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structures are separated by thin layers of connective tissue 
known as extracellular matrix [6, 7]. Fibers are constituted 
by the submicron scale myofibrils (from 1 to 2 μm in diam-
eter) and cellular components. Each of these myofibrils is 
an assembly of sarcomeres in series that contain proteins 
such as actin, titin and myosin. Other cellular components 
include the sarcoplasmic reticulum, that propagates neural 
signal as a chemical potential down to the sarcomeres. They 
are physically linked to extracellular structures through 
costameres [8–10]. On the other end of this linkage, the 
extracellular matrix consists in collagen and elastin fibers 
embedded in a matrix of proteoglycans [11, 12].

The mechanical properties of the smaller scale com-
ponents result in a global anisotropic viscohyperelastic 
behavior of the skeletal muscle [1, 7, 13]. The passive 
mechanical properties in the skeletal muscle are attrib-
uted to two proteins, namely titin in the fibers [14–16] 
and collagen in the extracellular matrix [1, 17–20]. Trans-
membrane proteins such as dystrophin that belong to the 
costameres also contribute to lateral force transmission 
[1, 21] between muscle fibers and extracellular matrix. 
During muscle activation, the change in mechanical 

1 Introduction

Skeletal muscles present a multiscale architecture [1, 2], as 
illustrated in Fig. 1. To each scale corresponds a specific 
architecture with associated constituents, each of which 
is likely to contribute to the active or passive mechanical 
properties of the overall skeletal muscle [3, 4]. At the mac-
roscopic scale (of the order of centimeter), the muscle is 
constituted of several adjacent mesoscale fascicles. These 
fascicles in turn contain groups of tightly packed muscle 
fibers or muscle cells that constitute the microscale (from 
10 to 100 μm in diameter). Muscle fibers can be arranged in 
different architectures within the muscle depending on the 
muscle’s function in the body [5]. All the aforementioned 
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Abstract
Purpose From the myofibrils to the whole muscle scale, muscle micro-constituents exhibit passive and active mechanical 
properties, potentially coupled to electrical, chemical, and thermal properties. Experimental characterization of some of 
these properties is currently not available for all muscle constituents. Multiscale multiphysics models have recently gained 
interest as a numerical alternative to investigate the healthy and diseased physiological behavior of the skeletal muscle.
Methods This paper refers to the multiscale mechanical models proposed in the literature to investigate the mechanical 
properties and behavior of skeletal muscles. More specifically, we focus on the scale transition methods, constitutive laws 
and experimental data implemented in these models.
Results Using scale transition methods such as homogenization, coupled to appropriate constitutive behavior of the constitu-
ents, these models explore the mechanisms of ageing, myopathies, sportive injuries, and muscle contraction.
Conclusion Emerging trends include the development of multiphysics simulations and the coupling of modeling with the 
acquisition of experimental data at different scales, with increasing focus to little known constituents such as the extracellular 
matrix and the protein titin.
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properties is due to the sarcomere contraction attributed 
to the binding of proteins actin and myosin, namely the 
cross-bridge cycling theory. Some evidence also sug-
gests an active bound formation between titin and actin 
during activation, called force enhancement [22]. The 
skeletal muscle mechanical properties are related to the 
muscle’s physiological state. To study the functional or 
the structural properties of the skeletal muscle, in vivo, 
ex vivo or in vitro, experiments can be conducted. These 
investigations are however limited due to technical dif-
ficulties when it comes to measure the mechanical proper-
ties at smaller scales, especially in human patients [23]. 
Thus, tools such as multiscale biomechanical modeling 
are implemented [24, 25]. These tools first establish the 
mechanical link over scales in the organ using several 
approaches such as analytical homogenization, numerical 
homogenization, and averaged results, which are account-
ing for the different constituents of the microstructure and 
their specific geometry at each scale. Then, the mechani-
cal constitutive laws for the constituents must be iden-
tified, including passive and active components as well 
as potential multiphysics components (such as electrical, 
chemical or thermal specificities).

In this study, we describe the current state of the art in 
multiscale and multiphysics biomechanical numerical mod-
eling, with a focus on models describing the skeletal muscle 
mechanical behavior from myofibrils to the whole organ, 
excluding smaller than submicron [26] and larger than mac-
roscopic [27–29] scales. After describing the main model-
ing approaches, we will expose and compare the mechanical 
constitutive laws implemented at the different scales for 
passive and active mechanical models as well as multiphys-
ics models.

2 Multiscale Modeling

To establish the link from one scale to another, several 
approaches have been proposed in the literature for skeletal 
muscle modeling, which can be classified into three main 
categories: analytical homogenization, numerical homog-
enization, and averaged results.

