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Abstract

Purpose From the myofibrils to the whole muscle scale, muscle micro-constituents exhibit passive and active mechanical
properties, potentially coupled to electrical, chemical, and thermal properties. Experimental characterization of some of
these properties is currently not available for all muscle constituents. Multiscale multiphysics models have recently gained
interest as a numerical alternative to investigate the healthy and diseased physiological behavior of the skeletal muscle.
Methods This paper refers to the multiscale mechanical models proposed in the literature to investigate the mechanical
properties and behavior of skeletal muscles. More specifically, we focus on the scale transition methods, constitutive laws
and experimental data implemented in these models.

Results Using scale transition methods such as homogenization, coupled to appropriate constitutive behavior of the constitu-
ents, these models explore the mechanisms of ageing, myopathies, sportive injuries, and muscle contraction.

Conclusion Emerging trends include the development of multiphysics simulations and the coupling of modeling with the
acquisition of experimental data at different scales, with increasing focus to little known constituents such as the extracellular

matrix and the protein titin.

Keywords Multiscale - Multiphysics - Numerical modeling - Skeletal muscle - Biomechanics - Homogenization

1 Introduction

Skeletal muscles present a multiscale architecture [1, 2], as
illustrated in Fig. 1. To each scale corresponds a specific
architecture with associated constituents, each of which
is likely to contribute to the active or passive mechanical
properties of the overall skeletal muscle [3, 4]. At the mac-
roscopic scale (of the order of centimeter), the muscle is
constituted of several adjacent mesoscale fascicles. These
fascicles in turn contain groups of tightly packed muscle
fibers or muscle cells that constitute the microscale (from
10 to 100 pm in diameter). Muscle fibers can be arranged in
different architectures within the muscle depending on the
muscle’s function in the body [5]. All the aforementioned
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structures are separated by thin layers of connective tissue
known as extracellular matrix [6, 7]. Fibers are constituted
by the submicron scale myofibrils (from 1 to 2 pm in diam-
eter) and cellular components. Each of these myofibrils is
an assembly of sarcomeres in series that contain proteins
such as actin, titin and myosin. Other cellular components
include the sarcoplasmic reticulum, that propagates neural
signal as a chemical potential down to the sarcomeres. They
are physically linked to extracellular structures through
costameres [8—10]. On the other end of this linkage, the
extracellular matrix consists in collagen and elastin fibers
embedded in a matrix of proteoglycans [11, 12].

The mechanical properties of the smaller scale com-
ponents result in a global anisotropic viscohyperelastic
behavior of the skeletal muscle [1, 7, 13]. The passive
mechanical properties in the skeletal muscle are attrib-
uted to two proteins, namely titin in the fibers [14-16]
and collagen in the extracellular matrix [1, 17-20]. Trans-
membrane proteins such as dystrophin that belong to the
costameres also contribute to lateral force transmission
[1, 21] between muscle fibers and extracellular matrix.
During muscle activation, the change in mechanical
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Fig. 1 Schematic representation of the multiscale architecture of the
striated skeletal muscle [descriptive caption: a scheme representing
the muscle and epimysium at the macroscale. The muscle constitutes
of fascicles, blood vessels and perimysium. At the mesoscale, a fas-
cicle is represented. It is surrounded by perimysium and it contains
fast and slow fibers, as well as endomysium. At the microscale, a fiber

properties is due to the sarcomere contraction attributed
to the binding of proteins actin and myosin, namely the
cross-bridge cycling theory. Some evidence also sug-
gests an active bound formation between titin and actin
during activation, called force enhancement [22]. The
skeletal muscle mechanical properties are related to the
muscle’s physiological state. To study the functional or
the structural properties of the skeletal muscle, in vivo,
ex Vvivo or in vitro, experiments can be conducted. These
investigations are however limited due to technical dif-
ficulties when it comes to measure the mechanical proper-
ties at smaller scales, especially in human patients [23].
Thus, tools such as multiscale biomechanical modeling
are implemented [24, 25]. These tools first establish the
mechanical link over scales in the organ using several
approaches such as analytical homogenization, numerical
homogenization, and averaged results, which are account-
ing for the different constituents of the microstructure and
their specific geometry at each scale. Then, the mechani-
cal constitutive laws for the constituents must be iden-
tified, including passive and active components as well
as potential multiphysics components (such as electrical,
chemical or thermal specificities).

