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Abstract
Purpose To investigate the value of quantitative features extracted from multi-modality ultrasound, composed of B-mode 
ultrasound (BUS), strain elastography (SE), and contrast-enhanced ultrasound (CEUS), in the early differentiation of residual 
tumors from hyperemic rim after ablation for rabbit VX2 liver tumors.
Methods The study included sixteen rabbits undergoing ablation for normal liver tissue or VX2 liver tumors. BUS, 
SE, and CEUS examinations of rabbit livers were performed on day 3 and day 7 after ablation. A total of 108 radiomics 
features were extracted. Spearman rank correlation, the t-test, Kruskal-Wallis test (KW-test), and the least absolute 
shrinkage and selection operator (LASSO) method were applied to analyze data. The support vector machine (SVM) 
and logistic regression (LR) classifiers were used to classify hyperemic rim and residual tumors under the leave-
one-out cross-validation. Model performance was validated by the area under the receiver operating characteristic 
curve (AUC).
Results All ultrasound modalities had features that significantly differed between hyperemic rim and residual tumors, such 
as the maximal value of BUS, the entropy of brightness of SE, and the skewness value of CEUS (all p < 0.05). For the dif-
ferentiation between hyperemic rim and residual tumors after ablation, the AUC of multi-modality ultrasound was 93.3% 
on day 3 and 82.1% on day 7.
Conclusion The multi-modality ultrasound radiomics is helpful for the early differentiation between hyperemic rim and 
residual tumors around the ablation area in a rabbit model, which might improve future ablation for liver tumors.

Keywords Multi-modality ultrasound · Radiomics · Ablation · Liver tumor

1 Introduction

Radiofrequency (RF) ablation has become an important 
method for treating hepatic malignancies due to less 
trauma and quick recovery [1–3]. However, incomplete 
ablation due to tumor proximity to important structures, 
such as blood vessels and diaphragm, or operator techni-
cal problems, results in residual tumors. Accurate early 
postoperative follow-up strategies are crucial for improv-
ing survival [4]. Although, it is often difficult to assess 
the effects of RF ablation by early postoperative imag-
ing. An ablation-induced hyperemic rim appears in the 
ablated zone, known as benign periablational enhancement 
(BPE) [5]. The BPE remains for a long time, even up to 
six months, and it is often mistaken for the residual tumor, 
which is also characterized by periablational enhancement 
on imaging [6].
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Ultrasound imaging with high spatial resolution plays 
a crucial role in postoperative follow-up because low-cost 
and safety of ultrasound imaging allows repeated real-time 
dynamic observations. However, BPE is difficult to distin-
guish from residual tumor on conventional ultrasound. The 
residual tumor is characterized by periablational enhance-
ment on contrast-enhanced ultrasound (CEUS) scan. Com-
puted tomography (CT) and magnetic resonance imaging 
(MRI) can also be used for post-ablation assessment. How-
ever, early differentiation between BPE and residual tumors 
remains a major problem even after using contrast-enhanced 
CT and contrast-enhanced MRI. This issue can seriously 
affect subsequent clinical decisions making [7–9]; there-
fore, a new method is urgently needed for early differentia-
tion between BPE and residual cancer to help physicians’ 
judgment.

Radiomics is a computer-aided radiological technology 
that uses high-throughput characteristics of medical images 
to identify diseases, assess therapeutic efficacy, and predict 
prognosis [10–13]. Multi-modal ultrasound technology com-
bines two or more ultrasound methods for multi-angle anal-
ysis and improves diagnosis accuracy. Currently, B-mode 
ultrasound (BUS), strain elastography (SE), and CEUS are 
the three most commonly used modes of ultrasound imaging 
after RF ablation. BUS can provide valuable information 
about the liver lesion, including its size, shape, margins, and 
internal echo [14]. SE reflects the elasticity of liver tissue 
[15]. CEUS uses a contrast agent to enhance the backscat-
tered echoes from the blood perfusion of normal and abnor-
mal liver tissues [16, 17]. The application of multi-modal 
ultrasound technology can integrate the information from 
BUS, SE, and CEUS to improve the accuracy of diagnosis 
[18].

