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Abstract
Purpose  Accurate measurement of spinal curvature for adolescent idiopathic scoliosis (AIS) is important because it affects 
treatment decisions. Currently, the Cobb angle measured on a radiograph is the gold standard for spinal curvature assess-
ment. However, manual measurements introduce inter- and intra-observer reliability challenges, and while fully automatic 
methods have been developed, performance could be improved. This paper reported a new approach using convolutional 
neural networks (CNNs) and an iterative vertebra location algorithm to calculate the Cobb angle automatically by segment-
ing the spinal and vertebral boundaries on posteroanterior radiographs.
Methods  Two CNNs for spinal column and vertebra segmentation were trained using 110 and 272 images, respectively. An 
iterative vertebra location algorithm was developed to localize individual vertebrae in the spinal column for segmentation. 
To evaluate the accuracy of the automatic Cobb angle measurements calculated from the vertebra segmentations, 100 new 
radiographs were used. The mean absolute difference (MAD), standard deviation of absolute differences (SD), and percent 
within clinical acceptance (≤ 5°) between manual and automatic measurements were reported as evaluation metrics.
Results  The MAD ± SD was 2.8° ± 2.8° and 88% of the measurements were within 5° of the manual measurements. The 
result was comparable to other literature, and this method worked for a wide range of curve severities. The average automatic 
measurement time per image was 90 s, which is clinically acceptable.
Conclusion  The automatic measurement method based on CNNs provided a comparable accuracy and speed on spinal cur-
vature measurements on radiographs. It could be a valuable tool for reducing clinical workload and measurement variation.
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1  Introduction

Adolescent idiopathic scoliosis (AIS) is a three-dimensional 
spinal condition, characterized by lateral curvature and axial 
vertebral rotation. It affects approximately 3% of adolescents 
[1]. The Cobb angle, which is the gold standard for quanti-
fying spinal curvature, is measured on posteroanterior (PA) 
radiographs by identifying the angle between the upper end 

plate of the superior vertebra and the lower end plate of 
the inferior vertebra [2], shown in Fig. 1a. To decide which 
treatment regimen is appropriate, the Cobb angle is meas-
ured at a scoliosis clinic. If the measured Cobb angle has 
increased by more than 6° between two consecutive visits, 
it indicates that the curve has progressed, and treatment may 
be recommended to stop the curve progression. Therefore, it 
is essential to have accurate measurements which ensure that 
patients receive appropriate treatment in a timely manner. 
However, manual measurements introduce inter-observer 
and intra-observer variations and require time and effort to 
measure in the clinic [3].

Machine learning is a rapidly developing field that has 
successfully tackled problems that previously challenged 
traditional computing methods by simulating human learn-
ing methods. This is useful because it allows computer 
programming to solve more general and wide-ranging 

 *	 Edmond Lou 
	 elou@ualberta.ca

1	 Division of Engineering Science, Faculty of Applied Science 
and Engineering, University of Toronto, Toronto, ON, 
Canada

2	 Department of Electrical and Computer Engineering, 11‑263 
Donadeo Innovation Centre for Engineering, University 
of Alberta, 9211‑116 St., Edmonton, AB T6G 1H9, Canada

http://orcid.org/0000-0001-9256-7773
http://orcid.org/0000-0003-2500-0368
http://orcid.org/0000-0003-4783-0717
http://orcid.org/0000-0002-7531-8377
http://crossmark.crossref.org/dialog/?doi=10.1007/s40846-022-00712-9&domain=pdf


389Applying a Convolutional Neural Network Based Iterative Algorithm to Automatically Measure Spinal Curvature on Radiographs for Children with Scoliosis

1 3

problems that do not have a specific set of outputs. One 
such problem is computer vision and image segmentation, 
which has been changed by the introduction of the con-
volutional neural network (CNN). These networks search 
over an image several times to identify and mark distin-
guishing features [4]. Of particular success is the U-net 
from Ronneberger et al., which is a CNN architecture spe-
cially designed for segmenting images with small train-
ing datasets [5]. This makes the U-net perfect for medical 
imaging applications with limited training samples.