In this study, we describe the current state of the art in
multiscale and multiphysics biomechanical numerical mod-
eling, with a focus on models describing the skeletal muscle
mechanical behavior from myofibrils to the whole organ,
excluding smaller than submicron [26] and larger than mac-
roscopic [27-29] scales. After describing the main model-
ing approaches, we will expose and compare the mechanical
constitutive laws implemented at the different scales for
passive and active mechanical models as well as multiphys-
ics models.
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constituted of myofibrils surrounded by the sarcoplasmic reticulum,
the sarcolemma, and endomysium is shown. At the submicron scale
a sarcomere from the myofibril, its link to the endomysium, and the
endomysium are shown. More specifically, several proteins actin, titin,
myosin, troponin, tropomyosin, costameres, laminin, collagen IV, elas-
tin and collagen I are represented]

2 Multiscale Modeling

To establish the link from one scale to another, several
approaches have been proposed in the literature for skeletal
muscle modeling, which can be classified into three main
categories: analytical homogenization, numerical homog-
enization, and averaged results.

2.1 Model Geometry

Multiscale modeling implies a definition of a simplified
geometry that is representative of the skeletal muscle at
the considered scale, based on hypotheses on the anatomi-
cal constituents [30]. Here we discuss implementation of
realistic and idealized geometries. Realistic geometries tend
to reproduce medical imaging acquisitions [31] and are
implemented in skeletal muscle multiscale models mostly
from microscopy cross section images [32—37]. Kuravi and
colleagues propose a 3D realistic geometry obtained from
registration and segmentation protocols on successive his-
tological cross sections, resulting in a 3D reconstruction of
a cubic muscle sample at the microscale [32, 33]. Realistic
geometries can also be Al generated [38].

However, most multiscale models do not use micros-
copy images directly, but rather simplified geometries either
in 1D, 2D or 3D (Fig. 2). 1D elements are used to repre-
sent constituents at the submicron scale such as titin rep-
resented with springs [39—41], or myofibrils and collagen
represented with bars [42] (Fig. 2.A). 1D muscle fibers are
modeled at the microscale as springs [43—45] and as bars
[39—41] (Fig. 2.B). At the microscopic scale, some authors
assume that muscle fibers are parallel to each other. Thus
2D plane geometries representing a muscle cross section
are often extruded alongside the direction orthogonal to the
plane, generating a 3D geometry with regular arrangements
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Fig. 2 Idealized geometries to L

represent skeletal muscle: (A) A) (B)
myofibrils represented as trusses
in a 3D geometry, (B) parallel

1D fibers embedded in a 3D
muscle geometry (C) regular
circular arrangement, (D) regular
hexagonal arrangement, (E)
periodic Voronoi diagram with
constant ECM width (1), rounded
up diagram (2) and variable ECM
width (3 and 4), (F) fusiform -
muscle geometry [descriptive ¢ :
caption: this figure shows differ- |
ent simplified geometries used to
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describe the skeletal muscle in
2D and in 3D]

initial Voronoi seeds
periodic Voronoi diagram

of parallel muscle fibers such as perfectly circular [46—48]
(Fig. 2.C) or hexagonal [49, 50] (Fig. 2.D). Perfectly circu-
lar arrangements are simple of use especially considering
analytical homogenization methods, as these methods often
consider elliptical or cylindrical fiber reinforced composites
[51]. However, the maximum fiber packing or fiber volume
fraction (FVF) that can be obtained using this arrangement
is 90.7% whereas the muscle fiber FVF in healthy muscles
reaches 95%. Moreover, this geometry creates local section
variations in the ECM, which are not representative of the
real microstructure [52]. Hexagonal muscle fibers overcome
these drawbacks, yet they consider fibers with equal geom-
etries and areas, while the real microstructure is more ran-
dom and contains fibers with different sizes [53]. Thus, an
increasing trend is the use of randomized regular arrange-
ments such as Voronoi tessellations [54]. Voronoi tessella-
tions or a Voronoi diagram constitute in partitions of a plane
into convex regions also called cells. The cells are defined
by a given set of points called Voronoi seeds or centroids.
Each Voronoi region is defined by a seed. Any point belong-
ing to that region is closer to that seed than to any other
seed present in the set. The obtained regions vary in size and
shapes. Periodic Voronoi tessellations are obtained by dupli-
cating the seeds contained in a 1 X 1 region into a 3 x3 grid
and intersecting the obtained Voronoi diagram by a 1x1
bounding box (Fig. 2.E). This specific arrangement has been
used for periodic numerical homogenization [55-61]. Some
authors also define curved-edge Voronoi tessellations [32,
33, 57] using different methods to round up the obtained
Voronoi regions, arguing that the realistic geometry does not

contain sharp angles. At the mesoscale, fascicles and extra-
cellular matrix have been also represented using Voronoi
tessellations [62]. At the macroscale, idealized 3D muscle
geometries include rectangular parallelepiped and idealized
fusiform muscle shape [43—45, 55] (Fig. 2.F).

