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Abstract
Purpose  Advances in the treatment of cystic fibrosis (CF) have allowed patients to reach adulthood. The forced oscillation 
technique (FOT) is a new method for providing an exam that is simple to perform and simultaneously provides a detailed 
respiratory system evaluation. The purpose of this study was to use machine learning (ML) algorithms to increase the 
accuracy and interpretability of FOT parameters in the investigation and diagnosis of respiratory changes in adults with CF.
Methods  The database was created based on 150 measurements in 50 volunteers (23 in the control group and 27 in the test 
group). The following supervised ML algorithms were selected for the tests: K-nearest neighbors (KNN), random forest (RF), 
AdaBoost with decision trees (ADAB), and light gradient boosting (LGB). These data were also subjected to a Bayesian 
network synthesized by a genetic algorithm (BNGA) in an attempt to maintain good accuracy and increase the interpretability 
of the results. A soft vote ensemble strategy was employed to enhance the diagnostic accuracy.
Results  The first part of this study showed the best FOT parameter: the reactance Xm (AUC = 0.85), indicating moderate 
accuracy. In the second part, the original FOT parameters were used as input in the chosen algorithms. BNGA had the best 
performance alone (AUC = 0.88), while the soft voting ensemble achieved AUC = 0.90. When cross-product and feature 
selection methods were applied, the RF and BNGA were the algorithms with the best results (AUC = 0.88), and the soft 
voting ensemble achieved an AUC = 0.94.
Conclusion  This study provides high diagnostic accuracy with improved interpretability of the FOT parameters, which assists 
doctors in the medical diagnosis of respiratory changes in CF.

Keywords  Cystic fibrosis · Forced oscillation technique · Respiratory oscillometry · Machine learning · Bayesian 
networks · Genetic algorithm · Clinical decision support system

1  Introduction

Cystic fibrosis, which is also called mucoviscidosis, is an 
autosomal recessive genetic disease that affects both men 
and women and is more common in the Caucasian popu-
lation. It is caused by mutations in the gene located on 
chromosome seven, which is responsible for encoding the 
protein cystic fibrosis transmembrane conductance regula-
tor (CFTR) [1]. This protein is responsible for regulating 
and participating in the transport of electrolytes through the 
cellular membranes of the respiratory, digestive, and repro-
ductive systems, although the respiratory system is the most 
affected [2].

This disease was previously first diagnosed in new-
borns, and it led to death within the first year of life. 
Due to advances in the treatment and diagnosis of cystic 
fibrosis, these patients can now reach adulthood [3]. 
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Currently, approximately 70,000 adult patients are registered 
worldwide.

Cystic fibrosis is a progressive disease. Thus, over the 
years, a patient will present with increased airflow obstruc-
tion and respiratory abnormalities. These symptoms con-
tribute to a decreasing life expectancy, causing discomfort 
during sleep, intolerance to physical activities and even to 
normal activities in everyday life [1].

The recommended diagnosis of cystic fibrosis is based on 
three criteria: clinical analysis, the concentration of sodium 
chloride obtained through the sweat test, and CFTR analysis 
[4]. Among the diagnostic methods in use, spirometry has 
also been an essential tool. However, research on new tech-
niques has been a great motivation to improve the detection 
of cystic fibrosis.

The forced oscillation method, which is also designated 
as respiratory oscillometry, has been studied to analyze the 
mechanical properties of the respiratory system [5]. Cur-
rently, each of the FOT parameters is used alone to detect 
respiratory changes, and the attribute that presents the high-
est performance is selected as a criterion for identifying the 
disease [6].

The use of machine learning methods associated with 
oscillometric parameters has brought about significant 
advances in the diagnosis of respiratory diseases [6–8]. 
This association, however, has not been investigated in adult 
patients with cystic fibrosis.

It is also important to note that although oscillometry may 
provide a simple exam, thereby simplifying patient testing, 
the interpretation of the oscillometric parameters is diffi-
cult, demanding an experienced and trained medical team. 
This method is so demanding because the results are based 
on electrical engineering methods, which describe resist-
ance and reactance curves and derivative parameters [5]. 
For this reason, the interpretation of the result is as vital 
as the hypothesis given by the model in this problem. This 
characteristic of expressing the behavior of a system com-
prehensibly is called interpretability and does not have a 
performance metric to evaluate [9].

In this context, this work proposes using interpretable 
machine-learning algorithms to assist medical teams in 
investigating and diagnosing respiratory changes in patients 
with CF using the data provided by respiratory oscillometry.