2.1 Model Geometry

Multiscale modeling implies a definition of a simplified 
geometry that is representative of the skeletal muscle at 
the considered scale, based on hypotheses on the anatomi-
cal constituents [30]. Here we discuss implementation of 
realistic and idealized geometries. Realistic geometries tend 
to reproduce medical imaging acquisitions [31] and are 
implemented in skeletal muscle multiscale models mostly 
from microscopy cross section images [32–37]. Kuravi and 
colleagues propose a 3D realistic geometry obtained from 
registration and segmentation protocols on successive his-
tological cross sections, resulting in a 3D reconstruction of 
a cubic muscle sample at the microscale [32, 33]. Realistic 
geometries can also be AI generated [38].

However, most multiscale models do not use micros-
copy images directly, but rather simplified geometries either 
in 1D, 2D or 3D (Fig. 2). 1D elements are used to repre-
sent constituents at the submicron scale such as titin rep-
resented with springs [39–41], or myofibrils and collagen 
represented with bars [42] (Fig. 2.A). 1D muscle fibers are 
modeled at the microscale as springs [43–45] and as bars 
[39–41] (Fig. 2.B). At the microscopic scale, some authors 
assume that muscle fibers are parallel to each other. Thus 
2D plane geometries representing a muscle cross section 
are often extruded alongside the direction orthogonal to the 
plane, generating a 3D geometry with regular arrangements 

Fig. 1 Schematic representation of the multiscale architecture of the 
striated skeletal muscle [descriptive caption: a scheme representing 
the muscle and epimysium at the macroscale. The muscle constitutes 
of fascicles, blood vessels and perimysium. At the mesoscale, a fas-
cicle is represented. It is surrounded by perimysium and it contains 
fast and slow fibers, as well as endomysium. At the microscale, a fiber 

constituted of myofibrils surrounded by the sarcoplasmic reticulum, 
the sarcolemma, and endomysium is shown. At the submicron scale 
a sarcomere from the myofibril, its link to the endomysium, and the 
endomysium are shown. More specifically, several proteins actin, titin, 
myosin, troponin, tropomyosin, costameres, laminin, collagen IV, elas-
tin and collagen I are represented]
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of parallel muscle fibers such as perfectly circular [46–48] 
(Fig. 2.C) or hexagonal [49, 50] (Fig. 2.D). Perfectly circu-
lar arrangements are simple of use especially considering 
analytical homogenization methods, as these methods often 
consider elliptical or cylindrical fiber reinforced composites 
[51]. However, the maximum fiber packing or fiber volume 
fraction (FVF) that can be obtained using this arrangement 
is 90.7% whereas the muscle fiber FVF in healthy muscles 
reaches 95%. Moreover, this geometry creates local section 
variations in the ECM, which are not representative of the 
real microstructure [52]. Hexagonal muscle fibers overcome 
these drawbacks, yet they consider fibers with equal geom-
etries and areas, while the real microstructure is more ran-
dom and contains fibers with different sizes [53]. Thus, an 
increasing trend is the use of randomized regular arrange-
ments such as Voronoi tessellations [54]. Voronoi tessella-
tions or a Voronoi diagram constitute in partitions of a plane 
into convex regions also called cells. The cells are defined 
by a given set of points called Voronoi seeds or centroids. 
Each Voronoi region is defined by a seed. Any point belong-
ing to that region is closer to that seed than to any other 
seed present in the set. The obtained regions vary in size and 
shapes. Periodic Voronoi tessellations are obtained by dupli-
cating the seeds contained in a 1 × 1 region into a 3 × 3 grid 
and intersecting the obtained Voronoi diagram by a 1 × 1 
bounding box (Fig. 2.E). This specific arrangement has been 
used for periodic numerical homogenization [55–61]. Some 
authors also define curved-edge Voronoi tessellations [32, 
33, 57] using different methods to round up the obtained 
Voronoi regions, arguing that the realistic geometry does not 

contain sharp angles. At the mesoscale, fascicles and extra-
cellular matrix have been also represented using Voronoi 
tessellations [62]. At the macroscale, idealized 3D muscle 
geometries include rectangular parallelepiped and idealized 
fusiform muscle shape [43–45, 55] (Fig. 2.F).

In the specific context of homogenization, the represen-
tative geometry is named unit cell or Representative Vol-
ume Element (RVE) [30, 63]. Recently, tools that can be 
used to generate RVE in Finite Element software have been 
developed [62, 64, 65]. They allow to automatically gener-
ate microscale circular arrangements [65], submicron scale 
to mesoscale arrangements including Voronoi tessellations 
[62] and periodic boundary conditions [64], that have spe-
cific application for numerical homogenization or averaged 
values scale transitions.