Previously, Vilana et al. [19] used microbubble-enhanced 
ultrasonography to evaluate residual cancer on day 1 after 
ablation and found that the sensitivity was only 27.3%. Yi 
et al. [20, 21] investigated the value of the perfusion param-
eters of CEUS in the early differentiation between BPE and 
residual tumors after ablation. Hong et al. [22] assessed 
shear wave dispersion imaging parameters at different time 
points after ablation. Previous studies were based on only 
one modality of ultrasound, and our study is the first one 
to combine BUS, SE, and CEUS in the analysis of post-
ablation liver cancer. In addition, we extracted new high-
throughput features by radiomics. There are few studies 
using radiomics for distinguishing BPE from residual cancer 
after ablation.

In this study, we used a rabbit VX2 liver tumor model 
for early differentiation between residual tumors and hyper-
emic rim after ablation. Since animal experiments can eas-
ily provide tissue specimens for pathological assessment, 
residual tumors, coagulation areas, and BPE can be accu-
rately detected. The radiomics of multi-modality ultrasound, 

including BUS, SE, and CEUS, was investigated in this 
study. It assisted early post-ablation differentiation between 
these two conditions in an animal model; therefore, neces-
sary therapeutic actions can be decided as soon as possible. 
Furthermore, this study also provides an experimental basis 
for the early identification of residual tumors after ablation 
in clinics.

2  Materials and Methods

2.1  Animal Models and Ultrasonic Imaging

The flowchart of this study is shown in Fig. 1. The experi-
mental protocols were approved by the Institutional Ani-
mal Care and Use Committee at the authors’ institution. 
The experiments were performed with sixteen New Zea-
land white rabbits weighing 2.5–3.0 kg. VX2 carcinoma 
was inoculated in the livers of thirteen rabbits with a well-
established method. Two weeks later, the tumors were 
used for laser ablation, and the maximum tumor diam-
eters ranged from 1.1 to 1.3 cm. We then built a partially 
ablated tumor model by using laser ablation technology. 
Under ultrasound guidance, the 21-gauge PTC needle was 
inserted directly into tumor position. The needle core was 
removed, and the laser fiber (diameter, 300 μm; wave-
length, 1064 nm) was pushed forward with 5 mm of its tip 
exposed. The ablation power was set at 4 W, and burning 
continued until the action energy reached 100 J. The size 
of the ablation was about 1/3 − 2/3 of the tumor. The fully 
ablated side was surrounded by a hyperemic rim, and the 
residual tumor was in the partially ablated zone (Fig. 2). 
In the other three rabbits, we did not implant the tumor 
and only ablated their normal liver tissue to test the for-
mation of BPE. The ablation procedure and instruments 
were the same for normal liver tissue and tumor. In total, 
there were sixteen zones of BPE and thirteen zones of 
residual tumors.

BUS, SE, and CEUS were performed on rabbit models on 
day 3 and day 7 after ablation. The instruments were Resona 
8 (Mindray, Shenzhen, China), and Aplio i900 (Canon, 
Tochigi-ken, Japan) color Doppler ultrasound apparatuses.

To measure the consistency between imaging and histo-
pathology, the VX2 rabbits were randomly sacrificed 3 or 
7 days after ablation. The specimen [23] corresponding to 
the ultrasound image was cut from the center of the abla-
tion lesion, including the residual tumor, ablation coagu-
lation lesion, hyperemic rim zone, and normal liver tissue 
(Fig. 2a). Then the specimen was fixed in 10% neutral for-
malin solution and subsequently stained with hematoxylin 
and eosin for histopathological measurement [24]. Each sec-
tion (Fig. 2b) was carefully examined by an expert patholo-
gist, and all findings were recorded.
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Fig. 1  The flow chart of the radiomics method for differentiation 
of the residual cancer and the inflammatory reaction after ablation. 
Firstly, A rabbit model of partial ablation of liver tumors was con-
structed. Secondly, BUS, SE and CEUS examinations were per-

formed on day 3 and day 7 after ablation. Radiomics features were 
extracted. Then, a four-stage process was applied for feature selection. 
Finally, prediction models were constructed with the support vector 
machine and logistic regression classifiers, evaluated with ROC

Fig. 2   A rabbit model of partial ablation of liver tumors. a The gross 
specimen of an incompletely ablated tumor; b  The corresponding 
pathological specimen of the incompletely ablated tumor. Four areas 

are denoted, namely the residual tumors (I), coagulation areas (II), 
benign periablational enhancement (BPE, III) and normal liver tissue 
(IV)
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2.2  Image Preprocessing