Recently, Horng et  al., developed a fully automatic 
program that used image processing to isolate the spinal 
column and a U-net CNN to segment the individual verte-
brae. Using the vertebra segmentations, they measured the 
Cobb angle with an inter-method reliability of 0.94–0.97 
between manual and automatic measurements. However, 
their test set comprised of only 35 images and contained 
only mild Cobb angles of less than 20°, which is a small 
subset of overall cases [6]. Fu et al. used a two-network 
architecture for estimating landmarks and calculating the 
Cobb angle using these landmarks [7]. They achieved a 
MAD of 3.15° on 240 radiographs. However, the distri-
bution of Cobb angle severities in their test set is unclear. 
Other groups have reported on their own automated meth-
ods, but do not achieve comparable results to these two 
papers [8–12].

The objectives of this paper were to report a new quality-
based iterative CNN algorithm that automatically measures 
Cobb angles on PA radiographs with a wide range of curve 
severities and to determine the accuracy of this method by 
comparing automatic measurements with clinical records. 
Developing a fully automatic and accurate Cobb angle meas-
urement algorithm would reduce measurement variation and 
clinical workload, therefore improving diagnostic accuracy 
and streamlining clinical workflow. The accuracy of the 
Cobb angle measurement is important because it affects 
treatment decisions.

2 � Materials and Methods

2.1 � Data

From a local scoliosis clinic, over 600 PA radiographs of 
children with AIS were available for use. Among these 
radiographs, 300 were acquired using the standard X-ray 
system (between 2010 and 2015), while the remainder were 
acquired using the new EOS X-ray imaging system (between 
2015 and 2020), which uses an ultra-low dose of radiation. 
Figure 1b and c compare the image quality of the radio-
graphs obtained from the standard and EOS X-ray systems, 
respectively. The average size of a PA radiograph obtained 

Fig. 1   a A Cobb angle measurement on a posteroanterior radiograph; b a standard X-ray radiograph, c a low-dose radiation EOS radiograph, d 
pre-processed version of the EOS radiograph from c with segmented spinal column (yellow) and midline (blue)
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from the standard and EOS X-ray systems is 4820 × 2335 
and 3465 × 1600 pixels, respectively. Out of the 600 availa-
ble PA radiographs, 238 were randomly selected and broken 
down into three groups (120, 18, and 100 images). The first 
120 PA images were used for spinal column segmentation, 
of which 110 were used for training and 10 were used for 
validation. The 18 PA images were used to generate 282 
vertebra images which were used for training (272 images) 
and validation (10 images) of vertebra segmentation. The 
last 100 images were used for automatic Cobb angle meas-
urement accuracy testing. Ethics approval (Pro00102044) 
was granted from the University of Alberta Health Research 
Ethics Board.

2.2 � Proposed Method

The automatic Cobb angle measurement algorithm was 
broken down into two steps: (a) segmentation of the spinal 
column and (b) segmentation of the individual vertebrae. 
The spinal column segmentation aimed to identify the region 
starting from the top thoracic vertebra (T1) to the bottom 
lumbar vertebra (L5) on a PA radiograph. Using the spinal 
column as a guide, the individual vertebrae were located 
with an iterative algorithm and subsequently segmented. The 
CNNs used for segmentation were developed using Python, 
coupled with Tensorflow libraries, and were trained on a 
Linux virtual machine hosted on the Industry Sandbox & AI 
Computing (ISAIC) supercomputer, using an NVIDIA Tesla 
V100 16 GB GPU and an Intel Xeon Gold 6138 dual proces-
sor. All images related to CNN development were labelled 
manually by the primary author using a MATLAB segmen-
tation graphical user interface. The primary author, a novice 
scoliosis researcher, used 10 extra images to practice and 
confirm with a senior author who had 20 years of scoliosis 
research experience prior to labelling the training images.