2.2 Scale Transition Approaches

Homogenization is currently the most widely used approach 
for multiscale modeling of skeletal muscle. Homogeniza-
tion methods have been developed for the study of multi-
scale materials [66–70]. Thus, these methods consider two 
separate spatial scales: the microscopic scale where the 
material presents a heterogenous microstructure, and the 
macroscopic scale, where the material can be supposed 
homogenous, as the heterogeneities’ dimensions are con-
sidered neglectable. Homogenization methods approximate 
the mechanical behavior of the macroscopic scale mate-
rial by computing the effective mechanical properties of an 
equivalent homogeneous material which are representative 

Fig. 2 Idealized geometries to 
represent skeletal muscle: (A) 
myofibrils represented as trusses 
in a 3D geometry, (B) parallel 
1D fibers embedded in a 3D 
muscle geometry (C) regular 
circular arrangement, (D) regular 
hexagonal arrangement, (E) 
periodic Voronoi diagram with 
constant ECM width (1), rounded 
up diagram (2) and variable ECM 
width (3 and 4), (F) fusiform 
muscle geometry [descriptive 
caption: this figure shows differ-
ent simplified geometries used to 
describe the skeletal muscle in 
2D and in 3D]
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behavior of the composite around a pre-stressed configura-
tion. This method provides a better estimate than the Voigt 
and Reuss methods, at the cost of increased complexity. One 
last family of homogenization methods used in the context 
of skeletal muscle multiscale modeling is the second order 
methods, that have been developed for the modeling of non-
linear elastic composites. Second order methods based on 
estimates for sequentially laminated composites [79, 80] 
have been implemented [55] and recently developed [81] 
for biological materials such as skeletal muscles. Through 
these methods, high FVF composite including constituents 
with transversely isotropic behavior can be replicated. Ble-
iler et al. [81] developed an estimate considering an aniso-
tropic behavior for all microscopic constituents of a fiber 
reinforced composite. However, these methods exhibit great 
complexity and cannot account for complex geometries at 
the microscale.

Numerical or computational homogenization methods 
help overcome the limitations associated with analytical 
approaches to predicting the behavior of heterogeneous 
materials with complex geometries and solicitations. 
These homogenization methods are based on simulations 
of a discretized geometry. They can be separated in two 
categories, namely hierarchical and concurrent [71]. Hier-
archical methods consider different simulations for the 
different scales, and information is passed from one simu-
lation to another. Usually, one macroscopic scale simula-
tion is linked to several microscopic scale simulations. The 
hierarchical approach is implemented through the use of 
Finite Element Modeling for skeletal muscle homogeniza-
tion [36, 48, 50, 55–59], mostly through the use of com-
putational periodic homogenization [82] which requires the 
discretized microscopic scale geometry to be periodic in all 
space directions. Conversely, concurrent methods consider 
different scales simultaneously in different subvolumes of 
the same simulation and these scales may exchange infor-
mation in hand-shake regions. Some authors also developed 
a concurrent numerical homogenization method using two 
different meshes in the same simulation and computing 
variable interpolation between the two structures [83] for 
muscle simulation [39–41, 84]. Hierarchical methods can 
be used to increase the model resolution in the case of dam-
aged areas. However, they do not allow to model Fracture 
Process Zones (FPZ) to simulate muscle tear for example. 
This is made possible by concurrent approaches that render 
a more precise interaction between the scales. Both methods 
are computationally expensive.

Some multiscale models do not use homogenization 
methods. Modeling approaches such as Hill’s model [34, 
35, 85, 86] draw the link between scales as it separates the 
mechanical contribution of each microscale constituent. 
Another approach, namely micromechanical modeling, 

of the microscopic constituents’ behavior. They provide a 
link from the microscopic scale to the macroscopic scale 
(homogenization) and sometimes an inverse link from the 
macroscopic scale to the microscopic scale (localization). 
There exists two main homogenization methods families, 
namely the numerical homogenization methods [71], which 
require the use of specific simulation tools, and the ana-
lytical homogenization methods [72] which can be applied 
at the different scales at which we seek to model skeletal 
muscle.