Multi-modality ultrasound and pathological images are 
shown in Fig. 3. The margins of BPE and tumoral zones 
were determined with red curves by a radiologist with 10 
years of experience. Two months later, the same radiolo-
gist determined the lesion contours of 10 random rabbits to 
assess intraclass correlation coefficients (ICCs). As shown in 
Fig. 4, image preprocessing was performed on three modali-
ties. The regions inside the boundaries were filled to get the 
binary masks of BPE (Fig. 4a) and tumoral (Fig. 4c) zones. 
In addition, for the SE images (Fig. 4b), the pure elasticity 
map was derived from the difference between the region of 
interest (ROI) in a color elastogram and that in a grayscale 
B-mode image. The color bar on the left of Fig. 4b shows 
the elasticity of the tissue, and the color spectrum from red 
to blue indicates the elasticity from soft to hard. According 
to the color bar, the pure elasticity map was transformed into 
the grayscale softness map ranging from 0 (the hardest) to 
1 (the softest) [25].

2.3  Multi‑Modality Feature Extraction

In this study, the radiomics feature extraction was performed 
with MATLAB. Before the feature extraction, we grayed and 
normalized the softness map or ultrasonic image. A total 

of 108 radiomics features, including 36 for each modal-
ity with intensity features and regional percentile features, 
were extracted from BUS, SE and CEUS images. The image 
intensity features included the mean value (meanV), stand-
ard deviation value (stdV), coefficient of variation (CoV), 
skewness value (skewV), entropy of brightness (Entropy-
Brt), entropy of histogram (EntropyHis), mean region of 
interest (meanROI), median region of interest (medianROI), 
mean ratio (meanRatio), and median ratio (medianRatio) 
[26]. qx indicates regional percentile features, and x (rang-
ing from 0 to 1 at a step of 0.05) indicates the percentage of 
the queue relative to the whole pixel queue. qx indicates the 
pixel value, q0 and q1 indicate the minimum value (minV) 
and the maximum value (maxV), respectively.

2.4  Feature Selection

In order to prevent models from overfitting, feature selection 
was performed. We used a four-step procedure to select radi-
omic features. First, z-score standardization and normali-
zation were applied to radiomic features. Then, ICCs were 
calculated (ICCs > 0.75 indicated good reproducibility). In 
the second stage, spearman correlation analysis was used to 
select features. A pairwise Spearman correlation coefficients 
(defined as  rs) matrix was calculated, and |rs| > 0.9 were 
identified as highly correlated. For each highly correlated 

Fig. 3  Multi-modality ultrasound images and pathological images 
of benign periablational enhancement (BPE) and residual tumors 
after ablation. The middle ring areas surrounded by two red circles 
(pointed by yellow arrows) are BPE and peripheral residual tumor 

regions. They are all characterized by enhancement around the abla-
tion focus on imaging examinations. It is difficult to early distinguish 
between BPE and residual tumors by BUS, SE or CEUS after abla-
tion
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feature pair, only the one feature with the lower average |rs| 
between a feature and all the other features was considered 
to be retained [27]. In the third stage, the t-test was used for 
variables with normal distribution, and the Kruskal-Wallis 
test (KW-test) was used for variables without normal distri-
bution to compare the inflammation group with the tumor 
group. Then ten first-stage selected features with the mini-
mum p values were identified to be used in the fourth stage. 
At the final stage, the least absolute shrinkage and selection 
operator (LASSO) feature selection algorithm was used to 
detect important features under the leave-one-out cross-
validation. We determined the intersection features of all 
models with important features as the final features under 
the leave-one-out cross-validation. Finally, two features were 
selected for each case.

2.5  Prediction Model Construction

The construction and evaluation of classification models were 
performed using Python, version 3.6. The support vector 
machine (SVM) [28] and logistic regression (LR) classifiers, 
which are suitable for a small sample dataset, were adopted 
to construct the radiomics model in this study [29]. We used 
three single-modality feature datasets and one multi-modal-
ity feature dataset to construct models. The single-modality 
models were constructed based on the optimal feature sub-
sets obtained by feature selection. The SVM classification 
score for each single-modality model was calculated as a new 

feature. Similar to multi-modality model, we incorporated 
single-modality optimal feature subsets and the SVM scores; 
therefore, each modality had three optional features. Then, we 
took one feature from each modality to produce a three-feature 
combination for the multi-modality model. Thus, 27 combi-
nations of multi-modality features were built to establish the 
multi-modality models under the leave-one-out cross-valida-
tion, and the model with the optimal area under the receiver 
operating characteristic curve (AUC) value was selected as the 
final multi-modality model.