2.2.1 � Spinal Column Pre‑processing

To reduce extraneous information from being passed to the 
CNN, a region of interest (ROI) centered around the spi-
nal column was identified and cropped from the PA radio-
graphs. First, the head was identified, as it was positioned 
directly above the T1 vertebra. The image intensity of the 
head was higher than its immediate surrounding area, so the 
maximum intensity vertical projection of the top 50 rows of 
the radiograph was calculated. The ROI was determined by 
setting the region of highest intensity in this projection as 
the ROI’s center, then extending it to 500 pixels on either 
side, creating a total width of 1000 pixels. Contrast limited 
adaptive histogram equalization (CLAHE) was applied to 
the ROI to accentuate the spinal column boundaries. The 
cropped and histogram equalized images were then resized 
to 256 × 128 pixels to standardize the input image size for 
the CNN. These pre-processed images, along with their 
labels, were used to train the CNN for spinal column seg-
mentation. Labelling the spinal column involved annotating 
a ground truth semantic segmentation, similar to the yellow 
highlighted area in Fig. 1d, where the whole spinal column 
from T1–L5 was labelled.

2.2.2 � Spinal Column Segmentation

A CNN with a U-net architecture was used to segment the 
spinal column from the pre-processed images [5]. The archi-
tecture, which is similar to that of Horng et al. [6], is illus-
trated in Fig. 2. The spinal column CNN was trained for 400 
epochs using a binary cross entropy loss function and an 
Adam optimizer with a learning rate of 10−4 [13]. A dropout 
probability of 0.1 was used after each downsampling and 
upsampling layer, and a batch size of 1 was used.

A total of 120 PA radiographs were manually labelled and 
split into a 110-image training set and 10-image validation 

Fig. 2   Network architecture for 
the spinal column segmentation 
network. The vertebra segmen-
tation network varies only in 
terms of input image size
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set. The training set consisted of half regular and half EOS 
radiographs, while the validation set contained only EOS 
radiographs. Data augmentation methods of random hori-
zontal flips and rotations (≤ 10°) were applied to increase 
the effective training set size, and therefore the robustness 
of the CNN.

The segmentations underwent post-processing to opti-
mize performance in the upcoming iterative vertebra loca-
tion algorithm. This consisted of keeping only the largest 
connected component of the segmentation and estimating 
the spinal column shape by fitting a tenth-degree polyno-
mial to the segmentation. This polynomial was denoted as 
the “midline” and is illustrated in Fig. 1d, along with the 
pre-processed radiograph and spinal column segmentation.

2.2.3 � Vertebra Pre‑processing

Square images of the vertebrae were manually cropped from 
the PA radiographs and labelled to train a CNN for auto-
matic vertebra segmentation. Like the spinal column images, 
CLAHE was applied to these images to highlight the verte-
bral boundaries. The pre-processed images were then resized 
to 128 × 128 pixels. Figure 3a illustrates a pre-processed 
cropped vertebra image. These pre-processed images and 
their respective labels were used to train the CNN for verte-
bra segmentation. Labelling the vertebrae involved annotat-
ing a ground truth semantic segmentation of each vertebral 
body, similar to the yellow highlighted area in Fig. 3b.

2.2.4 � Vertebra Segmentation

Vertebra segmentation was accomplished using the same 
U-net architecture shown in Fig. 2, except the input size 
of the images was 128 × 128 pixels. It was trained for 200 
epochs using a binary cross entropy loss function and an 

Adam optimizer with a learning rate of 10−4. No dropout 
was performed and a batch size of 1 was used.

A total of 282 vertebra images were manually labelled 
and split into a 272-image training set and 10-image valida-
tion set. Both the training and validation set comprised of 
half regular and half EOS radiographs. To increase the effec-
tive training set size, random horizontal flipping, rotations 
(≤ 45°), zooms (80–120%), and horizontal and vertical shifts 
(≤ 10%) were employed as data augmentation methods.