2 � Methods

2.1 � Research Ethics, Patient Consent and Datasets

The local Medical Research Ethics Committee approved this 
study, which was developed according to the Declaration of 
Helsinki.

The biometric parameters, including patient height, 
weight and age, were obtained from each volunteer at the 
time of the exams. For inclusion in this study, all the volun-
teers had to sign informed consent forms.

The dataset used in this work was obtained using a previ-
ously described instrument [10]. Oscillometric exams were 
performed in accordance with international standards [5]. 
To prevent air leakage and induce normal breathing through 
the equipment nozzle, individuals were required to wear a 
nasal clip during the procedure. The exams were performed 
in 23 individuals in the control group and 27 patients with 
CF who were part of the test group. For each exam, three 
measurements were taken, which generated a dataset of 150 
instances for the experiments.

2.2 � Forced Oscillation Measurements 
and Parameters

During an FOT exam, the individual should remain seated, 
use a nasal clip and maintain spontaneous breathing, while 
a constant flow renews the air inspired by the patient. This 
method uses small pressure oscillatory signals (less than 2 
cmH2O peak-to-peak) that are applied to the respiratory sys-
tem entrance. The ratio of the Fourier transform (F) of the 
oscillatory pressure (P) to the oscillatory flow 

(
V ′
)
 generated 

from this oscillatory stimulus is used to calculate the input 
impedance 

[
Zrs = F(P)

/
F
(
V �
)]

 . Based on this analysis, we 
can generate resistance and reactance curves as a function 
of frequency that represent the total mechanical properties 
of the respiratory system [5].

Resistive respiratory impedance results were interpreted 
using a linear regression analysis over a range from 4 to 
16 Hz. Thus, it is possible to determine the resistance in the 
intercept at 0 Hz (Ro) and the slope of the linear relationship 
of resistance versus frequency (S) [11]. These parameters 
estimate the total resistance and the homogeneity of the res-
piratory system, respectively [12, 13]. The cited analysis 
also gives the mean resistance (Rm), which is primarily sen-
sitive to the airway caliber [14].

The interpretation of the reactance curves is made using 
the mean reactance (Xm) and the resonant frequency (Fr), 
which are associated with ventilation homogeneity [8] as 
well as the dynamic compliance (Cdyn) and elastance (Edyn). 
The interpretation also includes the respiratory impedance 
modulus at 4 Hz (Z4Hz), which is associated with the work 
of breathing, integrating the resistive and elastic loads in the 
respiratory system [15].

2.3 � Machine Learning Algorithms

Machine learning (ML) is a branch of artificial intelligence 
that allows computers to learn without being explicitly 
taught to do so [16]. Its approaches can be used primarily 
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to address issues with no deterministic solution, with data 
that are used to allow the algorithms to identify relation-
ships automatically. Previous research has found that using 
oscillometric features in combination with ML algorithms 
may be useful in addressing asthma [6], in the differential 
diagnosis of asthma and restrictive respiratory diseases [7], 
and in systemic sclerosis [8].

In the present study, the use of ensemble techniques was 
investigated in addition to the methods used in the afore-
mentioned studies. We wish to investigate light gradient 
boosting (LGB) [17], a form of ensemble derived from gra-
dient boosting, by emphasizing performance and scalability. 
Another ensemble strategy employed here is the soft voting 
ensemble. It trains multiple base models and uses voting to 
combine the individual predictions to arrive at the final ones. 
It does not require the base models to be homogenous. In 
other words, we can train different base learners, for exam-
ple, a random forest and a K nearest neighbor, and then use 
the voting ensemble to combine the results. This approach is 
called the soft voting ensemble because the final class pre-
diction is made based on the average probability calculated 
using all the base model predictions. Among the studied 
classifiers, two are chosen to participate in the ensemble. 
Our strategy consists of selecting classifiers with better per-
formance that are less correlated with the others. We ranked 
the classifiers in descending order of AUCs and ascending 
order of the sum of the correlations and chose the two with 
the smallest sum of the ranks.

The interpretability of a classifier is crucial in research 
related to respiratory diseases, in addition to producing accu-
rate results. Knowing how classification is performed and 
how the features interact will help us better understand the 
diagnosis. Hence, we applied Bayesian networks to capture 
the relation between the features.

We also evaluated the following algorithms: K-nearest 
neighbor (KNN), AdaBoost with decision trees (ADAB), 
random forest (RF), [18] light gradient boosting (LGB) [17] 
and Bayesian networks [19]. The first three algorithms have 
already been described previously [6–8, 20]. A concise over-
view of the two algorithms that have not been employed in 
earlier studies may be found in the supplement.