The receiver operating characteristic (ROC) curves were 
used to evaluate the classification results. The accuracy (ACC), 
sensitivity (SEN), specificity (SPE), AUC, and standard error 
of AUC were calculated, taking the maximum Youden’s index 
as the optimal critical point.

2.6  Statistical Analysis

After partial ablation of liver tumors, statistical analysis was 
performed to compare the characteristics of different regions. 
First, normal distribution and homogeneity of variances were 
tested for radiomic features. For features with satisfying nor-
mal distribution and homogeneity of variance, we used the 
t-test to select features with significant differences (p < 0.05) 
and calculated the mean and standard deviation (STD). For 
features without satisfying normal distribution or homogeneity 
of variances, we used KW-test to select features (p < 0.05) and 
calculated the median and interquartile range (IQR).

Fig. 4  The image preprocessing of BUS, SE and CEUS. a The image 
preprocessing for BUS of an inflammatory reaction, where the binary 
mask was derived by filling the delineated boundary (red), b  The 

image preprocessing for SE of an inflammatory reaction, where the 
softness map was derived from the elasticity map according to the 
color bar, c The image preprocessing of CEUS of a residual cancer
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3  Results

3.1  Statistically Significant Features from BUS, SE 
and CEUS Images

The statistics of BUS, SE, and CEUS features on day 3 and 
day 7 after ablation are shown in Table 1. BUS features, 
namely stdV, q0.6, q0.8, q0.9, and maxV, showed significant 
differences between the BPE and tumor groups on day 3 
(p < 0.05), and EntropyHis exhibited a significant difference 
on day 7 (p = 0.044). SE features, including CoV, Entro-
pyBrt, and q0.45, showed significant differences on day 7 
(p < 0.05). On day 3, there were significant differences in 
CEUS features, including meanV, skewV, q0.5, q0.95, mean-
ROI, medianROI, meanRatio, and medianRatio (all p < 0.01 
except for skewV with p = 0.018).

3.2  Diagnostic Performance in BPE and Residual 
Tumors

The classification performance is shown in Table 2. The cor-
responding ROC curves are shown in Fig. 5. The classifica-
tion results on BUS indicated that the maximum AUC and 
ACC were 74.4% and 80.8% on day 3, and 77.5% and 77.8% 
on day 7. The SPEs ranged from 80.0 to 93.8% at two time 
points, and SENs were between 60.0% and 75.0%.

The classification results on SE showed that the largest 
AUC and ACC were 58.3% and 63.2% on day 3 and 72.2% 

and 84.2% on day 7, respectively. The SENs were 71.4% on 
day 3 and 66.7% on day 7, while the SPEs were between 
58.3% and 100.0%.

The classification results on CEUS indicated that the larg-
est AUC was 84.6% on day 3 and 75.0% on day 7. The SENs 
with two classifiers were 71.4% on day 3, and 100.0% and 
85.7% on day 7. SPEs were 92.3% on day 3, and 50.0% and 
62.5% on day 7.

The classification results indicated that on day 3, 
the multi-modality model with the SVM classifier 
(AUC = 93.3%) was superior to the SE model (AUC = 58.3%, 
Delong test: Z = 2.203, p = 0.028). On day 7, the multi-
modality model had an AUC of 82.1%, with no significant 
improvement compared with the AUC of single-modality 
models (Delong test: p > 0.05). The SENs with the SVM and 
LR classifiers were 83.3% on day 3 and between 71.4% and 
85.7% on day 7. SPEs ranged from 75.0 to 90.0%.

4  Discussion

Recently, radiomics emerged as an effective method for 
deep mining of disease information combined with medi-
cal imaging. It can reflect abnormal tissue alterations 
[30, 31]. Furthermore, multi-modal ultrasound technol-
ogy can integrate information from different modalities 
to improve computer-aided performance. The differen-
tiation between BPE and residual cancer is difficult on 
imaging. We used radiomics of multi-modality ultrasound 

Table 1  BUS, SE and CEUS 
features in the inflammation 
group and the tumor group on 
day 3 and day 7 after ablation

The p-values less than 0.05 are denoted in a bold font

Modality Feature Day 3 Day 7

Inflammation Tumor Inflammation Tumor

p Mean ± STD / 
Median (IQR)