Homogenization methods require assumptions and 
definition of (i) the heterogeneous material’s geometry at 
the microscopic scale (RVE), (ii) the constituent’s con-
stitutive behaviors, and (iii) the interactions between the 
constituents at the microscopic scale. From the submi-
cron scale to the mesoscale, skeletal muscle can be mod-
eled as a fiber reinforced composite, with a FVF ranging 
from 90 to 95% for healthy muscles at the microscale. The 
muscle’s microconstituents exhibit an anisotropic behav-
ior [73–75] but are often assumed transversely isotropic in 
multiscale models. The aforementioned features constitute 
a current limitation for the use of most analytical homog-
enization methods developed for the investigation of fiber 
reinforced composites. Amongst these methods, the Mean 
Field Homogenization (MFH) methods [51] are based on 
the so-called dilute dispersion assumption, which consid-
ers that the fibers should be contained in dilute quantities in 
a very large matrix medium, therefore excluding materials 
with high FVF. Thus, other homogenization methods have 
been applied to skeletal muscle modeling. The Voigt and 
Reuss methods, also named rule of mixture laws, provide 
respectively upper and lower bounds for the behavior of the 
equivalent homogenous material in the case of a compos-
ite reinforced with long parallel fibers [69, 70]. The Voigt 
method [70] assumes an isometric strain in the composite 
and is consequently used for load cases in the direction of 
the fibers. Its counterpart is the Reuss method [69] which 
considers isometric stress in the composite. The advantage 
of these methods is their simplicity, as they are based only 
on the FVF, however this implies that they do not take the 
microscopic geometry into account. Due to this simplicity, 
homogenized skeletal muscle models often use the Voigt 
homogenization [46, 50, 59, 76]. Another method based on 
asymptotic homogenization [77, 78] has been used in skeletal 
muscle modeling [42]. Briefly, asymptotic homogenization 
assumes that at least one direction of space at the micro-
scopic scale is periodic. The method relies on the displace-
ment field’s description at the microscopic scale using fast 
and slow space variables to account for this periodicity, and 
then on the application of finite series development to obtain 
an equation system. Caillerie et al. [77] developed an esti-
mate for graphite sheets, that corresponds to the linearized 
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On the scale above, referred to here as microscale, 
muscle fibers constitutive laws depend on the modeling 
framework used. In Finite Difference Modeling (FDM), 
linear springs are used to represent muscle fibers in trac-
tion [43–45] and in compression [44, 45]. Similarly, using 
Hill’s model, the fiber is represented by 3 elements, includ-
ing in series contractile and elastic elements, and a parallel 
elastic element, using exponential and quadratic hyperelas-
tic formulations [34, 52]. Using Finite Element Modeling 
(FEM), Reproducing Kernel Particle Method (RKPM) [37], 
or analytical frameworks, muscle fibers are usually modeled 
by separate isotropic and anisotropic contributions. The iso-
tropic behavior accounts for cellular components other than 
myofibrils and is usually represented by simple hyperelastic 
laws such as Neo-Hookean [47, 48, 50, 55, 56, 60, 76, 87], 
second order Mooney Rivlin [58], Yeoh model [46, 49], or a 
quadratic polynomial function [37].

The muscle fiber anisotropic behavior is attributed to 
myofibrils and especially titin proteins. Constitutive laws 
are expressed as a function of the fiber stretch with a linear 
[50, 55], quasi linear [42], exponential [37, 58] or polyno-
mial [46, 49, 56] shape, which coefficients are identified 
on muscle fiber uniaxial tension experimental data [4]. The 
fiber stretch is directly related to the Cauchy-Green tensor’s 
invariant I4, thus most models make use implicitly of invari-
ant I4 to model anisotropy. Using a more phenomenological 
approach, this invariant is explicitly used by [32, 33] follow-
ing the formulation proposed in [89]. In the same way, [57] 
use invariant I4 in combination with invariant I5. The use of 
invariant I5 is justified by the need to represent shear defor-
mations more accurately [90]. The Criscione invariants [91] 
have been used to represent shear deformations [36, 38, 59, 
92, 93], as these invariants have a better physiological inter-
pretability than the classical ones thus leading to more inter-
pretable modeling results. The aforementioned approaches 
for muscle fibers constitutive modeling are summed up in 
Fig. 3. Some authors introduce corrective coefficients to 

considers large microscale geometries representative of the 
skeletal muscle and considers the behavior of these com-
posites identical to the macroscale muscle’s behavior. This 
information on the macroscale can be obtained through the 
average value of stresses and strains over the considered 
representative volume or surface. This approach is simple 
and allows a more complex representation of geometry and 
behavior. This method is used to obtain information on the 
microstructure, however phenomena happening at the mac-
roscale (i.e. FPZ) cannot be modeled with this approach, as 
it doesn’t provide localization.

