization process,

the angle θ1, θ2, and the length l1, l2 in Fig. 11 are chosen to
be the design variables. The objective function, to be mini-
mized, is the mean sound pressure level at the sample points.

subject to

l1 + l2 ≤ 3.0 (32)

and

0 ≤ θk ≤ 90, k = 1, 2; 0 ≤ lk ≤ 3, k = 1, 2 (33)

initial values of design variables

θ1 = θ2 = 45; l1 = l2 = 1.5. (34)

Figures 15, 16 and 17 show that the design variables and
objective functions change with the iteration number, and
then converge in 500 iteration.Theoptimal value of the objec-
tive function approaches to 60.42 dB. The optimal value of
design variable is θ2 = 62◦, θ1 = 27◦. Because of the lim-
itation of l1 > 0.1 which is demanded to discrete the edge,
the optimal value of l1 approaches to the minimum value.
Actually, the optimal value of l1 approaches to zero when
the minimum value of l1 approaches to zero. Similarly, the
optimal value of l2 approaches to 3. This result denotes that
the Y-shaped noise barrier after optimization becomes the
half-Y noise barrier. So, half-Y noise barrier performs more
efficiently than Y-shaped noise barrier. Figure 18 shows the
SPL contour plot of half-Y barrier with frequency f = 200
Hz. The sensitivity value of objective function needs to be
solved in per iteration step for optimization analysis, and
adjoint variable method is used to solve the sensitivity value
in this paper. In addition, this step needs much more time
in the optimization analysis. However, the application of
FMM can improve significantly the efficiency of optimiza-
tion analysis.

Fig. 18 SPL contour plot of half-Y noise barrier
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5 Conclusion

A novel algorithm based on discontinuous boundary ele-
ments is presented for the simulation of acoustic scattering.
The Burton–Miller method is used to obtain correct solutions
at all frequencies. The strong singular integral for differ-
ent types of boundary elements is evaluated explicitly and
directly with Cauchy principal value and the Hadamard finite
part integral method. An example with analytical solution is
presented to demonstrate the correctness and validity of the
proposed algorithm, and the performance of different types
of elements is presented and compared. The result that the
nodal position for discontinuous boundary elements has a
big impact on the numerical performance is presented, and
the optimal nodal position values are also given in this paper.
Adjoint variable method is used to solve the sensitivity value
of objective function, and MMA is used for the optimization
analysis. At last, the example of scattering from the sound
barriers is presented to demonstrate the availability of the
proposed algorithm.
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Appendix 1: Evaluation of the Integrals on Sε and
�ε

After piecewise discretization, the CBIE and NDBIE formu-
las can be rewritten as

1

2
φ(x j ) + B(x j ) =

∫
S\Sx j

G(x j , x)q(x)dS(x)

−
∫
S\Sx j

F(x j , x)φ(x)dS(x), (35)

and

1

2
q(x j ) + D(x j ) =

∫
S\Sx j

G1(x j , x)q(x)dS(x)

−
∫
S\Sx j

F1(x j , x)φ(x)dS(x), (36)

S \ Sx j denotes the boundary S except Sx j , Sx j is the element
containing the source point x j . Sε denotes a semi-circle with
a radius ε centred at x j and �ε denotes Sx j \ Sε.

The function f (x) in every boundary element can be
expressed as the following formulation

f (x) =
m∑

k=1

�k f (x
k), (37)

where m denotes the number of interpolation nodes in every
boundary element, � denotes the interpolation function.
Function f (x) could be chosen as φ(x), q(x) and so on.

1. For constant element
m = 1 and � = 1.

2. For linear element

�1 = 1

2

(
1 − ξ

β

)
, �2 = 1

2

(
1 + ξ

β

)
, (38)

where ξ means the local coordinate of the point x , and β

denotes the position of interpolation nodes on the dis-
continuous element. When β = 1, Eq. (38) denotes
expression of the interpolation functions for linear con-
tinuous element.

3. For quadratic element.

�1 = ξ

2β

(
ξ

β
− 1

)
, �2 = 1 − ξ2

β2 ,

�3 = ξ

2β

(
ξ

β
+ 1

)
. (39)

Using Eq. (37) , one can obtain the expression of the
coordinate (x1, x2) at the point x , as follows

x1(ξ) = 1

2
A1ξ

2 + A2ξ + xb1 , (40)

x2(ξ) = 1

2
A3ξ

2 + A4ξ + xb2 , (41)

where xbk (k = 1, 2) denotes the coordinate of the central
point in the boundary element, and the coefficient Ak(k =
1, 4) can be derived by

A1 = xc1 − 2xb1 + xa1 , A2 = 1

2
(xc1 − xa1 ),

A3 = xc2 − 2xb2 + xa2 , A4 = 1

2
(xc2 − xa2 ), (42)

where xak (k = 1, 2) and xck denotes the coordinate of
the two extreme points in the boundary element. Simi-
lar as linear element, Eq. (39) denotes expression of the
interpolation functions for quadratic continuous element
when β = 1.
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When different types of elements are used to discretize the
boundary, one can obtain the different expression of coeffi-
cient B(x j ) and D(x j ) in Eqs. (35) and (36), as follows

1. For constant element

B(x j ) = −C1q(x j ), (43)

D(x j ) = −C2φ(x j ), (44)

where coefficient C1 and C2 can be expressed as the fol-
lowing formulation

C1 = − L

2π

[
ln(

kL

2
) − 1

]