Like the spinal column, only the largest connected com-
ponent of the vertebra segmentation was kept. A minimum 
bounding box was placed around each vertebra segmentation 
to determine its tilt angle relative to horizontal. Figure 3b 
and c display a segmented vertebra and that segmented ver-
tebra with a bounding box, respectively. Further methods of 
ensuring high quality vertebra segmentations are detailed in 
the iterative vertebra location sub-section.

2.2.5 � Iterative Vertebra Location

To find all the individual vertebrae within a spine, an itera-
tive algorithm was employed. To identify the first vertebra, 
five images were cropped around two-thirds of the way down 
the spinal column segmentation, where the clearest verte-
bra (T12) is normally present. The images were separated 
vertically by a quarter of the width of the spinal column 
segmentation, to be certain that at least one centered image 
of the vertebra was obtained. Each of these images was 
segmented by the CNN and the segmentation with the best 
quality was selected. A new region was then cropped above 
the initial segmentation at a distance equal to the height of 
the initial segmentation, with a width of about the spinal 
column segmentation at the new height. If the quality of this 
segmentation was good, this step was repeated, resulting in 
segmentation of the next vertebra upwards. If the quality 
of the segmentation was poor, the cropping window was 

Fig. 3   a Cropped region of vertebra, b segmented vertebra, c segmented vertebra with bounding box
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increased in height or width, and the vertebra segmentation 
was attempted again. Quality was deemed poor if the quality 
variance or mean (Eqs. 1 and 2) exceeded a value of 100 or 
10, respectively. In this manner, vertebra segmentation con-
tinued upwards until it reached the top of the spinal column 
segmentation. Finally, segmentation was performed from the 
initially segmented vertebra downwards until L5.

The quality of a predicted vertebra segmentation was 
determined automatically by comparing it to several stand-
ard vertebra masks from the training images and then 
calculating an original quality coefficient inspired by Al 
Arif et al. and their shape-aware parameter [14]. First, the 
standard masks were rotated to match the angle of the 
predicted segmentation. Then, the outlines of the predicted 
mask and each standard mask were compared by finding 
the distribution of the minimum distances between each 
point on the predicted mask contour and the standard mask 
contour. Figure 4a shows an example of the distribution 
of minimum distances of a predicted mask with a poorly 
matched standard mask and Fig. 4b shows that distribu-
tion with a well-matched mask. The segmentation quality 
was determined by both the mean and variance of this 
distribution—the lower these two values, the higher the 
quality of the segmentation. The lowest mean and variance 
with one of the standard masks was taken as the quality 

metric for the predicted segmentation. Several standard 
masks were used during comparison because the contours 
of thoracic vertebrae are different from those of lumbar 
vertebrae. Equations 1 and 2 detail the formulae for the 
quality measurements:

where xi is the distribution of minimum distances between 
each point on the predicted mask and the ith standard mask.

2.2.6 � Cobb Angle Measurement

When measuring the Cobb angle, any vertebrae with 
angles that were significantly different from the spinal col-
umn midline angle at the vertebra location were discarded, 
and then angles significantly different from the angles of 
their neighboring vertebrae were discarded. The steepest 
remaining pair of opposing angles was then used to meas-
ure the Cobb angle for each curve containing one apex. 
An apex occurred wherever the centroids of the vertebra 
segmentations reached an extremum. The pseudocode for 
the algorithm is displayed in Table 1.

(1)Quality Variance = min
i
{var(xi)}

(2)QualityMean = min
i
{mean

(

xi
)

}

Fig. 4   Distribution of minimum distances between a predicted and standard mask for: a a poor match and b a good match
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2.3 � Validation

2.3.1 � Network Segmentation

For both spinal column and vertebra segmentation networks, 
the 10-image validation sets were used to evaluate their per-
formance. The mean accuracy and mean Dice coefficient 
were used as metrics. The ratio of validation to training 
images was small, but success of the networks was more 
strongly evaluated on how well they automatically measured 
Cobb angles. The spinal column training and validation sets 
had average Cobb angles of 24.5° ± 13.2° (range 6°–97°) and 
25.6° ± 10.8° (range 8°–43°), respectively.