3 Constitutive Laws for the Passive Behavior

Some of the multiscale mechanical models of skeletal 
muscle include multiphysics parts, such as chemical [86, 
39–41, 44, 45, 87] or electrical ones [86, 39–41, 44, 45], to 
mimic the muscle activation in an active component. It is 
therefore essential to distinguish, at each scale of skeletal 
muscle modeling, between passive and active components, 
both of which will influence the mechanical behavior of the 
muscle at higher scales. In this section, the passive mechani-
cal constitutive laws implemented at the different scales are 
first described, as to draw a scale-wise comparison in a sec-
ond part. For further details, please refer to Appendix A for 
selective bibliography.

3.1 Passive Mechanical Constitutive Laws at Lower 
Scales

At the submicron scale, constitutive laws are developed 
for myofibrils or more specifically titin. Titin is modeled as 
a linear spring [39–41] or a worm-like-chain model [88]. 
Myofibrils and collagen fibers are modeled as crimped 
fibrils in an isotropic matrix [42].

Fig. 3 Main approaches to represent fibers and ECM behaviors at the 
microscale, AI: angular integration, GST: generalized structure tensor 
[descriptive caption: this figure shows a diagram summarizing the dif-
ferent modeling approaches at the microscale. On the first level the 
distinction is made between muscle fibers and extracellular matrix. On 

the second level the distinction is made between isotropic and aniso-
tropic contribution for the fibers, whereas the ECM modeling can be 
distinguished in a single component model, or isotropic matrix plus 
collagen fibers model. More ramifications give additional precisions]

 

1 3

341



A. Loumeaud et al.

specific skeletal muscle extracellular matrix behavior law 
based on the GST approach that also includes a volumet-
ric contribution to penalize volume changes and a structural 
contribution to model shear. Similarly, [57] used a pas-
sive anisotropic hyperelastic contribution for extracellular 
matrix that includes the Cauchy-Green tensor’s invariants 
I5 and I7, that was developed to better model shear in arter-
ies [103].

Fat inclusions at the microscale are modeled as an iso-
tropic neo-Hookean material [38, 56]. Transmembrane 
proteins have also been included at the microscale [38] as 
nonlinear springs. The rupture in ECM, muscle fibers, and 
tendon fibers [104] can also be implemented as in [45].

Very few authors include fascicles as a realistic bound-
ary material in multiscale models. To the best of our knowl-
edge, no specific constitutive laws have been developed 
for the fascicles in the context of multiscale modeling. A 
general approach is the use of a rule of mixtures applied 
to micro constituent behaviors to determine the parameters 
of a hyperelastic constitutive law [35, 38]. The parameters 
of a 3D Hill model have been identified by the response of 
a motor unit [86]. They differ from the fascicles as muscle 
fibers contained in the same motor unit do not necessarily 
belong to the same fascicle. The skeletal muscle has been 
represented with motor units grouped in parallel.

3.2 Validation on Experimental Data at the Whole 
Muscle Scale

An important step in biomechanical modeling is the valida-
tion of numerical models on experimental data. For skel-
etal muscle multiscale modeling, a few datasets including 
mainly uniaxial tension and shear tests are used in this way 
[75, 105, 106] by comparison to their numerical replication 
[33, 38, 46, 107], as detailed for the most frequently used 
experimental studies in the Table 1.

A specific difficulty in validating the models in both 
shear and compression loadings can be denoted. Implemen-
tation of shear loading allows to investigate conditions such 
as Duchenne Muscular Dystrophy [38, 59], cerebral palsy 
[46, 107] and ageing [37, 58] that have an impact on the 
ECM. Compression has been modeled to study deep ulcer 
injuries in a model of hypoxia including the capillaries [87].

4 Constitutive Laws for the Active Behavior

4.1 Active Mechanical Behavior

To get insights on neural stimulation and force genera-
tion within the skeletal muscle, an active contribution 
to the constitutive laws is added. Force generation in the 

take age into account [37, 58]. The titin contribution in the 
fiber can also be found as a homogenized version of a sub-
micron scale model [39–41]. To study rupture in fibers, a 
model of irreversible deformations and microcracks is pro-
posed in [48].

ECM is represented as a linear elastic material [43–45], 
an isotropic material [35, 46–48, 60] or as a collagen fiber 
reinforced material [32, 33, 50, 55, 56, 58, 76]. Isotropic 
depictions of ECM include Yeoh [46] and first order Ogden 
[47, 48, 60] hyperelastic models. The Hill model [94] has 
also been extended to separate the muscle fibers and ECM 
contribution by adding a parallel stiffness to the previous 3D 
model [35] representing ECM by means of an exponential 
formulation.