In the specific context of homogenization, the represen-
tative geometry is named unit cell or Representative Vol-
ume Element (RVE) [30, 63]. Recently, tools that can be
used to generate RVE in Finite Element software have been
developed [62, 64, 65]. They allow to automatically gener-
ate microscale circular arrangements [65], submicron scale
to mesoscale arrangements including Voronoi tessellations
[62] and periodic boundary conditions [64], that have spe-
cific application for numerical homogenization or averaged
values scale transitions.

2.2 Scale Transition Approaches

Homogenization is currently the most widely used approach
for multiscale modeling of skeletal muscle. Homogeniza-
tion methods have been developed for the study of multi-
scale materials [66—70]. Thus, these methods consider two
separate spatial scales: the microscopic scale where the
material presents a heterogenous microstructure, and the
macroscopic scale, where the material can be supposed
homogenous, as the heterogeneities’ dimensions are con-
sidered neglectable. Homogenization methods approximate
the mechanical behavior of the macroscopic scale mate-
rial by computing the effective mechanical properties of an
equivalent homogeneous material which are representative
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of the microscopic constituents’ behavior. They provide a
link from the microscopic scale to the macroscopic scale
(homogenization) and sometimes an inverse link from the
macroscopic scale to the microscopic scale (localization).
There exists two main homogenization methods families,
namely the numerical homogenization methods [71], which
require the use of specific simulation tools, and the ana-
lytical homogenization methods [72] which can be applied
at the different scales at which we seek to model skeletal
muscle.

Homogenization methods require assumptions and
definition of (i) the heterogeneous material’s geometry at
the microscopic scale (RVE), (ii) the constituent’s con-
stitutive behaviors, and (iii) the interactions between the
constituents at the microscopic scale. From the submi-
cron scale to the mesoscale, skeletal muscle can be mod-
eled as a fiber reinforced composite, with a FVF ranging
from 90 to 95% for healthy muscles at the microscale. The
muscle’s microconstituents exhibit an anisotropic behav-
ior [73—75] but are often assumed transversely isotropic in
multiscale models. The aforementioned features constitute
a current limitation for the use of most analytical homog-
enization methods developed for the investigation of fiber
reinforced composites. Amongst these methods, the Mean
Field Homogenization (MFH) methods [51] are based on
the so-called dilute dispersion assumption, which consid-
ers that the fibers should be contained in dilute quantities in
a very large matrix medium, therefore excluding materials
with high FVF. Thus, other homogenization methods have
been applied to skeletal muscle modeling. The Voigt and
Reuss methods, also named rule of mixture laws, provide
respectively upper and lower bounds for the behavior of the
equivalent homogenous material in the case of a compos-
ite reinforced with long parallel fibers [69, 70]. The Voigt
method [70] assumes an isometric strain in the composite
and is consequently used for load cases in the direction of
the fibers. Its counterpart is the Reuss method [69] which
considers isometric stress in the composite. The advantage
of these methods is their simplicity, as they are based only
on the FVF, however this implies that they do not take the
microscopic geometry into account. Due to this simplicity,
homogenized skeletal muscle models often use the Voigt
homogenization [46, 50, 59, 76]. Another method based on
asymptotic homogenization [77, 78] has been used in skeletal
muscle modeling [42]. Briefly, asymptotic homogenization
assumes that at least one direction of space at the micro-
scopic scale is periodic. The method relies on the displace-
ment field’s description at the microscopic scale using fast
and slow space variables to account for this periodicity, and
then on the application of finite series development to obtain
an equation system. Caillerie et al. [77] developed an esti-
mate for graphite sheets, that corresponds to the linearized
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behavior of the composite around a pre-stressed configura-
tion. This method provides a better estimate than the Voigt
and Reuss methods, at the cost of increased complexity. One
last family of homogenization methods used in the context
of skeletal muscle multiscale modeling is the second order
methods, that have been developed for the modeling of non-
linear elastic composites. Second order methods based on
estimates for sequentially laminated composites [79, 80]
have been implemented [55] and recently developed [81]
for biological materials such as skeletal muscles. Through
these methods, high FVF composite including constituents
with transversely isotropic behavior can be replicated. Ble-
iler et al. [81] developed an estimate considering an aniso-
tropic behavior for all microscopic constituents of a fiber
reinforced composite. However, these methods exhibit great
complexity and cannot account for complex geometries at
the microscale.