Mean ± STD / 
Median (IQR)

p Mean ± STD / 
Median (IQR)

Mean ± STD / 
Median (IQR)

BUS stdV 0.031 0.112(0.020) 0.087(0.040) 0.063 0.139 ± 0.023 0.112 ± 0.035
EntropyHis 0.070 6.489 ± 0.337 6.248 ± 0.274 0.044 6.880 ± 0.322 6.481 ± 0.453
q0.6 0.047 0.332 ± 0.052 0.288 ± 0.053 0.267 0.374 ± 0.074 0.333 ± 0.076
q0.8 0.023 0.395 ± 0.060 0.338 ± 0.055 0.155 0.466 ± 0.092 0.403 ± 0.082
q0.9 0.033 0.456 ± 0.068 0.392 ± 0.073 0.186 0.537 ± 0.100 0.472 ± 0.101
maxV 0.022 0.860(0.080) 0.748(0.227) 0.594 0.859(0.016) 0.818(0.168)

SE CoV 0.315 0.411 ± 0.191 0.331 ± 0.086 0.042 0.467 ± 0.231 0.260 ± 0.171
EntropyBrt 0.769 0.971 ± 0.025 0.974 ± 0.020 0.034 0.979(0.014) 0.988(0.008)
q0.45 0.731 0.239(0.063) 0.243(0.117) 0.049 0.224 ± 0.069 0.365 ± 0.198

CEUS meanV 0.004 0.493 ± 0.086 0.366 ± 0.069 0.632 0.498 ± 0.144 0.464 ± 0.128
skewV 0.018 0.283 ± 0.317 0.091 ± 0.289 0.629 0.367 ± 0.776 0.203 ± 0.422
q0.5 0.004 0.511 ± 0.106 0.361 ± 0.078 0.634 0.515 ± 0.171 0.474 ± 0.152
q0.95 0.003 0.751 ± 0.095 0.600 ± 0.092 0.517 0.735 ± 0.112 0.694 ± 0.132
meanROI 0.004 0.268 ± 0.078 0.378 ± 0.060 0.226 0.291 ± 0.071 0.337 ± 0.069
medianROI 0.001 0.219 ± 0.095 0.384 ± 0.077 0.207 0.237 ± 0.092 0.301 ± 0.093
meanRatio < 0.001 2.033 ± 0.427 0.979 ± 0.184 0.102 1.826 ± 0.463 1.456 ± 0.326
medianRatio < 0.001 2.263(1.997) 0.926(0.216) 0.277 2.390 ± 0.756 1.889 ± 0.957
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to differentiate them after ablation in the rabbit VX2 
liver tumor model. Radiomics features were extracted, 
selected, and used in classification models to help clinical 
decision-making.

From day 3 to day 7 after ablation, local inflammatory 
reaction changed from acute to chronic inflammation in 
pathology [32, 33]. On day 3, there were significant differ-
ences in CEUS features between BPE and the tumor. The 
CEUS intensities were larger in BPE than in the residual 
tumor. It was speculated that this was related to the patho-
physiologic changes in the ablated tissue. In response to 
thermal injury, the acute inflammatory reaction occurred in 
the periablational zone, characterized by reactive hyperemia, 
edema, and infiltration of neutrophils and macrophages. 
Acute hyperemia was characterized by dilated small blood 
vessels and a marked increase in blood flow. The acute 
inflammatory reaction might peak on the third day after 
ablation. However, the blood supply of the residual tumor 
and microvessel density decreased. Therefore, quantitative 
parameters related to blood flow were sensitive indicators 
for differentiating between residual tumor and BPE on day 3.

After 7 days of ablation, the radiomics features of BUS 
(stdV and EntropyHis) and SE (Cov and EntropyBrt) indi-
cated that the uniformity of the lesion was lower in the BPE 
than in the residual tumor. This may be because BPE around 
the ablation focus manifested as the chronic inflammatory 
response from day 7 after ablation. Acute reactive hyperemia 
gradually decreased and was replaced by chronic inflamma-
tion, granulation tissue, and fibrosis. Thus, the quantitative 
features of BUS and SE related to uniformity were sensitive 
indicators for differentiating between periablational inflam-
matory rim and residual tumor on day 7.