2.3.2 � Cobb Angle Measurement

The automatic CNN-based algorithm was run on a new test 
set of 100 radiographs, and the difference between each 
automatic and manual Cobb angle measurement was found. 

All the manual measurements were performed by a clini-
cian with over 20 years of experience and the variation was 
within 4°. In the 100 test radiographs, 177 Cobb angles 
were manually measured with an average Cobb angle of 
24.8° ± 10.1° (range 9°–52°). The mean absolute difference 
(MAD), standard deviation of absolute differences (SD), 
Pearson correlation coefficient (r), and percentage of differ-
ences within clinical acceptance (≤ 5°) were reported.

3 � Results

Figure 5a shows a test image with all vertebrae segmented, 
and Fig. 5b shows the final result of the automatic algorithm. 
In this example, the algorithm detected 3 curves: T3–T5, 
T5–T12, and T12–L4. However, the clinician’s measurement 
only had two curves: T5–T12 and T12–L4 as the slope of 
T3 was small (< 1°) and therefore not considered as part of 
a curve.

Table 1   Pseudocode for the 
complete iterative algorithm Segment the spinal column from the PA radiograph

Crop 5 images 2/3 of the way down the spinal column segmentation
For each cropped image:
 Calculate quality coefficients

Set the best quality segmentation as the current vertebra
While the current vertebra has not reached the top of the spinal column segmentation:
 Estimate the location of the next vertebra (above) using the spinal column segmentation
 (*) Crop an image around the estimated location
 Segment a vertebra from the cropped image
 Calculate the quality coefficient of the vertebra segmentation
 If the quality of the next vertebra segmentation is poor:
  Change the cropping parameters (height and width)
  Repeat from (*)

 Set the next vertebra as the current vertebra
Set the lowest segmented vertebra as the current vertebra
While the number of segmented vertebrae is less than 17:
 Estimate the location of the next vertebra (below) using the spinal column segmentation
 (**) Crop an image around the estimated location
 Segment a vertebra from the cropped image
 Calculate the quality coefficient of the vertebra segmentation
 If the quality of the next vertebra segmentation is poor:
  Change the cropping parameters (height and width)
  Repeat from (**)

 Set the next vertebra as the current vertebra
For each vertebra:
 Eliminate the vertebra if its angle is too different from the midline angle at that location
 Eliminate the vertebra if its angle is too different from the neighboring vertebra angles

Calculate the apexes of the spine by finding the extreme vertebrae
For each apex:
 Calculate the greatest angle between a pair of vertebra angles above and below the apex
 Set the greatest angle as the Cobb angle for that apex
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3.1 � Network Segmentation

Training the spinal column and vertebra segmentation net-
works took 51 min and 9 min, respectively. The spinal col-
umn CNN achieved 0.989 accuracy and 0.954 DICE, and the 
vertebra CNN achieved 0.945 accuracy and 0.910 DICE on 
their respective 10-image validation sets.

3.2 � Cobb Angle Measurement

The automatic method reported 173/177 matching measure-
ments, with 88% within clinical acceptance. The 4 missing 

curves were a result of vertebra segmentation failure, which 
was related to image quality or curve ambiguity. Among the 
173 comparisons, 87% of the upper and lower vertebrae and 
89% of the apical vertebrae from the curves were within ± 1 
vertebral level of the manual measurements. This minor 
variation is usually accepted in clinical assessment. Figure 6 
shows a histogram of the signed differences between auto-
matic and manual Cobb angle measurements, with a maxi-
mum absolute difference of 16°. The MAD ± SD of the 173 
comparisons was 2.8° ± 2.8°, and the manual and automatic 
measurements were strongly correlated (r = 0.989). Table 2 
summarizes all relevant segmentation and angle measure-
ment results. The automatic algorithm took 90 ± 41 s per 
image, which is comparable to manual measurements (90 s 
per image).