Numerical or computational homogenization methods
help overcome the limitations associated with analytical
approaches to predicting the behavior of heterogeneous
materials with complex geometries and solicitations.
These homogenization methods are based on simulations
of a discretized geometry. They can be separated in two
categories, namely hierarchical and concurrent [71]. Hier-
archical methods consider different simulations for the
different scales, and information is passed from one simu-
lation to another. Usually, one macroscopic scale simula-
tion is linked to several microscopic scale simulations. The
hierarchical approach is implemented through the use of
Finite Element Modeling for skeletal muscle homogeniza-
tion [36, 48, 50, 55-59], mostly through the use of com-
putational periodic homogenization [82] which requires the
discretized microscopic scale geometry to be periodic in all
space directions. Conversely, concurrent methods consider
different scales simultaneously in different subvolumes of
the same simulation and these scales may exchange infor-
mation in hand-shake regions. Some authors also developed
a concurrent numerical homogenization method using two
different meshes in the same simulation and computing
variable interpolation between the two structures [83] for
muscle simulation [39-41, 84]. Hierarchical methods can
be used to increase the model resolution in the case of dam-
aged areas. However, they do not allow to model Fracture
Process Zones (FPZ) to simulate muscle tear for example.
This is made possible by concurrent approaches that render
a more precise interaction between the scales. Both methods
are computationally expensive.

Some multiscale models do not use homogenization
methods. Modeling approaches such as Hill’s model [34,
35, 85, 86] draw the link between scales as it separates the
mechanical contribution of each microscale constituent.
Another approach, namely micromechanical modeling,
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considers large microscale geometries representative of the
skeletal muscle and considers the behavior of these com-
posites identical to the macroscale muscle’s behavior. This
information on the macroscale can be obtained through the
average value of stresses and strains over the considered
representative volume or surface. This approach is simple
and allows a more complex representation of geometry and
behavior. This method is used to obtain information on the
microstructure, however phenomena happening at the mac-
roscale (i.e. FPZ) cannot be modeled with this approach, as
it doesn’t provide localization.

3 Constitutive Laws for the Passive Behavior

Some of the multiscale mechanical models of skeletal
muscle include multiphysics parts, such as chemical [86,
3941, 44, 45, 87] or electrical ones [86, 3941, 44, 45], to
mimic the muscle activation in an active component. It is
therefore essential to distinguish, at each scale of skeletal
muscle modeling, between passive and active components,
both of which will influence the mechanical behavior of the
muscle at higher scales. In this section, the passive mechani-
cal constitutive laws implemented at the different scales are
first described, as to draw a scale-wise comparison in a sec-
ond part. For further details, please refer to Appendix A for
selective bibliography.

3.1 Passive Mechanical Constitutive Laws at Lower
Scales

At the submicron scale, constitutive laws are developed
for myofibrils or more specifically titin. Titin is modeled as
a linear spring [39—41] or a worm-like-chain model [88].
Myofibrils and collagen fibers are modeled as crimped
fibrils in an isotropic matrix [42].

On the scale above, referred to here as microscale,
muscle fibers constitutive laws depend on the modeling
framework used. In Finite Difference Modeling (FDM),
linear springs are used to represent muscle fibers in trac-
tion [43—45] and in compression [44, 45]. Similarly, using
Hill’s model, the fiber is represented by 3 elements, includ-
ing in series contractile and elastic elements, and a parallel
elastic element, using exponential and quadratic hyperelas-
tic formulations [34, 52]. Using Finite Element Modeling
(FEM), Reproducing Kernel Particle Method (RKPM) [37],
or analytical frameworks, muscle fibers are usually modeled
by separate isotropic and anisotropic contributions. The iso-
tropic behavior accounts for cellular components other than
myofibrils and is usually represented by simple hyperelastic
laws such as Neo-Hookean [47, 48, 50, 55, 56, 60, 76, 87],
second order Mooney Rivlin [58], Yeoh model [46, 49], or a
quadratic polynomial function [37].