The genetic algorithm (GA) is a heuristic technique used 
to search and optimize complex problems, and it is inspired 
by Darwin’s natural selection theory. The fundamental con-
cept is to create an initial population of individuals that rep-
resents potential solutions. These individuals are encoded in 
chromosomes, which are appraised over generations accord-
ing to the survival of the fittest concept. Individuals who 
cannot gain resources via natural selection are unlikely to 
pass their genes on to future generations. As a result, these 
people will not leave their offspring. On the other hand, suc-
cessful individuals have a better chance of passing on their 
genes to future generations and producing new ones who 

have a better chance of surviving. The population of indi-
viduals addressed using the GA method reflects the search 
space, which contains potential solutions. The environment 
is the problem to be solved, and generations are represented 
by cycles [21]. All the individuals in the population are eval-
uated by a fitness function that scores how good a solution 
is to the problem. For the next generation, the probability 
of an individual being selected for crossover or mutation 
operators is calculated by the fitness score. This process is 
repeated until the stop criterion is reached. Thus, the GA 
optimizes problems by providing the best solution accord-
ing to an application, but it does not guarantee the optimal 
solution. This algorithm can be used with other techniques 
and applied to various types of problems [22].

2.4 � Bayesian Network Synthesized by Genetic 
Algorithm

The strategy chosen to perform the structure learning of 
Bayesian networks was the use of genetic algorithms. The 
joint use of both techniques was implemented and called the 
BNGA, which aims to create and select the best structure 
that describes relations among the variables of a problem. 
The BNGA algorithm generates possible solutions through 
the random creation of several networks represented through 
adjacency matrices. These networks are built based on these 
matrices and have their probability distributions calculated 
by a BN algorithm. There are primary characteristics that 
must be defined to use BNGA: chromosome representation, 
creation of the initial population, fitness function, selection 
function, and genetic operators.

In BNGA, a chromosome corresponds to the structure 
of a BN with n variables and to genes formed by a binary 
code. This structure of a network can be represented by an 
adjacency matrix of size n × n, in which the elements are 
described according to the connections between j and i. 
These existing links between variables (I × j = 1) or non-
existing links (i × j = 0) are expressed in an array that can 
be decomposed, column by column, to generate a vector 
[23, 24]. The initial population of the BNGA algorithm is 
created randomly with a uniform distribution [21]. The fit-
ness function determines how appropriate each generated 
individual is during the search for the best solution. Each 
possible solution, as represented by vectors, is received by 
this function and converted into a sparse matrix. Once the 
structure is in the matrix format, this algorithm trains and 
tests the generated structure. Two important pieces of infor-
mation are provided by this fitness function: the area under 
the receiver operating characteristic (ROC) curve (AUC) of 
the tested structure and the score vector with the probability 
of each sample used during the tests. These probabilities will 
be used for the construction of an ROC curve.
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The selection of individuals is made by the probabilistic 
roulette method in which the fittest individual has a higher 
probability of being chosen and forms the next generation. 
Ranking by geometric normalization was also used to order 
individuals and prevent the fittest individual from always 
being chosen, leading the algorithm to premature conver-
gence [25].

Genetic operators are primary search engines used by GA 
for creating new individuals based on the existing popula-
tion. One of the main operators is the crossover, which uses 
two individual parents to generate two new individuals by 
crossing their chromosomes. For the BNGA algorithm, the 
simple crossover presented better performance. The muta-
tion operator is also widely used in GA, changing the chro-
mosome of an individual and generating only a new solution 
for the next generation. Binary mutation was used in BNGA, 
making changes based on a calculated probability.

2.5 � Experimental Design

We conducted our study during five experiments. First, 
the capability of each FOT parameter to detect respiratory 
changes in cystic fibrosis correctly was evaluated alone.

In the second experiment, all eight original FOT param-
eters were applied to ML algorithms to increase the per-
formance. Four of the five chosen classifiers were imple-
mented with Scikit-learn, a machine learning library written 
in python, and BNGA was implemented in MATLAB with 
the toolboxes Probabilistic Graphical Model 9.2.3 [26] and 
GAOT [25]. The measurement of the performance was based 
on the area under the ROC curve (AUC) because it is one of 
the most employed metrics in medicine [27] and provides 
a superior way to compare accuracy of the used classifiers 
with [28]. Feature selection was not implemented; thus, we 
used all the FOT parameters. The dataset contains 150 FOT 
measurements.