Radiomics is an important method for the holistic analy-
sis of diseases and can reveal subtle pathological changes in 
tissue and promote the diagnosis, treatment, and prognosis 
[34]. In the early stage, BPE and residual tumors are not 
discernible by simple multi-modality ultrasound; however, 
they can be distinguished by some features, such as blood 
flow and tissue homogeneity. In addition, our classification 
results showed that AUC and ACC of multi-modality ultra-
sound were 93.3% and 87.5% on day 3 and 82.1% and 80.0% 
on day 7, much higher than that on single-modality ultra-
sound. Furthermore, the SENs and SPEs of multi-modality 
ultrasound models were more balanced than those of sin-
gle-modality ultrasound modes. Thus, radiomics of multi-
modality ultrasound serves as a more efficient method in the 
early identification of BPE and residual tumors compared 
with single-modality ultrasound modes.

Han et al. [35] reported that on day 3 after ablation, the 
difference between BPE and residual tumors was most sig-
nificant, confirming our hypothesis. Kan et al. [36] showed 
that even a stress test of CEUS with phenylephrine, could 
barely differentiate BPE from the residual tumor on day 
7. However, we found that pathological tissue uniformity 
features extracted from BUS and SE can significantly dif-
ferentiate between BPE and residual tumors. Of course, 
our study had some limitations. First, despite similarities, 
there are differences between BPE and residual tumors in 
our animal model and in human studies. Similarly, there 
are some pathological differences between VX2 tumor and 
human hepatoma. Therefore, the methods in this animal 
study need to be validated in human studies. Second, the 
small sample size limits the generalizability of our findings, 
and more cases are needed to validate the effectiveness of 

Table 2  The leave-one-out 
cross validation results for 
discriminating between the 
tumor group and inflammation 
group when using selected 
radiomic features of BUS, SE 
and CEUS, respectively, as well 
as a three-feature combination 
of multi-modality ultrasound. 
The cognitive indexes include 
accuracy (ACC), sensitivity 
(SEN), specificity (SPE), area 
under the receiver operating 
characteristic curve (AUC) and 
standard error of AUC.

Modality Day Classifier ACC (%) SEN (%) SPE (%) AUC (%) Standard 
Error (%)

BUS Day 3 SVM 80.8 60.0 93.8 74.4 12.0
LR 80.8 60.0 93.8 73.1 12.0

Day 7 SVM 77.8 75.0 80.0 77.5 11.5
LR 77.8 75.0 80.0 73.8 12.6

SE Day 3 SVM 63.2 71.4 58.3 58.3 14.6
LR 63.2 71.4 58.3 56.0 16.0

Day 7 SVM 84.2 66.7 100.0 72.2 14.4
LR 73.7 66.7 80.0 64.4 15.3

CEUS Day 3 SVM 85.0 71.4 92.3 84.6 9.4
LR 85.0 71.4 92.3 84.6 9.2

Day 7 SVM 73.3 100.0 50.0 75.0 14.0
LR 73.3 85.7 62.5 69.6 14.9

Muti-modality Day 3 SVM 87.5 83.3 90.0 93.3 6.2
LR 87.5 83.3 90.0 93.3 6.2

Day 7 SVM 80.0 85.7 75.0 80.4 12.3
LR 80.0 71.4 87.5 82.1 11.7
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multi-modality ultrasound radiomics. Furthermore, more 
quantitative features, such as those derived from deep learn-
ing algorithms, can be used in the radiomics approaches 
to assist in early discrimination between BPE and residual 
tumor.

5  Conclusion

In summary, the accurate identification of BPE and resid-
ual tumors after ablation is crucial for clinical decision-
making. However, the inflammatory area around the lesion 
is often undistinguishable from residual tumors even 

within 6 months after ablation, which has always been 
a critical problem in clinical practice. In this study, the 
AUC of the multimodal ultrasound model was as high as 
93.3% on day 3 after ablation, indicating that it is a fea-
sible method for early differentiation of residual tumors 
from BPE. Our study demonstrated that multi-modality 
ultrasound alterations are consistent with the pathological 
changes after ablation in rabbit VX2 liver tumors. It can 
help understand the pathological changes induced by abla-
tion. The techniques of multi-modality ultrasound radiom-
ics could be used in clinical settings to facilitate the early 
assessment of therapeutic response.

Fig. 5  ROC curves for discrimination between inflammatory reaction and residual tumors in BUS, SE, CEUS and multimodality ultrasound 
a ROC curves of BUS, b ROC curves of SE, c ROC curves of CEUS, d ROC curves of multimodality ultrasound
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