As a fiber reinforced material, the ECM is modeled as 
an isotropic matrix reinforced with collagen fibers. As the 
collagen fibers are wavy and present a specific orientation 
in the tissue, formulations accounting for the waviness and 
uncrimping of the collagen fibers in soft tissues have been 
developed [88, 95, 96]. The isotropic matrix has been mod-
eled considering a Neo-Hookean behavior [50, 55, 56, 76] 
or a Mooney Rivlin model [58]. Authors systematically use 
collagen fiber orientations of either ± 55° or ± 59° relative to 
the muscle fibers’ orientation. Two main families of methods 
have been described and compared in the literature to model 
the collagen fibers: the angular integration (AI) approach 
[97] and the generalized structure tensor (GST) approach 
[98]. The AI approach considers the mechanical behavior 
of each collagen fiber and then integrates this behavior over 
a volume where specific fiber orientation distributions can 
be defined. On the contrary, the GST approach uses a ten-
sor called generalized structure tensor as to represent a fiber 
family’s global orientation, and the mechanical behavior is 
defined per fiber family. This topic has been reviewed in 
[99]. The angular integration approach for skeletal mus-
cles extracellular matrix is presented in [88]. More models 
use the AI approach [50, 55, 56, 58, 59, 76] than the GST 
approach [32, 33].

Recent ECM models considering collagen cross-linking 
in the ECM have been developed [100, 101] as this feature 
directly influences the mechanical properties of ECM [1, 
18]. Moreover, as costameres connect the interior of the 
muscle fiber to the ECM, this leads to a phenomenon called 
lateral force transmission, where the fiber’s force is trans-
mitted through shear to the ECM. The ECM network then 
locally redistributes the loads into the fascicle through endo-
mysium shear [1, 102]. Consequently, shear modeling in the 
ECM has gained increasing interest in multiscale models. 
The previous approaches do not consider shear contribution 
of the collagen fibers into the extracellular matrix. Recent 
models aimed at including shear stress related components 
in ECM constitutive laws. Kuravi et al. [33] developed a 
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Shorten et al., (2007) [114]. Activation can also be spatially 
dependent, with specific fiber recruitment patterns [49] to 
mimic neural signals.

Force length relationships describe the experimentally 
observed relationship between strain along the fiber axis 
and active stress, as the force generated by sarcomeres 
depends on their initial elongation at the activation. They 
exhibit piecewise polynomial [39–41, 44, 47, 48, 58, 60], 
trigonometric [46], exponential [34] formulations, or can be 
found expressed as a Weibull distribution [50, 55]. These 
functions are usually normalized as to modulate the maxi-
mal isometric force in the muscle fiber, similarly to activa-
tion functions.

Some authors implement a force velocity relationship, 
which captures the strain rate dependence of the active 
behavior, thus the viscous effects, by a hyperbolic relation 
[34, 50, 55, 94].

Titin force enhancement can also be considered at the 
microscale through an additional stress component [48]. To 
study the recruitment of motor units in isometric conditions, 
a model has been proposed based on the Huxley’s formula-
tion [86, 115].

Considering the whole muscle, three kinds of muscular 
contractions have to be distinguished. Isometric contractions 
happen at fixed muscle length; concentric contraction leads 
the muscle to shorten as it produces force, while in eccentric 
contractions the muscle elongates due to a greater opposite 
force. As isometric contractions do not generate changes 
in the geometry, they are modeled in a different way than 
concentric and eccentric contractions. Most authors model 
isometric contractions. This load reproduces voluntary con-
tractions in human patients [86]. Isometric contractions 
are also modeled to investigate phenomena such as trigger 
points i.e. a local knot of permanently contracted sarcomeres 
without any neural stimulation [60], titin force enhancement 
[39–41], and effect of activation patterns within a muscle 
fiber bundle [49]. Eccentric contractions are modeled in the 

skeletal muscle is attributed to proteins actin and myosin 
binding in the presence of calcium, namely the cross-bridge 
theory [110, 111]. Experimental evidence also suggests an 
additional active force generated by formation of a bound 
between titin and actin during activation [13, 22], that would 
be responsible for the residual force enhancement phenom-
enon first observed and described in [112]. To account for 
the bound formed between titin and actin in the presence of 
calcium, namely titin force enhancement, titin is modeled 
using the so-called “sticky spring mechanism” [39–41, 113] 
that assumes that a certain region from the titin molecule 
named PEVK region binds to actin in the presence of cal-
cium. In this model the titin is modeled as a linear spring 
parallel to the muscle fiber. Its free length gets reduced 
when titin binds to actin and its orientation changes due to 
the location of the bound, thus inducing additional efforts 
both in the fiber direction and in the cross-fiber directions.