Because the dataset contains 150 FOT measurements, the 
k-fold validation procedure [29] is adequate for evaluating 
the generalization proficiency in the whole dataset.

An important step in model selection is hyperparameter 
tuning. For this purpose, Scikit-learn possesses several strat-
egies, such as grid search, which tests all possible hyperpa-
rameter associations. Table 1 describes the classifiers and 
their respective hyperparameters used for tuning.

For the third experiment, a smaller set was selected from 
the original FOT parameters, aiming for better algorithms 
performance. This technique was performed using the wrap-
per strategy, which provides input parameters that optimize 
the average AUC. The search for this set can demand high 
computation costs. Consequently, many strategies are 
applied to this effort and for feature selection. This pro-
cess can also cause overfitting. Therefore, cross-validation 
was also used during this experiment. The feature selection 

procedure was performed in each classifier during the train-
ing, which used tenfold cross-validation. The training was 
repeated ten times, by selecting one folder for the test and 
the other folders for the training set. Internal cross-valida-
tion, which uses only the training set, was applied to select 
the best parameters for each classifier. This process was used 
in each test folder.

In the fourth and fifth experiments, the input feature set 
was the cross-product of the input parameters used in the 
second and third experiments. Through this method, the 
classifiers would result in improved performance.

During the first experiment, the best FOT parameter 
(BFP) performance was selected for comparison with 
the five other classifiers (K-NN, RF, AdaBoost, LGB and 
BNGA) of the second, third, fourth, and fifth experiments. 
In the clinical scenario, the severity of respiratory diseases, 
such as chronic obstructive pulmonary disease (COPD) 
[30], is currently classified using one feature, motivating 
this choice. MedCalc 8.2 software (Medicalc Software, 
Mariakerke, Belgium) was used to compare the AUC values 
obtained during the experiments through the methodology 
described in Delong et al. [31].

3 � Results

There were no significant biometric differences among the 
groups (Table 2). As expected, the spirometric parameters 
decreased in patients with CF (p < 0.04).

3.1 � Forced Oscillation Parameters

The bar charts in Fig. 1 describe the oscillometric results of 
the control and test groups. The mean values of each FOT 
parameter were calculated at a 95% confidence interval. 
Using analysis of variance (ANOVA), all the parameters of 
the FOT showed a significant difference in comparison with 
the test group (p < 0.001). The mean values of Ro, Rm, Z4Hz, 

Table 1   Hyperparameter values for tuning

Classifier Hyperparameters chosen for 
tuning

Hyperparameter values

KNN Number of neighbors 3, 5, 7, 9,15
AdaBoost Number of base estimators 10, 30, 60, 100, 200, 400

Max depth of base estimators 3, 4, 5, 10, 15
RF Number of base estimators 10, 30, 60, 100, 200, 400

Max depth of base estimators 3, 4, 5, 10, 15
LGB Number of base estimators 10, 30, 60, 100, 200, 400

Max depth of base estimators 3, 4, 5, 10, 15
Subsample 0.6, 0.8, 1.0
Colsample_bytree 0.6, 0.8, 1.0
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Fr and Edyn increased in the test group compared to the con-
trol group. Therefore, we can suppose that individuals with 
cystic fibrosis usually have higher values of resistance (Ro 
and Rm), impedance (Z4Hz), resonance frequency (Fr), and 
elastance (Edyn) than the controls. However, the mean values 
of Xm, Cdyn, and S from the test group decreased compared to 
the control group. In this case, we can suppose that patients 
have more negative values for reactance (Xm) and resistance 
curve slope (S) and lower values for dynamic compliance 
(Cdyn).

3.2 � First Experiment: Diagnostic Accuracy of Each 
FOT Parameter

The values obtained in this first experiment are summarized 
in Fig. 2. All the parameters presented moderate diagnostic 
accuracy (0.70 ≤ AUC ≤ 0.90). Xm and Fr presented the best 
performance, with AUC values = 0.85 and 0.84, respectively. 
The ROC curves of each FOT parameter, the AUC with the 
standard error, the confidence intervals, the sensitivity and 
the specificity can be found in the supplementary material 
(Fig. S1).