+ i

4
lim
ε→0

∫
�ε

[
H (1)
0 (kr) − 2i

π
ln(kr)

]
dS(y), (45)

C2 = ik2

4
lim
ε→0

∫
�ε

[
H (1)
1 (kr)

kr
+ 2i

πk2r2
− i

π
ln(kr)

]
dS(y)

− k2L

4π

[
ln

(
kL

2

)
+ 8

k2L2 − 1

]
, (46)

where L is the length of the element in which node x j

locates.
2. For linear element

B(x j ) = −
[
B1q(x j ) + B2q(xl)

]
, (47)

D(x j ) = −
[
D1φ(x j ) + D2φ(xl)

]
, (48)

where point xl is the another node located on a boundary
element containing node x j . α denotes the local coordi-
nate of the node x j , andβ = |α|. For linear discontinuous
boundary element (β 
= 1), coefficients B1, B2, D1 and
D2 are expressed as following

B1 = iL

8

∫ 1

−1

[
H1
0 (kr) − 2i

π
ln(kr)

]
φ1 dξ − L

2π
ln

kL

2

− L

8πβ
I I1, (49)

B2 = iL

8

∫ 1

−1

[
H1
0 (kr) − 2i

π
ln(kr)

]
φ2 dξ

− L

2π
ln

kL

2
− L

8πβ
I I2, (50)

D1 = ik2L

8

∫ 1

−1

[H1
1 (kr)

kr
+ 8i

πk2L2

1

(ξ − α)2

− i

π
ln(kr)

]
dξ + ln(1 + β) − ln(1 − β)

2βπL

− k2L

4π
ln

kL

2
− k2L

8π
I I1 (51)

D2 = ik2L

8

∫ 1

−1

[H1
1 (kr)

kr
+ 8i

πk2L2

1

(ξ − α)2

− i

π
ln(kr)

]
dξ

+ ln(1 + β) − ln(1 − β)

2βπL
− 2

πL(1 − β2)

− k2L

4π
ln

kL

2
− k2L

8π
I I2, (52)

where

r(ξ) = L

2
|ξ − α|, (53)

I I1 =
∫ 1+β

0
x ln x dx −

∫ 1−β

0
x ln x dx, (54)

I I2 =
∫ 1−β

0
ln x dx +

∫ 1+β

0
ln x dx

− 1

2β

(∫ 1+β

0
x ln x dx −

∫ 1−β

0
x ln x dx

)
.

(55)

For linear continuous boundary element (β = 1), coeffi-
cients B1, B2, D1 and D2 are expressed as following

B1 = iL

8

∫ 1

−1

[
H1
0 (kr) − 2i

π
ln(kr)

]
φ1 dξ

− L

8π
(2 ln(kL) − 3), (56)

B2 = iL

8

∫ 1

−1

[
H1
0 (kr) − 2i

π
ln(kr)

]
φ2 dξ

− L

8π
(2 ln(kL) − 1), (57)

D1 = ik2L

8

∫ 1

−1

[H1
1 (kr)

kr
+ 2i

πk2r2
− i

π
ln(kr)

]
φ1 dξ

− 1

2πL
(1 + ln 2) − k2L

16π
(2 ln(kL) − 3), (58)

D2 = ik2L

8

∫ 1

−1

[H1
1 (kr)

kr
+ 2i

πk2r2
− i

π
ln(kr)

]
φ2 dξ

+ ln 2

2πL
− k2L

16π
(2 ln(kL) − 1). (59)

3. For quadratic element

B(x j ) = −
[
B1q(x j ) + B2q(xl) + B3q(xm)

]
, (60)

D(x j ) = −
[
D1φ(x j ) + D2φ(xl) + D3φ(xm)

]
, (61)

where points xl and xm are the other nodes that are located
on a boundary element containing node x j . For quadratic
discontinuous boundary element (β 
= 1), coefficients
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B1, B2, B3, D1, D2, D3 are expressed as following

Bm = i

4

∫ 1

−1
φm

[
H1
0 (kr)J1 − 2i

π
ln(kr1)J2

]
dξ

− J2
2π

(ln k + ln J2)
∫ 1

−1
φm dξ

− J2
2π

∫ 1

−1
φm ln |ξ − α| dξ, m = 1, 2, 3, (62)

Dm = ik2

4

∫ 1

−1
φm

[H1
1 (kr)

kr
n j (x)n j (y)J1(ξ)

+ 2i

πk2
1

(ξ − α)2 J2
− i

π
ln(kr1)J2

]
dξ

− k2 J2
4π

(ln k + ln J2)
∫ 1

−1
φm dξ

+ 1

2π J2

∫ 1

−1

φm

(ξ − α)2
dξ

− k2 J2
4π

∫ 1

−1
φm ln |ξ − α| dξ, m = 1, 2, 3,

(63)

where

r2 = (ξ − α)2

{[
1

2
A1(ξ + α) + A2

]2

+
[
1

2
A3(ξ + α) + A4

]2}
, (64)

r21 = (ξ − α)2 J 22 , (65)

J 21 = (A1ξ + A2)
2 + (A3ξ + A4)

2, (66)

J 22 = (A1α + A2)
2 + (A3α + A4)

2. (67)

When β = 1, the coefficients Bm and Dm for quadratic
continuous element can be obtained using Eqs. (62) and
(63).
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