4 � Discussion

4.1 � Spinal Column and Vertebra Segmentation

Overall, both the vertebra and spinal column segmentation 
networks performed well given the relatively small number 
of training samples and the complexity of the task, although 
there are still a few challenges. The vertebra segmentation 
network appears to have learned to mark the segmentation 
edge wherever there are lines or high contrast regions. This 
is not always desirable, as vertebrae occasionally have extra-
neous bright lines or regions in the middle of the vertebra 
or around the vertebral edge, leading to false edge detec-
tion. Consequently, the bounding box could be incorrect 
and result in a poor Cobb angle measurement. Furthermore, 
since the algorithm is iterative, a poor segmentation on the 
current vertebra may induce improper segmentation of the 
following vertebrae.

Fig. 5   a Results of the iterative algorithm to find individual vertebrae 
on a test image, b bounding boxes on the vertebrae used for Cobb 
angle measurement

Fig. 6   Distribution of automatic 
and manual Cobb angle meas-
urement differences



395Applying a Convolutional Neural Network Based Iterative Algorithm to Automatically Measure Spinal Curvature on Radiographs for Children with Scoliosis

1 3

To improve vertebra segmentation, there are several fac-
tors that can be changed. First, different preprocessing can 
be performed. While CLAHE is standard to improve contrast 
and feature extraction, another preprocessing algorithm may 
help reveal appropriate features, particularly by highlighting 
the vertebral edges without simply increasing contrast eve-
rywhere. Secondly, a custom loss function can be developed 
to train the network more efficiently, such as by including 
a shape-aware parameter [14] or incorporating a Hausdorff 
distance metric [15].

4.2 � Cobb Angle Measurement

Compared to other literature, the developed algorithm per-
formed admirably. Horng et al. tested their algorithm on 35 
images and compared to two sets of manual measurements 
by an expert rater [6]. They had 91% within clinical accept-
ance on one set and 97% within clinical acceptance on the 
other. This is higher than the 88% demonstrated by our algo-
rithm. However, all of their curves were under 20°. If our 
test set is limited to curves under 20°, 93% of the automatic 
measurements are within 5° of the manual measurements, 
indicating comparable performance in terms of clinical 
acceptability. Calculating the MAD ± SD of the provided 
measurements from Horng et al., their algorithm returned 
3.0° ± 2.0° and 2.5° ± 1.7° between their automatic and two 
sets of manual measurements. Our results for curves under 
20° improved upon this with a MAD of 2.3° ± 2.1°. The most 
significant improvement of the developed method is that it 
can be accurately applied to a wide range of curve severities. 
This is important since curves greater than 25° and 45° are 
recommended respectively for brace treatment and surgery.

Although the results are good, there is still room for 
improvement. As mentioned before, a poor vertebra segmen-
tation could affect the Cobb angle measurement. The current 
algorithm only uses the angles of the spinal column midline 
and neighboring vertebrae as references to eliminate any 

outlying vertebral tilt angles from poor segmentations; how-
ever, this method does not always succeed. Further devel-
opment can focus on a more robust algorithm that removes 
erroneous tilt angles every time; this can be achieved by 
considering the angle between the tops of the pedicles as an 
alternative to the bounding box angle. Clinicians sometimes 
use this instead of the vertebral endplates if the vertebral 
boundaries are unclear. If the pedicles are segmented, their 
angle can be used as additional information when calculating 
vertebral tilt for the Cobb angle.

5 � Conclusion

This paper reported a robust iterative method based on con-
volutional neural networks to automatically measure the 
Cobb angles on PA radiographs for children with AIS. The 
MAD ± SD between manual and automatic measurements 
was 2.8° ± 2.8° and 88% of automatic measurements were 
within 5°, which is clinically acceptable error. Comparable 
accuracy and timing to manual measurements was achieved 
automatically, and thus the proposed method could be a 
valuable tool for reducing measurement variation and clini-
cal workload. Further improvements can be performed by 
increasing the accuracy of the vertebra segmentation, espe-
cially on the vertebrae which contribute to a Cobb angle 
measurement.
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