Table 2   Biometric and spirometric parameters of the studied groups

FEV1 (L): forced expiratory volume during the first second (liters);
FEV1 (%): forced expiratory volume during the first second (percen-
tile of the predicted values);
FEV1/FVC (%): forced expiratory volume during the first second 
divided by the forced vital capacity (percentile values);
FEF/FVC (%): forced expiratory flow between 25 and 75% divided by 
the forced vital capacity (percentile values); Values are presented as 
the means ± standard deviation

Control group Cystic fibrosis p

Age (years) 25.6 ± 3.1 25.0 ± 5.7 ns
Weight (kg) 64.4 ± 12.8 59.4 ± 13.7 ns
Height (cm) 167.1 ± 8.9 166.8 ± 8.9 ns
Body mass index 23.0 ± 2.8 21.2 ± 3.8 ns
Male/female 14/9 16/11 –
FEV1 (L) 4.2 ± 1.0 2.3 ± 1.1  < 0.0001
FEV1 (%) 101.7 ± 13.0 65.8 ± 28.6  < 0.0001
FVC (L) 3.7 ± 0.8 3.5 ± 1.3 0.03297
FVC (%) 105.2 ± 13.8 84.1 ± 25.4 0.00317
FEV1/FVC (%) 88.7 ± 4.4 64.4 ± 13.9  < 0.0001
FEF/FVC (%) 103.3 ± 5.1 75.0 ± 16.3  < 0.0001

Fig. 1   Comparison of FOT 
parameters from the control 
group (CG) and the test group 
(TG)
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3.3 � Second Experiment: Effect of Machine Learning 
Methods on Diagnostic Accuracy

The average ROC curves of the BFP (Xm) and the best 
classifiers obtained in this experiment are shown in Fig. 3. 
Among the individual algorithms, BNGA presented the 
best performance, with an AUC equal to 0.88. ADAB and 
BNGA had the lowest sum of ranks, and they were chosen 
to compose the soft voting ensemble (ENSEMBLE) that 
achieved an AUC = 0.9. More details about the ranks are 
provided in the supplementary material (Fig. S2).

3.4 � Third Experiment: Effect of Machine Learning 
Methods Associated with Feature Selection 
on Diagnostic Accuracy

Figure 4 shows the AUCs for the BFP (Xm) and the studied 
classifiers (K-NN, ADAB, RF, LGB and BNGA) with fea-
ture selection. KNN has the best performance (AUC = 0.86). 
A soft voting ensemble (ENSEMBLE) was composed of the 
KNN and BNGA and achieved an AUC = 0.9. An ROC curve 
comparison showed a statistically significant difference 
between the BFP and ENSEMBLE, with a p value < 0.05. 
More details of this analysis may be obtained in the supple-
mentary material (Fig. S3).

3.5 � Fourth Experiment: Effect of the Cross Products 
and Machine Learning Methods on Diagnostic 
Accuracy

Thirty-six combinations of the cross products were gener-
ated for this experiment. To represent a possible solution in 
the BNGA algorithm, 37 × 37 matrices were needed. During 
the marginalization of the network, the junction tree method 
[32], which is provided by the PGM toolbox, performs sev-
eral processes that require a high computational cost. There-
fore, the BNGA algorithm did not converge. However, there 
were no failures, and the experiment could be performed 
using the other algorithms.

The AUCs of the BFP and the classifiers studied are 
shown in Fig. 5. Using the cross products as an input, only 
the K-NN performed slightly better (AUC = 0.86) than the 
BFP. In addition, a soft voting ensemble (ENSEMBLE) 
was composed of the KNN and LGB and achieved an 

Fig. 2   Experiment 1—AUC for each of the FOT parameters

Fig. 3   Experiment 2—Diagnostic accuracy of all eight FOT param-
eters associated with machine learning techniques. AUCs for the best 
FOT parameter (BFP) and for the ML methods. Diagnostic accuracy 
of all eight FOT parameters associated with machine learning tech-
niques

Fig. 4   Experiment 3—Diagnostic accuracy of the best original FOT 
parameters selected by recursive feature selection associated with 
machine learning techniques. AUCs for the best FOT parameter 
(BFP) and for the ML methods. Additionally, “*” indicates that there 
is a statistically significant difference in relation to the BFP (p < 0.05)
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AUC = 0.87. Detailed descriptions of the ROC curves are 
presented in the supplement (Fig. S4).

3.6 � Fifth Experiment: Effect of the Cross Products 
from the Best Parameters in Association 
with Machine Learning on Diagnostic Accuracy

Figure 6 presents the AUC of the BFP and of the evaluated 
algorithms with feature selection in the cross products of 
the FOT parameters.