The muscle fiber anisotropic behavior is attributed to
myofibrils and especially titin proteins. Constitutive laws
are expressed as a function of the fiber stretch with a linear
[50, 55], quasi linear [42], exponential [37, 58] or polyno-
mial [46, 49, 56] shape, which coefficients are identified
on muscle fiber uniaxial tension experimental data [4]. The
fiber stretch is directly related to the Cauchy-Green tensor’s
invariant I4, thus most models make use implicitly of invari-
ant I4 to model anisotropy. Using a more phenomenological
approach, this invariant is explicitly used by [32, 33] follow-
ing the formulation proposed in [89]. In the same way, [57]
use invariant I4 in combination with invariant I5. The use of
invariant I5 is justified by the need to represent shear defor-
mations more accurately [90]. The Criscione invariants [91]
have been used to represent shear deformations [36, 38, 59,
92, 93], as these invariants have a better physiological inter-
pretability than the classical ones thus leading to more inter-
pretable modeling results. The aforementioned approaches
for muscle fibers constitutive modeling are summed up in
Fig. 3. Some authors introduce corrective coefficients to

Fiber ECM
Isotropic + Anisotropic Single Isotropic + Collagen
contribution contribution component matrix fibers
z N Z % Z N
Fiber stretch others Isotropic Anisotropic GST
Z SN )Y
Linear || Exponential || Polynomial

Fig. 3 Main approaches to represent fibers and ECM behaviors at the
microscale, Al: angular integration, GST: generalized structure tensor
[descriptive caption: this figure shows a diagram summarizing the dif-
ferent modeling approaches at the microscale. On the first level the
distinction is made between muscle fibers and extracellular matrix. On

the second level the distinction is made between isotropic and aniso-
tropic contribution for the fibers, whereas the ECM modeling can be
distinguished in a single component model, or isotropic matrix plus
collagen fibers model. More ramifications give additional precisions]
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take age into account [37, 58]. The titin contribution in the
fiber can also be found as a homogenized version of a sub-
micron scale model [39-41]. To study rupture in fibers, a
model of irreversible deformations and microcracks is pro-
posed in [48].

ECM is represented as a linear elastic material [43—45],
an isotropic material [35, 4648, 60] or as a collagen fiber
reinforced material [32, 33, 50, 55, 56, 58, 76]. Isotropic
depictions of ECM include Yeoh [46] and first order Ogden
[47, 48, 60] hyperelastic models. The Hill model [94] has
also been extended to separate the muscle fibers and ECM
contribution by adding a parallel stiffness to the previous 3D
model [35] representing ECM by means of an exponential
formulation.

As a fiber reinforced material, the ECM is modeled as
an isotropic matrix reinforced with collagen fibers. As the
collagen fibers are wavy and present a specific orientation
in the tissue, formulations accounting for the waviness and
uncrimping of the collagen fibers in soft tissues have been
developed [88, 95, 96]. The isotropic matrix has been mod-
eled considering a Neo-Hookean behavior [50, 55, 56, 76]
or a Mooney Rivlin model [58]. Authors systematically use
collagen fiber orientations of either + 55° or +59° relative to
the muscle fibers’ orientation. Two main families of methods
have been described and compared in the literature to model
the collagen fibers: the angular integration (AI) approach
[97] and the generalized structure tensor (GST) approach
[98]. The AI approach considers the mechanical behavior
of each collagen fiber and then integrates this behavior over
a volume where specific fiber orientation distributions can
be defined. On the contrary, the GST approach uses a ten-
sor called generalized structure tensor as to represent a fiber
family’s global orientation, and the mechanical behavior is
defined per fiber family. This topic has been reviewed in
[99]. The angular integration approach for skeletal mus-
cles extracellular matrix is presented in [88]. More models
use the Al approach [50, 55, 56, 58, 59, 76] than the GST
approach [32, 33].

Recent ECM models considering collagen cross-linking
in the ECM have been developed [100, 101] as this feature
directly influences the mechanical properties of ECM [1,
18]. Moreover, as costameres connect the interior of the
muscle fiber to the ECM, this leads to a phenomenon called
lateral force transmission, where the fiber’s force is trans-
mitted through shear to the ECM. The ECM network then
locally redistributes the loads into the fascicle through endo-
mysium shear [1, 102]. Consequently, shear modeling in the
ECM has gained increasing interest in multiscale models.
The previous approaches do not consider shear contribution
of the collagen fibers into the extracellular matrix. Recent
models aimed at including shear stress related components
in ECM constitutive laws. Kuravi et al. [33] developed a
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specific skeletal muscle extracellular matrix behavior law
based on the GST approach that also includes a volumet-
ric contribution to penalize volume changes and a structural
contribution to model shear. Similarly, [57] used a pas-
sive anisotropic hyperelastic contribution for extracellular
matrix that includes the Cauchy-Green tensor’s invariants
I5 and 17, that was developed to better model shear in arter-
ies [103].