Several approaches have been proposed to implement 
active behavior at the microscale. The active behavior is 
usually an additional component in the muscle fiber consti-
tutive behavior generating specific stress or pressure along 
the muscle fiber axis [52]. A value representative of the 
active stress generated by a single fiber is affected, e.g. the 
maximal isometric force [32, 33, 49]. This additional active 
stress can also be modulated by the product of activation 
parameters, activation functions, normalized force-length, 
and force-velocity relationships. Activation can be repre-
sented by a single parameter α which values can range from 0 
(non-activated) to 1 (full activation, all actin-myosin bounds 
are supposedly formed) [48, 50, 55, 60]. Usually, activa-
tion functions are used, as to solve numerical issues [44] or 
to better represent the physiological phenomena leading to 
activation [39]. Activation functions can exhibit linear [46], 
trigonometric [44], or exponential [34, 58] formulations as 
a function of time with possible implication of electrical and 
chemical phenomena. Heidlauf and colleagues [39–41] base 
their work on the excitation contraction coupling model of 

Table 1 Main experimental studies used to identify the behavioral laws of multiscale numerical models of skeletal muscle (N.I.: no information) 
[descriptive caption: this table presents characteristics about experimental datasets published in the literature. It includes 5 entries for each dataset, 
which are the reference of the study, the considered solicitation, the tested species, the tested muscles, and the strain rate used for the experiment]
Reference Solicitation Species Muscle Strain rate
Hawkins and Bey 1994 
[108]

Active and passive response to uniaxial tensile test in the muscle fiber 
direction

Rat Tibialis anterior N.I.

Morrow et al., 2010 [106] Longitudinal extension, transverse extension and longitudinal shear 
test

Rabbit Extensor digito-
rum longus

0.5 e− 3 s− 1

Calvo et al., 2010 [105] In vitro and in vivo uniaxial tensile tests Rat Tibialis anterior 0.33 e− 3 
s− 1

Meyer and Lieber 2011 
[19]

Tensile tests on individual fiber, fiber composite and bundle composite Mouse 5th toe of exten-
sor digitorum 
longus

20 s− 1

Takaza et al., 2013 [75] Tensile tests at 0°, 30°, 45°, 60° and 90° to the muscle fiber direction Pig Longissimus dorsi 0.5 e− 3 s− 1

Mohammadkhah et al., 
2016 [109]

Tensile and compression tests at 0°, 45° and 90° to the muscle fiber 
direction

Chicken Pectoralis 0.5 e− 2 s− 1
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A thermomechanical model accounting for thermal 
treatments in trigger points in the skeletal muscle has 
been developed [60]. Each component (namely muscle 
fibers and ECM) is described by means of mechanical, 
thermomechanical, and conductive thermal constitu-
tive contributions. Thermomechanical coupling terms 
account for the thermal dilatation of the materials. Dur-
ing muscle activation, the cross-bridges undergo endo-
thermal cycles, and are thus considered as a negative heat 
source.

Multiphysics multiscale models are often implemented 
to model neural stimulation and action potential propa-
gation within the muscle. Through separation of muscle 
fibers in motor unit [84], the electrical input is trans-
formed into transmembrane ionic potentials and finally 
transmitted to the contractile elements through calcium 
release from the sarcoplasmic reticulum. Other original 
approaches include the study of hypoxia in fibers, model-
ing the oxygen diffusion from capillaries and mitochon-
drial metabolism [87]. A promising application is the 
thermomechanical study of muscles, giving insights on 
thermal therapies for muscles such as cryotherapy [60].

5 Conclusions

In the literature, there exist only a few multiphysics mul-
tiscale models. Firstly, electrical and chemical couplings 
require the use of a multiphysics computational frame-
work. Multiscale skeletal muscle models mostly use the 
Finite Element software ABAQUS® SIMULIA (Das-
sault Systèmes SE, Vélizy-Villacoublay, France) and the 
Discrete Element software GranOO [117] even if some 
opensource alternatives have been developed, such as the 
library OpenCMISS [84, 118–120]. Multiphysics simula-
tions are very demanding in resources and computation 
time. Consequently, parallel computation and optimiza-
tion strategies need to be implemented in the multiphysics 
frameworks [119, 120]. These considerations constitute 
another complexity layer to the development of a mul-
tiphysics multiscale muscle model, thus constituting a 
current limitation in muscle multiscale modeling. Other 

context of injuries due to eccentric contractions [44, 48]. 
To numerically implement eccentric contractions, authors 
perform stepwise uniaxial extensions followed by isometric 
contractions. Concentric contractions are modeled to repro-
duce an isovelocity shortening protocol for parameter iden-
tification purposes [34]. A case study of both concentric and 
eccentric contractions has been reported [47].