Regarding the individual classifiers, BNGA and RF 
obtained the best results (AUC = 0.88 and AUC = 0.87). 
Remarkably, the ENSEMBLE, which combines RF and 
BNGA, achieved an AUC = 0.94. The statistical test showed 
that there was a statistically significant difference between 
BFP and ENSEMBLE, with a p value < 0.01. A detailed 
description of the resulting ROC curves is presented in the 
supplement (Fig. S5).

Figures 7 and 8 show Se at a moderate Sp (Sp = 75%) and 
Se at a higher Sp (Sp = 90%), respectively.

4 � Discussion

Machine learning methods have a long history of contribut-
ing to lung function analysis [20]. The present study expands 
this contribution by developing clinical decision support 
systems to improve the diagnostic accuracy and simplify 
the clinical use of FOT in cystic fibrosis. During the experi-
ments, the KNN, ADAB, and BNGA classifiers presented 
AUC values higher than those obtained by the best FOT 
parameter, achieving a high diagnostic accuracy. In addition, 
the soft voting ensemble (ENSEMBLE) achieved superior 
performance in all experiments.

The respiratory changes observed in CF patients (Fig. 1, 
Table 2) were consistent with the underlying physiology [2, 
3]. The first experiment showed respiratory reactance (Xm) 
as the FOT parameter that presented the highest accuracy 
(Fig. 2, AUC = 0.85).

In the second experiment (Fig. 3), we used all the param-
eters provided by the FOT as attributes. The best individual 
result was presented by the BNGA algorithm (AUC = 0.88), 
and the ENSEMBLE obtained AUC = 0.90.

During the third experiment (Fig. 4), the best FOT param-
eters were used as input in all the classifiers, and they coin-
cided with the feature selection made by a specialist. Alto-
gether, five parameters were selected: Ro, Rm, Xm, Cdin and 
Z4Hz. KNN was the algorithm with the best performance 
(AUC = 0.86), but the BNGA algorithm showed the low-
est performance (AUC = 0.79). The ENSEMBLE presented 
AUC = 0.90, achieving a statistically significant increase in 
comparison with the BFP.

As an attempt to improve the performance of algorithms, 
the cross-product of original FOT parameters was used 
in the fourth experiment (Fig. 5), providing a dataset in a 
higher dimension with 36 combinations generated by this 
method. The KNN classifier presented the best performance 
(AUC = 0.86), and ENSEMBLE attained an AUC = 0.87. 
The BNGA algorithm could not converge during this experi-
ment because of the computational effort necessary for the 
network marginalization process used by the junction tree 
algorithm. This limitation can also be observed in other 
works using Bayesian networks, as in the article by Silander 

Fig. 5   Experiment 4—Diagnostic accuracy of the cross products of 
the eight FOT parameters associated with machine learning tech-
niques. AUCs for the best FOT parameter (BFP) and for the ML 
methods

Fig. 6   Experiment 5—Diagnostic accuracy of cross products from 
original FOT parameters selected by recursive feature selections 
associated with machine learning techniques. AUCs for the best FOT 
parameter (BFP) and for the ML methods. Additionally, “**” indi-
cates that there is a statistically significant difference in relation to the 
BFP (p < 0.01)
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and Myllymaki [33], in which the maximum number sup-
ported by the model is 30 features.

During the fifth experiment (Fig.  6), the use of the 
cross-product method in the best FOT parameters of the 
third experiment generated 15 combinations for the input 
of the classifiers. The RF and BNGA algorithms had the 
best results, presenting AUC values of 0.88. ENSEMBLE 
presented an AUC = 0.94, and the comparison of the ROC 
curves between BFP and ENSEMBLE showed a significant 
improvement (p < 0.01).

As shown in Figs. 7 and 8, at least two algorithms reached 
the range of moderate Se (70 to 90%) in the second and fifth 
experiments with the best results. In both cases, Se and Sp 
obtained better results when compared to the best individual 
FOT parameter. At least one algorithm reached the range of 
moderate Se in the third and fourth experiments. In all the 
experiments, ENSEMBLE presented Se values greater than 

or equal to those of the individual algorithms, and in the fifth 
experiment, it achieved Se > 90%.

The soft voting ensemble achieved high diagnostic accu-
racy (AUC ≥ 0.9) in three experiments, which indicates that 
the strategy of combining classifiers with higher AUCs that 
were less correlated with the others was successful. In addi-
tion, we showed that BNGA was less correlated with the 
other machine learning algorithms, and therefore, it helped 
to introduce diversity to the soft voting ensemble. This find-
ing indicates that it provided important information when 
the other algorithms did not.