Fat inclusions at the microscale are modeled as an iso-
tropic neo-Hookean material [38, 56]. Transmembrane
proteins have also been included at the microscale [38] as
nonlinear springs. The rupture in ECM, muscle fibers, and
tendon fibers [104] can also be implemented as in [45].

Very few authors include fascicles as a realistic bound-
ary material in multiscale models. To the best of our knowl-
edge, no specific constitutive laws have been developed
for the fascicles in the context of multiscale modeling. A
general approach is the use of a rule of mixtures applied
to micro constituent behaviors to determine the parameters
of a hyperelastic constitutive law [35, 38]. The parameters
of a 3D Hill model have been identified by the response of
a motor unit [86]. They differ from the fascicles as muscle
fibers contained in the same motor unit do not necessarily
belong to the same fascicle. The skeletal muscle has been
represented with motor units grouped in parallel.

3.2 Validation on Experimental Data at the Whole
Muscle Scale

An important step in biomechanical modeling is the valida-
tion of numerical models on experimental data. For skel-
etal muscle multiscale modeling, a few datasets including
mainly uniaxial tension and shear tests are used in this way
[75, 105, 106] by comparison to their numerical replication
[33, 38, 46, 107], as detailed for the most frequently used
experimental studies in the Table 1.

A specific difficulty in validating the models in both
shear and compression loadings can be denoted. Implemen-
tation of shear loading allows to investigate conditions such
as Duchenne Muscular Dystrophy [38, 59], cerebral palsy
[46, 107] and ageing [37, 58] that have an impact on the
ECM. Compression has been modeled to study deep ulcer
injuries in a model of hypoxia including the capillaries [87].

4 Constitutive Laws for the Active Behavior
4.1 Active Mechanical Behavior
To get insights on neural stimulation and force genera-

tion within the skeletal muscle, an active contribution
to the constitutive laws is added. Force generation in the
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Table 1 Main experimental studies used to identify the behavioral laws of multiscale numerical models of skeletal muscle (N.L.: no information)
[descriptive caption: this table presents characteristics about experimental datasets published in the literature. It includes 5 entries for each dataset,
which are the reference of the study, the considered solicitation, the tested species, the tested muscles, and the strain rate used for the experiment]

Reference Solicitation Species  Muscle Strain rate
Hawkins and Bey 1994 Active and passive response to uniaxial tensile test in the muscle fiber Rat Tibialis anterior ~ N.I.
[108] direction

Morrow et al., 2010 [106]

test
Calvo et al., 2010 [105] In vitro and in vivo uniaxial tensile tests
Meyer and Lieber 2011
[19]

Takaza et al., 2013 [75]
Mohammadkhah et al.,

2016 [109] direction

Longitudinal extension, transverse extension and longitudinal shear

Tensile tests on individual fiber, fiber composite and bundle composite Mouse

Tensile tests at 0°, 30°, 45°, 60° and 90° to the muscle fiber direction  Pig
Tensile and compression tests at 0°, 45° and 90° to the muscle fiber

Rabbit  Extensor digito- 0.5¢ 35!
rum longus
Rat Tibialis anterior ~ 0.33 ™3
51
5th toe of exten- 20 s~ !

sor digitorum
longus
Longissimus dorsi 0.5 357!

Chicken Pectoralis 05¢ 257!

skeletal muscle is attributed to proteins actin and myosin
binding in the presence of calcium, namely the cross-bridge
theory [110, 111]. Experimental evidence also suggests an
additional active force generated by formation of a bound
between titin and actin during activation [13, 22], that would
be responsible for the residual force enhancement phenom-
enon first observed and described in [112]. To account for
the bound formed between titin and actin in the presence of
calcium, namely titin force enhancement, titin is modeled
using the so-called “sticky spring mechanism” [39—41, 113]
that assumes that a certain region from the titin molecule
named PEVK region binds to actin in the presence of cal-
cium. In this model the titin is modeled as a linear spring
parallel to the muscle fiber. Its free length gets reduced
when titin binds to actin and its orientation changes due to
the location of the bound, thus inducing additional efforts
both in the fiber direction and in the cross-fiber directions.
Several approaches have been proposed to implement
active behavior at the microscale. The active behavior is
usually an additional component in the muscle fiber consti-
tutive behavior generating specific stress or pressure along
the muscle fiber axis [52]. A value representative of the
active stress generated by a single fiber is affected, e.g. the
maximal isometric force [32, 33, 49]. This additional active
stress can also be modulated by the product of activation
parameters, activation functions, normalized force-length,
and force-velocity relationships. Activation can be repre-
sented by a single parameter a which values can range from 0
(non-activated) to 1 (full activation, all actin-myosin bounds
are supposedly formed) [48, 50, 55, 60]. Usually, activa-
tion functions are used, as to solve numerical issues [44] or
to better represent the physiological phenomena leading to
activation [39]. Activation functions can exhibit linear [46],
trigonometric [44], or exponential [34, 58] formulations as
a function of time with possible implication of electrical and
chemical phenomena. Heidlauf and colleagues [39—41] base
their work on the excitation contraction coupling model of