4.2 Inclusion of Electrical, Chemical and Thermal 
Couplings

Active multiscale mechanical muscle models often include 
neural signaling, thus implementing other physics such a 
chemistry or electricity.

Based on an excitation contraction coupling model 
[114], a first model proposes to describe the ion dynamics 
of the excitation contraction coupling, such as calcium, 
chloride, potassium and magnesium, as well as adenosine 
triphosphate (ATP) dynamics [39–41]. The ions channels 
carry currents that represent the propagation of the action 
potential through the muscle fiber, represented by bido-
main equations.

Another model of motor unit recruitment representing 
voluntary and evoked recruitment of motor units has also 
been developed [86] based on [116]. The action potential 
generated in each motor unit is then linked to calcium 
ions release in the myoplasm.

These electrical contributions are linked to chemical 
contributions representing ion dynamics. Upon release 
from the sarcoplasmic reticulum, calcium ions bind to 
molecule troponin, forming cross-bridges, which are 
responsible for the sarcomere contraction. The concen-
trations of attached cross-bridges in the different states 
of the contraction are calculated and normalized by the 
maximum concentration of possible cross-bridges, which 
is associated to the maximal force [39–41, 83]. Similarly, 
voluntary motoneuron recruitment and sarcoplasmic 
reticulum calcium release have been modeled in motor 
units [86], inducing 3 states in the motor unit, depending 
on the calcium concentration: activated, in relaxation or 
relaxed. Chemical coupling has also been used to model 
oxygen diffusion in muscle capillaries and hypoxia [87].
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velocities, thus the viscoelastic effect [124, 125] may 
become important when combining several studies for 
parameter identification [23]. As a result, the literature 
contains scarce experimental data suited for multiscale 
modeling. Consequently, a current trend is to acquire the 
experimental data needed for the identification and the 
validation of the model parameters [32, 33, 57, 59, 126]. 
The acquired datasets are extracted from ex vivo passive 
experiments. We recommend exploring in vivo imaging 
techniques that provide insight on mechanical parame-
ters within the muscles, such as elastography [127–129]. 
Model of small animals face an additional experimental 
challenge due to the size of the animal [130], that leads to 
scarcer datasets across the literature. Across the current 
models, the combination of data from different species 
can be observed, although differences can exist between 
them in anatomical features [5, 131]. Some efforts have 
been made to compare the anatomy of skeletal mus-
cles across species [131]; however, to our knowledge, 
mechanical properties have yet to be compared in the 
same way.

6 Appendix A Main Multiscale Muscle 
Models

The main multiscale skeletal muscle models reviewed here 
are summarized in Table 2.

multiphysics frameworks have been used for multiscale 
skeletal muscle models implementation such as COM-
SOL Multiphysics (COMSOL Inc., Stockholm, Sweden) 
[49] and FeBio (Musculoskeletal Research Laboratories, 
University of Utah, Salt Lake City, UT, USA) [121].

In an attempt to compare these models, we have ana-
lyzed the equivalent shear moduli in small deformations 
proposed by each of the models for their passive behav-
iors, whether for ECM or muscle fibers (Fig. 4). We show 
in green the regions where muscle fibers are stiffer than 
ECM for passive mechanical properties, and in orange 
the areas where this trend is reversed. It can be seen that, 
even if there are wide disparities in values (notably linked 
to the fact that active behavior or other chemical or ther-
mal properties that are added are capable of modifying 
these values for a certain number of models), two major 
trends emerge: models using stiffnesses of the same order 
of magnitude between ECM and muscle fibers, and mod-
els with ECM 3 to 5 times stiffer than fibers in the context 
of passive behavior alone.

For identification and validation purposes, data from 
different species and studies is used in the same model. 
Very few authors have indeed acquired data at different 
scales on the same samples [3, 122, 123]. Moreover, pas-
sive mechanical tests at several scales are performed ex 
vivo, thus leading to uncertainties due to the samples’ 
conservation and preparation. Furthermore, datas-
ets across the literature are not performed at the same 

Fig. 4 Comparison of equivalent 
shear moduli in small deforma-
tions for ECM and muscle fibers 
in a large number of multiscale 
models proposed in the literature. 
The boundary between stiffer 
fibers (green area) and stiffer 
ECM (orange area) is illustrated 
[descriptive caption: this graphic 
shows scattered points, each 
representing a different numeri-
cal study. The axes are the ECM 
shear modulus in kPa as the 
x-axis, and the muscle fiber shear 
modulus in kPa as the y-axis]
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