The main disadvantage of the BNGA is the time required 
to compute the Bayesian networks with the help of genetic 
algorithms (GA). As mentioned before, the marginalization of 
the network, the junction tree algorithm provided by the PGM 
toolbox, performs several processes requiring a high computa-
tional cost. Its worst-case complexity is exponential: O(acnb), 

Fig. 7   Summary of the experi-
ments describing sensitivity 
comparisons at 75% Sp obtained 
using the best FOT parameter 
(BFP) and ML methods in all 
experiments

Fig. 8   Summary of the experi-
ments describing comparisons 
of the sensitivity at 90% Sp 
obtained using the best FOT 
parameter (BFP) and ML meth-
ods in all experiments
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where a and b are constants, n is the number of attributes, 
and c is the largest clique of the junction tree. In addition to 
this complexity, GA requires the junction tree algorithm to be 
executed several times. Suppose the number of generations is 
indicated by g and the number of individuals in the population 
is p. The number of folds is k in the k-fold cross-validation. In 
that case, the total complexity of BNGA is O(gpkacnb). That 
is why the BNGA took up to 2 h and 33 min in the second 
experiment, considering that g = 20 and p = 15 are fairly mod-
est numbers for a GA experiment. To provide a comparison, 
the time it took to search for hyperparameters and train all the 
other classifiers together was 2 h and 9 min. Nevertheless, the 
Bayesian network synthesized by BNGA provided a crucial 
diversity that allowed the ensemble to reach higher AUCs.

In addition to the AUC values, the interpretability could 
also be analyzed through the Bayesian networks constructed 
and selected by genetic algorithms. Even when trained with 
a limited dataset, the BNGA algorithm proved its efficiency, 
presenting conditional probabilities that can describe the 
characteristics of the respiratory system of an individual with 
cystic fibrosis.

The use of FOT parameters in Bayesian networks requires 
that all instances must be discretized. Table 3 shows the cut-
off points. The dataset was labeled as follows: values below 
the respective cutoff point were labeled as 1, representing 
lower values that the variable can assume. The values above 
the respective cutoff point were labeled as 2, representing the 
highest values of the variable. For the class, the control group 
was labeled as 0, and the test group was labeled as 1. Based 
on this information, the discrete FOT parameters can be sum-
marized according to Table 4.

A graphical analysis of the relationship among FOT 
parameters can be performed through the networks pro-
vided by the BNGA algorithm. This network was selected 
for analysis based on the minimum number of arcs among 
variables. This choice makes the visual inference simpler 
and the joint probability distribution tables (JPD) smaller. 
In this analysis, the chosen structure was generated dur-
ing the third experiment using the best FOT parameters 
(Fig. 9). This network has six JPD tables, in which the 
possible biomechanical combinations are highlighted.

Table 5 shows the a priori probabilities of the class 
node, in which the probability of an individual not suffer-
ing from cystic fibrosis is 0.49 and the probability of being 
a patient is 0.51. Tables 6, 7, 8, 9 and 10 present the JPD 
calculated for the best FOT parameter nodes.

Let us calculate the probability for the general behavior 
in test group P (class = 0, R0 = 1, Rm = 1, Cdyn = 2, Z4 = 1, 
Xm = 2):

Table 3   Cutoff points for the discretization of FOT parameters, 
means and standard deviation

Parameter Cutoff point Mean (± stand-
ard deviation)

Ro 3.31 3.78 ± 1.54
Rm 3.21 3.48 ± 1.13
Xm 0.18 − 0.19 ± 1.04
Cdyn 0.014 0.014 ± 0.007
S − 10.25 − 30.15 ± 57.61
Z4Hz 4.44 5.10 ± 2.25
Fr 14.19 17.20 ± 7.50
Edyn 72.54 87.40 ± 48.80

Table 4   General behavior of 
characteristics in the control and 
test groups

Ro Rm Z4Hz Fr Edyn Xm Cdyn S Class

Control group 1 1 1 1 1 2 2 2 0
Test group 2 2 2 2 2 1 1 1 1

Fig. 9   Structure constructed with the best FOT parameters

Table 5   A priori probabilities 
of class variables in the best 
FOT parameter network

P(class = 0) P(class = 1)

0.49 0.51
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Using the given tables, P(class = 0, R0 = 1, Rm = 1, Cdyn = 2, 
Z4 = 1, Xm = 2) = (0.98). (0.99). (0.98).(0.87). (0.94). 
(0.49) = 0.38.