Shorten et al., (2007) [114]. Activation can also be spatially
dependent, with specific fiber recruitment patterns [49] to
mimic neural signals.

Force length relationships describe the experimentally
observed relationship between strain along the fiber axis
and active stress, as the force generated by sarcomeres
depends on their initial elongation at the activation. They
exhibit piecewise polynomial [39-41, 44, 47, 48, 58, 60],
trigonometric [46], exponential [34] formulations, or can be
found expressed as a Weibull distribution [50, 55]. These
functions are usually normalized as to modulate the maxi-
mal isometric force in the muscle fiber, similarly to activa-
tion functions.

Some authors implement a force velocity relationship,
which captures the strain rate dependence of the active
behavior, thus the viscous effects, by a hyperbolic relation
[34, 50, 55, 94].

Titin force enhancement can also be considered at the
microscale through an additional stress component [48]. To
study the recruitment of motor units in isometric conditions,
a model has been proposed based on the Huxley’s formula-
tion [86, 115].

Considering the whole muscle, three kinds of muscular
contractions have to be distinguished. Isometric contractions
happen at fixed muscle length; concentric contraction leads
the muscle to shorten as it produces force, while in eccentric
contractions the muscle elongates due to a greater opposite
force. As isometric contractions do not generate changes
in the geometry, they are modeled in a different way than
concentric and eccentric contractions. Most authors model
isometric contractions. This load reproduces voluntary con-
tractions in human patients [86]. Isometric contractions
are also modeled to investigate phenomena such as trigger
points i.e. a local knot of permanently contracted sarcomeres
without any neural stimulation [60], titin force enhancement
[39—41], and effect of activation patterns within a muscle
fiber bundle [49]. Eccentric contractions are modeled in the
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context of injuries due to eccentric contractions [44, 48].
To numerically implement eccentric contractions, authors
perform stepwise uniaxial extensions followed by isometric
contractions. Concentric contractions are modeled to repro-
duce an isovelocity shortening protocol for parameter iden-
tification purposes [34]. A case study of both concentric and
eccentric contractions has been reported [47].

4.2 Inclusion of Electrical, Chemical and Thermal
Couplings

Active multiscale mechanical muscle models often include
neural signaling, thus implementing other physics such a
chemistry or electricity.

Based on an excitation contraction coupling model
[114], a first model proposes to describe the ion dynamics
of the excitation contraction coupling, such as calcium,
chloride, potassium and magnesium, as well as adenosine
triphosphate (ATP) dynamics [39—41]. The ions channels
carry currents that represent the propagation of the action
potential through the muscle fiber, represented by bido-
main equations.

Another model of motor unit recruitment representing
voluntary and evoked recruitment of motor units has also
been developed [86] based on [116]. The action potential
generated in each motor unit is then linked to calcium
ions release in the myoplasm.

These electrical contributions are linked to chemical
contributions representing ion dynamics. Upon release
from the sarcoplasmic reticulum, calcium ions bind to
molecule troponin, forming cross-bridges, which are
responsible for the sarcomere contraction. The concen-
trations of attached cross-bridges in the different states
of the contraction are calculated and normalized by the
maximum concentration of possible cross-bridges, which
is associated to the maximal force [39—41, 83]. Similarly,
voluntary motoneuron recruitment and sarcoplasmic
reticulum calcium release have been modeled in motor
units [86], inducing 3 states in the motor unit, depending
on the calcium concentration: activated, in relaxation or
relaxed. Chemical coupling has also been used to model
oxygen diffusion in muscle capillaries and hypoxia [87].