P(class = 0,R0 = 1,Rm = 1,Cdyn = 2, Z4 = 1,Xm = 2) =

P(Xm = 2|Z4 = 1, class = 0) ⋅ P(Z4 = 1|Rm = 1,Cdyn = 2)

⋅ P(Rm = 1|Cdyn = 2,R0 = 1).

P(Cydn = 2|R0 = 1) ⋅ P(R0 = 1|class = 0) ⋅ P(class = 0)

If one changes one of the FOT parameters, for example, 
R0 to 2, then P(class = 0, R0 = 2, Rm = 1, Cdyn = 2, Z4 = 1, 
Xm = 2) would be:

Using the given tables, P(class = 0, R0 = 1, Rm = 1, Cdyn = 2, 
Z4 = 1, Xm = 2) = (0.98). (0.99). (0.18). (0.16). (0.06). 
(0.49) = 0.00082.

This result indicates that this combination of FOT param-
eters is highly unlikely to be observed. Hence, it can help in 
the reasoning regarding the value of the FOT parameters.

One of the main limitations to the wide clinical use of 
FOT is the interpretation of its indices, which requires train-
ing and experience of the medical team. The present work 
showed that using Bayesian networks provides interpretabil-
ity to the result, showing the existing relationships among 
variables that describe the biomechanics of the respiratory 
system. Through the generated structures, it is possible to 
quantify and understand how these variables are related, still 
maintaining good accuracy in the detection of respiratory 
changes in patients with cystic fibrosis. Thus, new informa-
tion is generated, and, in addition to current methods, it can 
be used to assist medical staff in the study of cystic fibrosis 
patients, thus simplifying the use of FOT.

5 � Conclusions

In summary, five machine-learning algorithms were evalu-
ated to improve the medical services, assisting in the diag-
nosis of respiratory changes in cystic fibrosis. The individual 
use of FOT parameters is not efficient for the accurate diag-
nosis of patients. The use of KNN, RF, and BNGA classi-
fiers allowed us to increase the accuracy, almost reaching the 
high diagnostic accuracy range in the clinical diagnosis of 
cystic fibrosis. In addition to the accuracy, the BNGA algo-
rithm provides a helpful network that shows the relationships 
and the conditional probabilities among FOT parameters. 
This information may explain the respiratory changes of an 
individual and may simplify the use of FOT. The soft voting 
strategy was capable of achieving a high diagnostic accuracy 
range (AUC ≥ 0.9).

P(class = 0,R0 = 2,Rm = 1,Cdyn = 2, Z4 = 1,Xm = 2) =

P(Xm = 2|Z4 = 1, class = 0) ⋅ P(Z4 = 1|Rm = 1,Cdyn = 2)

⋅ P(Rm = 1|Cdyn = 2,R0 = 2).

P(Cydn = 2|R0 = 2) ⋅ P(R0 = 2|class = 0) ⋅ P(class = 0)

Table 6   JPD for the Ro variable in the best FOT network

P(Ro = 1|class) P(Ro = 2|class)

Class = 0 0.94 0.06
Class = 1 0.47 0.53

Table 7   JPD for the Cdyn variable in the best FOT network

P(Cdyn = 1|Ro) P(Cdyn = 2|Ro)

Ro = 1 0.13 0.87
Ro = 2 0.84 0.16

Table 8   JPD for the Rm variable in the best FOT network

P(Rm = 1|Cdyn, Ro) P(Rm = 2|Cdyn, 
Ro)

Cdyn = 2, Ro = 1 0.98 0.02
Cdyn = 1, Ro = 2 0.18 0.82

Table 9   JPD for the Xm variable in the best FOT network

P(Xm = 1|Z4Hz, class) P(Xm = 2|Z4Hz, 
class)

Z4Hz = 1, class = 0 0.02 0.98
Z4Hz = 2, class = 1 0.80 0.20

Table 10   JPD for the Z4Hz variable in the best FOT network

P(Z4Hz = 1|Rm, Cdyn, 
class)

P(Z4Hz = 2|Rm, 
Cdyn, class)

Rm = 1, Cdyn = 2, class = 0 0.99 0.01
Rm = 2, Cdyn = 1, class = 1 0.03 0.97



122	 N. P. Pinto et al.

1 3

6 � Next Steps of the Research

Future studies include (1) the use of another method for the 
network marginalization process, which requires lower com-
putational effort, (2) in addition to the genetic algorithm, 
applying other metaheuristics for the creation and selection 
of structures of Bayesian networks, (3) the implementation 
of the BNGA classifier in Python and (4) developing an 
online platform for other researchers to submit their datasets 
and obtain their models.
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