@ Springer

A thermomechanical model accounting for thermal
treatments in trigger points in the skeletal muscle has
been developed [60]. Each component (namely muscle
fibers and ECM) is described by means of mechanical,
thermomechanical, and conductive thermal constitu-
tive contributions. Thermomechanical coupling terms
account for the thermal dilatation of the materials. Dur-
ing muscle activation, the cross-bridges undergo endo-
thermal cycles, and are thus considered as a negative heat
source.

Multiphysics multiscale models are often implemented
to model neural stimulation and action potential propa-
gation within the muscle. Through separation of muscle
fibers in motor unit [84], the electrical input is trans-
formed into transmembrane ionic potentials and finally
transmitted to the contractile elements through calcium
release from the sarcoplasmic reticulum. Other original
approaches include the study of hypoxia in fibers, model-
ing the oxygen diffusion from capillaries and mitochon-
drial metabolism [87]. A promising application is the
thermomechanical study of muscles, giving insights on
thermal therapies for muscles such as cryotherapy [60].

5 Conclusions

In the literature, there exist only a few multiphysics mul-
tiscale models. Firstly, electrical and chemical couplings
require the use of a multiphysics computational frame-
work. Multiscale skeletal muscle models mostly use the
Finite Element software ABAQUS® SIMULIA (Das-
sault Systémes SE, Vélizy-Villacoublay, France) and the
Discrete Element software GranOO [117] even if some
opensource alternatives have been developed, such as the
library OpenCMISS [84, 118—120]. Multiphysics simula-
tions are very demanding in resources and computation
time. Consequently, parallel computation and optimiza-
tion strategies need to be implemented in the multiphysics
frameworks [119, 120]. These considerations constitute
another complexity layer to the development of a mul-
tiphysics multiscale muscle model, thus constituting a
current limitation in muscle multiscale modeling. Other
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Fig.4 Comparison of equivalent 20.0
shear moduli in small deforma-
tions for ECM and muscle fibers
in a large number of multiscale
models proposed in the literature.
The boundary between stiffer
fibers (green area) and stiffer
ECM (orange area) is illustrated
[descriptive caption: this graphic
shows scattered points, each
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multiphysics frameworks have been used for multiscale
skeletal muscle models implementation such as COM-
SOL Multiphysics (COMSOL Inc., Stockholm, Sweden)
[49] and FeBio (Musculoskeletal Research Laboratories,
University of Utah, Salt Lake City, UT, USA) [121].

In an attempt to compare these models, we have ana-
lyzed the equivalent shear moduli in small deformations
proposed by each of the models for their passive behav-
iors, whether for ECM or muscle fibers (Fig. 4). We show
in green the regions where muscle fibers are stiffer than
ECM for passive mechanical properties, and in orange
the areas where this trend is reversed. It can be seen that,
even if there are wide disparities in values (notably linked
to the fact that active behavior or other chemical or ther-
mal properties that are added are capable of modifying
these values for a certain number of models), two major
trends emerge: models using stiffnesses of the same order
of magnitude between ECM and muscle fibers, and mod-
els with ECM 3 to 5 times stiffer than fibers in the context
of passive behavior alone.

For identification and validation purposes, data from
different species and studies is used in the same model.
Very few authors have indeed acquired data at different
scales on the same samples [3, 122, 123]. Moreover, pas-
sive mechanical tests at several scales are performed ex
vivo, thus leading to uncertainties due to the samples’
conservation and preparation. Furthermore, datas-
ets across the literature are not performed at the same

0.0 OI—" *ﬁripyroiu etal. 2020
Kuravi et al. 20218
0 10.0 20.0
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ECM Shear Modulus p [kPa]

velocities, thus the viscoelastic effect [124, 125] may
become important when combining several studies for
parameter identification [23]. As a result, the literature
contains scarce experimental data suited for multiscale
modeling. Consequently, a current trend is to acquire the
experimental data needed for the identification and the
validation of the model parameters [32, 33, 57, 59, 126].
The acquired datasets are extracted from ex vivo passive
experiments. We recommend exploring in vivo imaging
techniques that provide insight on mechanical parame-
ters within the muscles, such as elastography [127-129].
Model of small animals face an additional experimental
challenge due to the size of the animal [130], that leads to
scarcer datasets across the literature. Across the current
models, the combination of data from different species
can be observed, although differences can exist between
them in anatomical features [5, 131]. Some efforts have
been made to compare the anatomy of skeletal mus-
cles across species [131]; however, to our knowledge,
mechanical properties have yet to be compared in the
same way.

6 Appendix A Main Multiscale Muscle
Models

The main multiscale skeletal muscle models reviewed here
are summarized in Table 2.

@ Springer
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